
SEPlib CMake update

Stewart A. Levin

ABSTRACT

SEPlib is now built with CMake. This report covers the futher changes made to
the source tree in order to fully support Linux and Mac OS X platforms.

INTRODUCTION

As discussed in Levin and Clapp (2017), our SEPlib source code was converted this
year to CMake for more rapid and less arcane build development and maintenance.
The timing of the switch proved rather awkward for me as I had only recently figured
out how to build shared libraries needed for use with Java under the prior system.
Diving back into CMake arcana, I retackled the SEPlib build process as well as
fixed several open bugs. In the following I share highlights, tricks, and tips of that
adventure.

CMAKE LOOSE ENDS

The unfinished portions of the SEPlib cmake-based build were

1. shared libraries,

2. symbolic links, and

3. executable scripts.

Shared libraries

Shared libraries, also known as dynamic libraries, are the basis for modern computing
paradigms such as browser add-ins. They are loaded into memory at program run
time rather than being statically linked into the program executable. This puts some
extra burden on the developer. First, unlike traditional object file libraries, accessing
one symbol, for example a subroutine, in the shared library brings all the library’s
symbols into the program. Usually these include undefined symbols that must be
pulled in from another library. This means that

• all dependent libraries need to be known when a shared library is built,

SEP–170



Levin 2 SEPlib cmake

• the same symbol should not be defined in both a shared library and any depen-
dent shared library, and

• there should be no circular references among the library and its dependent
shared libraries.

Fortunately, the shared library work I had done under the older GNU build system
provided the lists for the first item and already fixed the latter two items.

As it happens SEPlib shared libraries are not needed for any SEPlib programs and,
indeed, are a nuisance to deploy and use. The only part of SEPlib currently relying
on shared libraries is the subset supporting Java. For this reason, SEPlib is actually
built twice, once using shared libraries and a second time using static libraries. This
results in static executables and library pairs, one dynamic and one static.

Shared libraries are not completely eliminated from SEPlib with static executable
linkage. Quite a few system and other external libraries may only be available in
shared library format and, furthermore, may be incompatible between different ma-
chines and operating system versions. For this reason, I also scan the static executa-
bles and make copies of their remaining dependent shared libraries underneath the
installed library directory to be use as last resort fallback options.

Symbolic links

Symbolic links are suprisingly awkward to create in CMake. They are only provided
for Unix-based operating environments, e.g. Linux and Mac OS X, and implemented
by invoking cmake separately with the command line option -E create symlink and
arguments giving the old and new names. Somewhat confusingly, this is not the same
as ln -s but mimics instead ln -s -r so that to create

/opt/SEP/lib/NewName.a ---> /opt/SEP/lib/OldName.a

one should invoke the command

cmake -E create_symlink /opt/SEP/lib/OldName.a NewName.a

either separately or, as done in SEPlib, as a subprocess during the installation.

Executable scripts

Scripts play a different role in CMake than executables. For one thing, they may
require configuration of some variables or strings. In addition, it is a mistake to
install them with the

SEP–170



Levin 3 SEPlib cmake

install(FILES scriptname DESTINATION bin)

cmake command as that relies on the script having the correct execute and read/write
permissions in the source tree. One should use

install(PROGRAMS scriptname DESTINATION bin)

instead.

MISCELLANEOUS UPDATES

In addition to the three main areas discussed above, I also added support for FFTW
high performance FFTs, resurrected older Motif-based 3D visualization programs, re-
solved a handful of vplot issues, added or modified external format converter utilities,
and updated a number of program self-docs.

SUMMARY

While there are a few issues that still remain outstanding with respect to SEPlib
builds and distribution, the current sources build quite cleanly on both Linux and
Mac OS X and work under both GNU and Intel compilers.

REFERENCES

Levin, S. A. and R. G. Clapp, 2017, make, schmake: CMake: SEP-Report, 168,
309–312.

SEP–170


