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ABSTRACT

We catalogued more than 800 seismic events recorded at Stanford Distributed
Acoustic Sensing Array (SDASA-1) from September 2016 to August 2017. The
catalog is being continuously updated as new events occur. We have developed
open-source interfaces so that users can query the database and extract earth-
quake recordings efficiently. Pulling the data via the interfaces, we performed
signal repeatability analyses for blasts at nearby Permanente Quarry and nearby
weak earthquakes from Ladera and Felt Lake. We found that geographically close
events could have repeatable signals in terms of S-wave arrivals and surface-wave
phase changes. With rich event recordings, the catalog enables us to extract and
characterize distant and weak events, which we will use to quantify our array’s
sensitivity and study event detection and noise attenuation algorithms in future
work.

INTRODUCTION

Distributed Acoustic Sensing (DAS) holds great promise for application in cost-
effective monitoring of microseismic signals and detecting earthquakes. Unlike the
mainstream work previously done using DAS (e.g., using fibers in wells or burying
the array in trenches), Stanford DAS Array-1 (SDASA-1) uses a fiber-optic cable
laying in an already existing polyvinyl chloride (PVC) conduit buried in the ground
that makes the installation more convenient and economic (Martin et al., 2017; Biondi
et al., 2017). Understanding how well this type of cost-effective array records seismic
events is one of our objectives. Some preliminary event analyses have been done.
Through analysis of six seismic events recorded by SDASA-1, Biondi et al. (2017)
show the recorded data can provide us with valuable information, thereby demon-
strating the suitability of our DAS array for event detection. We would like to get
a better understanding of our array by further analyzing many more events. The
location of SDASA-1 in a tectonically active location allows us to record hundreds of
events per year.

Due to the large number of the events, manual data management and extraction
become infeasible. Therefore we built an event catalog system to manage the data
automatically. The catalog was built based on the United States Geographical Survey
(USGS) online database, and we also provide a program that can pull the broadband
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data recorded at the Jasper Ridge Seismic Station (JRSC) station for comparative
studies. Additionally, we offer open-source interfaces for the users to select only
events of interest and to extract the event data recorded by DAS efficiently. Using the
interfaces, we performed the signal repeatability analysis in a more efficient manner.
Here we analyze data from blasts at Permanente Quarry and several natural seismic
events. This analysis shows some repeatable patterns.

In the next section, we give an overview of the passive data from which we extract
earthquake recordings. Then we show how we manage the passive data, how to build
the catalog, and how the catalog interfaces work. We then provide examples using the
database to perform repeatability analyses for 67 quarry blasts, two nearby natural
earthquakes from Ladera and two natural earthquakes from Felt Lake; and we present
the repeatable wave arrival timings and waveform patterns we found.

OVERVIEW OF PASSIVE DATA

Martin et al. (2017) and Biondi et al. (2017) show the SDASA-1 array design, geom-
etry, and experiment setup. We used passive data recorded by SDASA-1 to extract
earthquake recordings. To interpret our results in the following sections, we first give
an overview of the data.

The data have been recorded by 626 channels along the SDASA-1 since September
2016. SDASA-1 is a double-loop array with the layout outlined by the red line in
Figure 1. At the end of the first loop, two fibers in the same jacket are spliced end-to-
end. We numbered the channels in the interlacing order with a 4.08-meter effective
spacing. The data are recorded by each channel on both fibers simultaneously.

There are two recording modes: active and passive. For the active mode, the
sampling rate is 2500 samples per second; while 50 samples per second is the rate
for the passive mode. The active data have 4x denser channel spacing: 1.02 meters.
Active data and passive data require different processing procedures. Because the
active mode accounts for a negligible proportion of recordings compared to the passive
mode, we focus on the passive mode data with the 25 Hz Nyquist rate for now.

MANAGEMENT OF PASSIVE DATA

Our first step in data management was to organize files into smaller, easily navi-
gated subdirectories. The passive data files initially show up in a directory called
/data/biondo/DAS in SEG-Y format and are named based on the UTC time stamp
of its first sample. For a limited number of files this could be the end of the story, but
even simple file system operations like an ls become painfully slow when thousands
of files are in one directory. Therefore, a python script called checkOrganizeFiles.py is
run regularly to move files into subdirectories named as /data/biondo/DAS/year/month
/day. For example, a file starting on December 10, 2016 at 13:01:54 and 351 millisec-

SEP–170



Yuan et al. 3 Earthquake catalog

6189

141

191

301 397
481

531

267

Via Pueblo

V
ia

 O
rt

e
g

a

Campus Dr.

L
o
m

it
a
 M

a
ll

IU

Quad

Figure 1: The layout of the fiber following telecommunications conduits overlaid on
the map. The longest linear section is roughly 600 meters wide. Some deviations
from straight lines had to occur due to existing conduit geometry constraints. [NR]

onds would show up as /data/biondo/DAS/cbt processed 20161210 130154.351+0000.
sgy and the next time checkOrganizeFiles.py is run, it will move to /data/biondo/DAS
/2016/12/10/ cbt processed 20161210 130154.351+0000.sgy.

Further organization is based on the idea of fileSet objects, defined in fileSet.py.
A fileSet is a collection of files named using a particular grammar that allows times
to be associated with the names of files. Given a file name with that grammar, the
fileSet can interpret the start time of the file (as a python datetime object), and
given a start time, the fileSet can generate the name of a file that starts at that
time. To define a fileSet, one first creates a list of strings, some of which are key-
words tied to parts of the timestamp. For instance, when files initially show up in
/data/biondo/DAS, the fileSet grammar that describes them is [‘/data/biondo/DAS/
cbt processed ’, ‘year4’,‘month’,‘day’,‘ ’,‘hour24start0’,‘minute’,‘second’, ‘.’,‘millisec-
ond’, ‘+0000.sgy’]. The fileSet that describes files that have already been organized
into subdirectories is [‘/data/biondo/DAS/’,‘year4’,‘/’,‘month’,‘/’,‘day’,‘/cbt processed ’,
‘year4’, ‘month’, ‘day’,‘ ’,‘hour24start0’, ‘minute’,‘second’,‘.’,‘millisecond’,‘+0000.sgy’].

However, we do not always know the start time of every file. We just know that we
want files that contain time A to time B. One clunky way to do this is every time you
want data between A and B, you list all the files in the /data/biondo/DAS/year/month
/day subdirectory for each year/month/day between A and B, use the fileSet described
above to check their start times, also check the SEGY header with the file length, then
generate a list of files. Instead, we streamline the process by organizing consecutive
files into regularFileSet objects, which are a type of fileSet that describes files that
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are the same length, same sample rate, the end of one file is right before the start of
the next, and all are named using the same grammar. The regularFileSet object is
defined by the start time of the first file, the number of consecutive files, the grammar
for naming, and the length in seconds of the files. A regularFileSet also tracks the
end of its last file, can return the name of the file in that regularFileSet containing a
particular time, and can build a list of file names that include the data between time
A and time B.

Generally, the interrogator chugs along without interruption, so we often have
regularFileSets made up of hundreds or thousands of files. But we needed to auto-
mate the tracking of all these regularFileSets because there are occasional hiccups: a
software license gets renewed, a power outage, a switch between active and passive
recording, among other reasons. To do this, we have written a script called fillSQLit-
eDB.py to build and add on to a SQL database regFileSetLog.sqlite where each row is
a distinct regularFileSet. Since there are typically hundreds or thousands of files in a
regularFileSet, this means that the SQL database contains relatively little metadata,
making it easy to navigate and figure out which file names should be used to study a
particular event or time window.

The fillSQLiteDB.py script requires the sqlite3 package and accepts three command-
line arguments. The first is a text file containing the paths to directories containing
the SEG-Y files to be added to the SQL database. While users can specify the direc-
tories directly containing the SEG-Y files, they can also specify directories containing
subdirectories of SEG-Y files. Additionally, users can include multiple directories to
search through by specifying them on different lines. As an example, if users would
like to add SEG-Y files from all of August and from only the first day of September,
the text file would look like:

/data/biondo/DAS/2017/08/

/data/biondo/DAS/2017/09/01/

Note that if there are already some files from August in the database, the script will be
able to append regularFileSets to the existing database entries. The second argument
is the path of the directory containing the database. By default, the database will be
located in an associated subdirectory log and named regFileSetLog.sqlite. The third
argument is a flag for whether to print out status updates to screen (1 for yes, 0 for
no). The first few entries of the SQL database are shown in Figure 2.

EVENT CATALOG AND INTERFACES

The essential idea of building the event catalog was that for each event around the Bay
area since September 2016, we locate the passive data using the regFileSetLog.sqlite
SQL database and python tools described in the previous section, preprocess and save
the data; and then record the data file paths and file names along with the metadata
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Figure 2: First nine entries of the SQL database for passive data management. [NR]

in our event SQL database event log.sqlite. We also created interfaces for the users
to efficiently select the events of interest and extract the event data.

To start with a reliable set of events, metadata are pulled from the USGS online
database. These metadata include the event start time, magnitude, and location
of the epicenter. We calculate the three-dimensional (3D) distance from the epi-
center to our array for each event. With the start time and estimated time range
(proportional to the distance to our array) for each event, and taking advantage of
data managing tools in the previous section, we locate the raw data on our stor-
age system. The original data are proportional to strain. We take their tempo-
ral derivative to convert them to strain rate, which has a broader spectrum, useful
for visualizing events (Martin et al., 2017). We then high-pass the data by set-
ting the low-cut frequency to be 8/(event time range), considering that the closer
events are to us the greater proportion high-frequency components arise in the spec-
trum. Last, but not least, at each time slice we calculate the median data rate
and subtract the median value from the data rate recorded by each channel to com-
pensate for possible laser drift occurring on all channels at once. We save the pre-
processed data into both a SEG-Y file and a SEPLib file format organized into a
/data/biondo/DAS/EventCatalog/Data/year/month/day folder. The file names and
data paths were recorded in our event catalog SQL database. We have cataloged
more than 800 events ranging from September 2016 to August 2017.

The interface of the event catalog takes time range, magnitude range, epicenter
depth range, distance to SDASA-1 range, and azimuth angle to SDASA-1 range as
inputs to filter the events and return the corresponding metadata, data paths, and
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file names for both of the SEG-Y and SEPLib data files to users. Users can choose to
either set every input option or choose any subset of the options of particular interest.
They may save a limited amount of data to their local directories for further analysis.
In the next section, we show how we used our catalog for signal repeatability analyses.

SIGNAL REPEATABILITY ANALYSIS

Because weak events tend to be contaminated by local noise, especially during day-
time, we are always interested in whether or not the data recorded are from the actual
events. A nearby quarry blast (around 13km from SDASA-1) and some frequently
occurring nearby earthquakes provided us with an opportunity to assess signal re-
peatability of the arrivals. To validate the events observed in DAS data, we used the
data recorded at the Jasper Ridge Seismic Station (JRSC station) by a broadband
seismometer managed by the Berkeley Digital Seismic Network. Data from JRSC are
available online. The Jasper Ridge station is located approximately 6.4 km from our
DAS array. Because near-surface conditions are different below our array and JRSC
and ray paths are different, the waveforms were not directly comparable. However,
JRSC data provided a rough indication of the arrival time and relative strength of the
signal corresponding to different arrivals (i.e., P-waves, S-waves, and surface waves).

Permanente Quarry Blasts

Biondi et al. (2017) show the repeatable patterns from two quarry blasts. With
the earthquake catalog tools presented in the last section, we quickly pulled quarry
blast data by setting the geographical region (latitude range and longitude range
around the quarry blast) through the catalog interface. We identified a total of
67 quarry blasts recorded by SDASA-1. The maximum distance, by which these
events were separated is less than 800 meters, which means they are good candidates
for waveform repeatability assessment. Indeed we did see satisfactory repeatability
between a number of events. However, some events, especially weak ones, gave us no
recognizable patterns. Here we first present our analyses of six representative events
showing clear repeatability. The following list provides the main information for the
six events in order of increasing magnitude. The magnitude (M) and depth (z) of each
event are based on the online USGS database. Distance (∆) to DAS array of each
event is calculated based on the 3D distance between SDASA-1 and the epicenter.

• Blast#1: September 23, 2016 – M 1.47 – z=-0.31 km – ∆=13.43 km

• Blast#2: September 29, 2016 – M1.53 – z=-0.31 km – ∆=13.17 km

• Blast#3: November 28, 2016 – M1.64 – z=-0.22 km – ∆=13.38 km

• Blast#4: October 12, 2016 – M1.68 – z=-0.28 km – ∆=13.21 km
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• Blast#5: May 23, 2017 – M1.73 – z=-0.31 km – ∆=13.46 km

• Blast#6: February 09, 2017 – M1.87 – z=-0.26 km – ∆=13.51km

To give the reader a sense of these SDASA-1 event records, the top panels of
Figure 3 and Figure 4 show the data for Blast#1 and Blast#2 respectively, after
bandpassing from 0.23 to 2.0 Hz. The origin of the time axis (0 seconds) is the event
start time provided by the USGS online database. We use the same convention for
the following data displays. The trace at the bottom shows the data recorded by
the vertical component of broadband data recorded by JRSC (JRSC-BH data). This
trace was bandpassed with the same filter parameters as the DAS data. The two
events have similar surface-wave kinematics. We observe that these two events have
a repeatable surface-wave arrival at approximately 9 seconds. Furthermore, compared
with JRSC-BH data, for these quarry blast events, SDASA-1 records more reliable
data.

To make the interpretation more straightforward, for each of the events, we stacked
the envelopes of the traces after normalization by maximum absolute value. Figure 5
shows the stacking results of these blasts on the same plot, with each color line
corresponding to each blast. Clearly, their waveforms have much in common. All the
waveforms have amplitude jumps at around 8 seconds, which we interpret as S-wave
arrivals. They all have amplitude peaks at around 12 seconds, which can be explained
as arrivals of surface waves with strong energy.

The following events (Blast#7 to Blast#10), however, represent events with no
evident regular patterns, as stacking results (traces stacked in the same way as
Blast#1 toBlast#6) shown in Figure 6. The reason may be that these events were
over-whelmed by locally-generated noise.

• Blast#7: April 12, 2017 – M 1.52 – z=-0.31 km – ∆=13.49 km

• Blast#8: September 13, 2016 – M1.58 – z=-0.23 km – ∆=13.47 km

• Blast#9: May 04, 2017 – M1.65 – z=-0.31 km – ∆=13.49 km

• Blast#10: December 13, 2016 – M1.66 – z=-0.28 km – ∆=13.56 km

Besides artificial events, we pulled natural earthquake recordings using our catalog
interfaces. We observed satisfactorily repeatable signals for nearby events in terms of
the arrival times of P-waves, S-waves, and surface-waves. We show the analysis for
two earthquakes near Ladera, CA and two earthquakes at Felt Lake near the Stanford
campus in the next two subsections.

Ladera earthquakes

The main information for the two Ladera events is listed in the following:
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Figure 3: Blast#1 Data bandpassing (0.23-2.0 Hz). Top: DAS array data; Bottom:
JRSC-BH vertical component. The time origin (0 seconds) is the event time according
to the USGS and channel numbers correspond to the markings on Figure 1. [CR]

Figure 4: Blast#2 Data after bandpassing (0.23-2.0 Hz). Top: SDASA-1 array data;
Bottom: JRSC-BH vertical component. The time origin and channel numbers follow
the same convention as Figure 3 [CR]
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Figure 5: Stacks of the envelopes of the normalized traces for Blast#1 to Blast#6 after
bandpassing (0.23-2 Hz). The time-axis origin (0 seconds) is the time of the event
according to the USGS online database. [CR]
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Figure 6: Stacks of the envelopes of the normalized traces for less clear events,
Blast#7 to Blast#10 blasts after bandpassing (0.23-2.0 Hz). The time-axis origin
(0 seconds) is the time of the event according to the USGS online database. [CR]
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• Lad#1: August 10, 2017 – M 1.63 – z=+3.63 km – ∆=4.62 km

• Lad#2: August 10, 2017 – M 1.79 – z=+3.25 km – ∆=4.62 km

These two events are very close to each other both in time (26 minutes apart)
and in location (3D distance 456-meters apart). In addition, they were very close to
Stanford, and both happened at night (local time), which means there should be less
anthropogenic noise near the DAS array. The top panel of Figure 7 and Figure 8 show
the data bandpassed between 0.25 Hz and 20 Hz for the two events, respectively. The
bottom panels show the vertical component of JRSC-BH for comparison. We did see
great repeatabilities for arrival timings. Although there is a little time shift, both
events have the P-wave arriving at approximately 1.5 seconds, and mix of S-wave and
surface-wave arrivals at approximately 3.0 seconds.

We scaled both events in terms of the maximum value for each trace. Then
we trace-wise cross-correlated the scaled data of these two events from 1.4 seconds
to 5 seconds after their USGS-picked start times, and stacked the results, shown
in Figure 9. The peak value is at 0.078 seconds. We advanced the scaled data of
Lad#1 by 0.078 seconds, as shown in Figure 10. Figure 11 shows the scaled data
of Lad#2. The difference between the two events is shown in Figure 12. We can
see that significant cancelations between these events’ waveforms happen after P
wave arrives (around 1.5 seconds) showing great repeatability. Figure 13 shows the
Fast Fourier Transform (FFT) spectra of these two events’ scaled data and of their
difference. The Nyquist rate of SDASA-1 recording is 25 Hz. Thus, we cannot see
higher frequency content without risk of aliasing. The spectra of the two events are
consistent with each other, especially for frequencies below 15 Hz. Their difference’s
spectrum shifts towards high frequency content, which shows that lower frequencies
are more repeatable.

Additionally, we estimated the energy for each event by summing up the squared
amplitude of all traces ranging from 1.48 seconds to 4.5 seconds. We obtained an
estimated energy ratio (Lad#2 to Lad#1) of 1.15. For comparison, we calculated the
energy ratio by 101.79/101.63, where 1.79 is the magnitude of Lad#2 and 1.63 is that
of Lad#1. The result is 1.45. The difference between the two numbers (1.15 and
1.45) could be explained as a combination of higher levels of noise in our recordings
and the fact that we do not record complete three component data.

Felt Lake earthquakes

Repeatability is not just observable at night. Here we show the recording of an
earthquake doublet occurring on Stanford’s campus near Felt Lake, 4.2 km from the
DAS. The distance between their epicenters was estimated by USGS to be close to
100 m, and they occurred one minute apart just prior to 13:00, local time. Figure 14
shows the data recorded by our DAS array and the Jasper Ridge Seismic Station
broadband seismometer corresponding to the first, and stronger (magnitude 1.34) of
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Figure 7: Lad#1 Data bandpassing (0.25-20 Hz). Top: DAS array data; Bottom:
JRSC-BH vertical component. The time origin (0 seconds) is the event time according
to USGS. [CR]

Figure 8: Lad#2 Data bandpassing (0.25-20 Hz). Top: DAS array data; Bottom:
JRSC-BH vertical component. The time origin (0 seconds) is the event time according
to USGS. [CR]
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Figure 9: Stack of the tracewise cross-correlations between the bandpassing (0.25-20
Hz) data of Lad#1 and Lad#2. [CR]

Figure 10: Lad#1 data after bandpassing (0.25-20 Hz), scaling each trace by its
maximum value, and shifting forward by 0.078 seconds. The time origin (0 seconds)
is 0.078 seconds from Lad#1 start time based on USGS. [CR]
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Figure 11: Lad#2 data after bandpassing (0.25-20 Hz), and scaling each trace by its
maximum value. The time origin and channel numbers follow the same convention
as Figure 3. [CR]

Figure 12: Difference between the trace-wise scaled data of Lad#1 (shifted forward
by 0.078 seconds) and Lad#2. The time-axis origin is the time of the event according
to USGS’s online database. [CR]
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Figure 13: FFT spectra of Lad#1, Lad#2, and their difference. [CR]

the Felt Lake events. The DAS data were preprocessed via laser-noise attenuation,
trace balancing, and bandpassing from 0.25 to 12.0 Hz. Figure 15 shows the recording
corresponding to the second, and weakest (magnitude 0.95) of the Felt Lake events.
The same preprocessing was applied as for the data showed in the previous figures.

• Felt#1: July 12, 2017 – M 1.34 – z=+3.24 km – ∆=5.45 km

• Felt#2: July 12, 2017 – M 0.95 – z=+3.05 km – ∆=5.34 km

The DAS data shown in Figure 14 and Figure 15 show strong and repeatable
waveforms across the whole array starting at about 3.7 seconds. These are likely to
be a mix of S-wave and surface-wave arrivals. The waveforms are complex because of
the complexity of the near surface both close to the epicenter and in the vicinity of the
DAS array. However, they stand out from the strong background noise. As expected,
the signal-to-noise ratio is higher for the first stronger event than the second weaker
event. There is no clear P-wave arrival visible in either of the two DAS recordings.
The P-wave arrived at Jasper Ridge after approximately 1.4 seconds, as is clearly
observable from the vertical-component trace shown in Figure 14. The corresponding
vertical-component trace in Figure 15 shows a weaker, but still identifiable, P-wave
arrival.

The Felt Lake examples demonstrate the repeatability of signals recorded by the
DAS array, but they do not show clearly identifiable P and S phases, due in large
part to strong anthropogenic noise generated on campus.
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Figure 14: Felt#1 Data bandpassing (0.23-12.0 Hz). Top: DAS array data; Bottom:
JRSC-BH vertical component. The time origin (0 seconds) is the event time according
to the USGS. [CR]

Figure 15: Felt#2 Data bandpassing (0.23-12.0 Hz). Top: DAS array data; Bottom:
JRSC-BH vertical component. The time origin (0 seconds) is the event time according
to the USGS. [CR]
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CONCLUSION AND FUTURE WORK

We have created a continuously updated event catalog for the passive data recorded
by our DAS array. We have created interfaces that can be used to filter, access,
and process the event data efficiently. Taking advantage of the catalog tools, we
examined signal repeatability on both man-made events (quarry blasts) and natural
events (Ladera and Feltlake). We found strong signal repeatability in terms of surface-
wave arrival timings for Permanente Quarry blasts. And we noticed clearly repeatable
P-wave, S-wave, and surface-wave arrivals for naturally occurring nearby events from
Ladera and Felt Lake. In the future, we will work on estimating what distances
and magnitudes are clearly detectable by the DAS array. We will use the catalog to
extract data for distant and weak events. On these events, we will test common array
methods for earthquake detection and location, including beamforming and Short-
Term Averaging/Long-Term Averaging (STA/LTA) analysis in time and frequency.
Then, further analysis should be done on detectability with methods tailored to small
events (e.g., template matching).
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