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ABSTRACT

We developed a 2D Helmholtz equation solver library in C++ based on the
SuiteSparse library for sparse linear algebra. The solver library was successfully
tested for correctness in this paper by running a suite of simple 2D examples. We
first used the library to solve the Helmholtz equation in a homogenous medium
for different frequency bands. The test was then repeated for an inhomogenous
two layer medium, for the same frequency bands. We also performed Born lin-
earization tests with the code and demonstrated that the error is quadratic in the
magnitude of the velocity perturbation, in agreement with the theoretical pre-
diction. Finally we performed extended linearized Born forward modeling tests
using the Helmholtz code to demonstrate its use in Tomographic Full Waveform
Inversion (TFWI) applications.

INTRODUCTION

Solving the wave equation in the frequency domain has many advantages from the
perspective of seismic inversion. In particular, this is useful if we have a large number
of shots, in which case the cost of pre-factoring and storing the LU decomposition
of the matrix arising in the numerical solution of the Helmholtz equation is justified
as it has to be performed only once for each frequency, and then the factors can be
reused for all the shots. The solution to the Helmholtz equation is then obtained
by performing a forward and backward solve for each shot. This idea also extends
naturally to the TFWI setting introduced by Biondi and Almomin (2014), where
one needs to solve the wave equation to get the background wave field which is then
convolved with the extended model to get the secondary source to be propagated
using Born modeling. In fact, one of the main motivations for this work is to be
able to perform 3D TFWI at low frequencies below 5Hz, which can fit in present
day computer memory for reasonably large model sizes. In addition to this, the
convolution operation in time domain TFWI becomes a multiplication operation in
the frequency domain. The same is also true of the gradient computation for certain
objective functions such as in the case of FWI.

In this paper, we follow the discretization scheme introduced by Liu and Ying (2016).
The code that we have developed can handle three kinds of boundary conditions:
Dirichlet, Neumann and Sommerfeld radiation through a PML (perfectly matched
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layer) approach as described in Liu and Ying (2016). The PML is implemented to
have the same amount of attenuation across different frequency bands, and is also
independent of the number of PML cells. We have implemented the Helmholtz solver
in C++ using the SuiteSparse library (Davis, 2004, 2006) for performing the sparse
factorization.

THEORY

In this section, we provide a very brief introduction to the Helmholtz equation, and
outline the numerical scheme that we use to solve it in this paper. We establish
the connection of the Helmholtz equation with the acoustic wave equation, derive
formulas for the Born linearization of the Helmholtz equation, and also derive the
frequency domain formulation of TFWI extended Born forward modeling.

The Helmholtz equation

The Helmholtz equation in d dimensions is given by(
∇2 +

ω2

c2(x)

)
û(x, ω) = f̂(x, ω), (1)

where x ∈ Rd, ∇2 =
d∑
i=1

∂2

∂x2
i

represents the d-dimensional Laplacian operator, ω ∈ R

is the angular frequency, c(x) is the velocity of the medium that depends on the
position x, f̂(x, ω) is the forcing function, and û(x, ω) is the solution to the Helmholtz
equation. For purposes of this paper, we will be only concerned with d = 2, i.e we
will only consider the 2D Helmholtz equation.

Typically, the Helmholtz equation is solved on a bounded domain Γ with suitable
boundary conditions on the boundary of the domain dΓ, which forms a submanifold
of Γ of codimension 1. Three types of boundary conditions are extremely common,
namely DBC(Dirichlet Boundary Condition), NBC(Neumann Boundary Condition)
and RBC(Robin Boundary Condition). These boundary conditions have the following
analytical form

û(x, ω)

∣∣∣∣
dΓ

= ûD(x, ω) (DBC)

∂û(x, ω)

∂n

∣∣∣∣
dΓ

= ûN(x, ω) (NBC)(
aû(x, ω) + b

∂û(x, ω)

∂n

) ∣∣∣∣
dΓ

= ûR(x, ω) (RBC),

(2)

where ∂
∂n

is the normal derivative operator pointing outward with respect to the
boundary dΓ.
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However in many cases such as commonly encountered in frequency domain seismic
inversion, one wishes to solve the Helmholtz equation on an unbounded domain. But
even in such applications, the forcing function (also known as the “source”) is still
supported on a bounded domain, and one is interested in the solutions representing
outgoing waves instead of the solutions representing incoming waves, i.e one wants the
“source” to be a source and not a sink. To enforce this condition, a commonly used
boundary condition is the Sommerfeld radiation boundary condition (see Sommerfeld
(1949); Johnson (2008) for details), given by

lim
r→∞

∂û(x, ω)

∂r
− iω

c0

û(x, ω) = 0, (3)

where we have assumed that the velocity of the medium is constant outside a bounded

set Γ, i.e c(x)

∣∣∣∣
Rd\Γ

= c0, and ∂
∂r

denotes the derivative operator along the unit

normal in the radial direction. In practice, one has to solve the Helmholtz equation
on a truncated domain in a computer, where the Sommerfeld radiation boundary
condition is implemented using some form of PML condition, which we discuss next.

Numerical scheme to solve the Helmholtz equation

The numerical scheme implemented for this paper is taken from Liu and Ying (2016).
Both directions are treated in a manner similar to one another, and thus we only
discuss what is done along the X direction. Suppose our computational domain along
the X direction is given by [0, l]. Let η denote the PML width, and let us first discuss
the case when we have PML boundaries on both ends of the computational domain.
Thus we have two PML zones given by [0, η) and (l − η, l]. Following Liu and Ying
(2016), we introduce the auxiliary functions

σ(x) :=


C
η

(
x−η
η

)2

, x ∈ [0, η),

0, x ∈ [η, l − η],

C
η

(
x−l+η
η

)2

, x ∈ (l − η, l],

s(x) :=

(
1 + i

σ(x)

ω

)−1

,

(4)

where C is a positive constant that does not depend on ω, and η is typically around
one wavelength.

With this notation, the Helmholtz equation along X direction with PML is modified
to be ((

s(x)
∂

∂x

)2

+
ω2

c2(x)

)
û(x, ω) = f̂(x, ω), ∀ x ∈ [0, l],

with û(0, ω) = û(l, ω) = 0, and f̂(x, ω) = 0 in the PML zone.

(5)
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The above equation 5 is discretized using a standard second-order central difference
numerical scheme as follows

si
hx

(
si+1/2

hx
(ûi+1 − ûi)−

si−1/2

hx
(ûi − ûi−1)

)
+
ω2

c2
i

ûi = f̂i, ∀ 1 ≤ i ≤ n, (6)

where the subscript i means that the corresponding quantity is evaluated at x = ihx,
and hx = 1

n+1
is the grid size along X. Note that here we have used the same PML

width on both sides, but it is possible to use different PML widths also, as long as they
are kept to at least one wavelength. Then the discretization scheme gets modified
accordingly. Finally one should also note that it is possible to discretize equation
5 using a higher order discretization scheme which is relatively straightforward to
perform, but we do not explore this in our paper.

When one has DBC on any side, we set η = 0 for that side. The case of NBC is
similar, and we first set η = 0 for that side followed by using a central difference
scheme for the points on the boundary. The right hand sides are also modified by
the DBC and NBC, depending on the numerical values supplied for the boundary
conditions.

Performing the above discretization leads to a matrix equation of the form Aû = f̂ .
The matrix A is extremely sparse and has at most 5 non-zero elements per row in the
case of the 2D Helmholtz equation. We use SuiteSparse to compute the sparse LU
factorization of such a system and then one can solve the same equation for different
right hand sides, such as for different shots.

Connection of the Helmholtz equation with the wave equation

To understand how the Helmholtz equation arises in frequency domain seismic inverse
problems, let us consider the constant density acoustic wave equation in a medium
with heterogenous velocities given by

1

c2(x)

∂2u(x, t)

∂t2
−∇2u(x, t) = −f(x, t), (7)

where u(x, t) is the solution to the wave equation, −f(x, t) is the time domain forcing
function (also called the “source”) and c(x) denotes the heterogenous velocity field
as defined earlier.

To see the connection with the Helmholtz equation, we simply Fourier transform
equation 7 in time and we obtain the Helmholtz equation in equation 1, where û(x, ω)
and f̂(x, ω) are the Fourier transforms of u(x, t) and f(x, t) respectively. Thus the
solution to the time domain wave equation is completely determined if we know the
solution to the corresponding Helmholtz equation for all ω ∈ R, by Fourier duality.
In practice, the source f(x, t) is band limited and thus one only needs to solve the
Helmholtz equation for a limited range of frequencies.
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Linearization of the Helmholtz equation

We next derive formulas for the Born linearization of the Helmholtz equation, for
a fixed angular frequency ω. Let us consider the velocity field c(x) and the corre-
sponding solution to the Helmholtz equation û(x, ω) appearing in equation 1. We
now perturb the velocity field by adding a small perturbation δc(x), and so the new
velocity is given by c(x) + δc(x). As a result of this perturbation, the solution to the
Helmholtz equation also changes and let us denote it by û(x, ω) + δû(x, ω). These
perturbed quantities also satisfy the Helmholtz equation, and so we have(

∇2 +
ω2

(c(x) + δc(x))2

)
(û(x, ω) + δû(x, ω)) = f̂(x, ω). (8)

The Born linearization formula expresses the first order relationship between the
perturbed quantities δû(x, ω) and δc(x). To achieve this goal, we first note that to
first order we have the following result

ω2

(c(x) + δc(x))2
≈ ω2

c2(x)

(
1− 2

δc(x)

c(x)

)
. (9)

Then using equation 9, and subtracting equation 1 from equation 8 and retaining
only the first order terms we get(

∇2 +
ω2

c2(x)

)
δû(x, ω) = 2ω2 δc(x)

c3(x)
û(x, ω). (10)

The above equation 10 is the linearized Born formula for the Helmholtz equation.

TFWI extended linearized Born forward modeling

A great advantage of solving the wave equation in the frequency domain is that
TFWI extended Born linearized forward modeling also becomes straightforward. We
first recall the time domain wave equation for the same as formulated in Biondi and
Almomin (2014),

1

c2(x)

∂2ue(x, t)

∂t2
−∇2ue(x, t) =

∫
R

2
∂2u

∂t2
(x, t− τ)

δce(x, τ)

c3(x)
dτ, (11)

where u(x, t) solves equation 7, δce(x, t) is the extended velocity model, and ue(x, t)
is the extended Born linearized forward modeled data.

We can Fourier transform equation 11 with respect to time to get the corresponding
Helmholtz equation in the frequency domain given by(

∇2 +
ω2

c2(x)

)
ûe(x, ω) =

2ω2

c3(x)
û(x, ω)δĉe(x, ω), (12)
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where ûe(x, ω) is the Fourier transform of ue(x, t), and δĉe(x, ω) is the Fourier trans-
form of δce(x, t). As can be seen from equation 12, in order to compute ûe(x, ω), we
only need to change the forcing term in the Helmholtz equation and moreover the
forcing term is just a point wise multiplication for each frequency ω. Thus, we have
been able to reduce the expensive convolution operation in time domain to a trivial
multiplication operation, while at the same time the Helmholtz operator on the left
remains unchanged which means that the matrix factorization can be reused.

NUMERICAL EXPERIMENTS

In this section, we present some numerical tests in 2D performed with the 2D Helmholtz
equation solver library. For the first four tests, our simulation geometry consists of
500 × 500 cells along X and Z directions. The top left corner of the geometry has
the coordinates (0 km, 0 km). The simulation box dimensions along the two direc-
tions are 10 km × 10 km, which gives a grid spacing of 0.02 km along both the X
and Z directions. In the first and second tests we solve the Helmholtz equation in
a homogenous medium and a heterogenous two layer medium, respectively. In the
third numerical experiment, we test the accuracy of the Born linearization, while in
the fourth experiment we test the free-surface boundary condition for the top surface
which is encountered for example while dealing with the air-water interface. For the
fifth and final test, we perform extended linearized Born forward modeling in a ho-
mogenous background medium with the extended model given by a point scatterer.
In all the cases, we plot both the real and imaginary parts of the solution to the
Helmholtz equation.

Homogenous velocity field

In this experiment, we use a constant homogenous velocity c(x) = 1 km/s. We
place the source at the center of the model at (5 km, 5 km). We use PML boundary
conditions on all sides of the model. We show the results for two different values of
angular frequency — Figures 1a and 1b show the results for ω = 20 rad/sec, and
Figures 2a and 2b show the results for ω = 40 rad/sec. Visual inspection of the
figures reveal agreement with what we expect of the solutions - the wavelength of the
solution for ω = 20 rad/sec is twice that of the wavelength of the solution for ω = 40
rad/sec. Moreover, we see that the solutions are spherically symmetric which is what
we expect.

Heterogenous velocity field

In this experiment, we use a heterogenous two-layer velocity model that is constant
horizontally, given by c(x) = 1 km/s for z = 0-5 km, and c(x) = 2 km/s for z =
5-10 km. We place the source at the coordinates (5 km, 2.5 km). We again use
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Figure 1: Solution to the Helmholtz equation with a constant velocity medium c(x) =
1 km/s, for ω = 20 rad/sec, and a unit impulse source placed at (5 km, 5 km) : a)
Real part, b) Imaginary part. [ER]
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Figure 2: Solution to the Helmholtz equation with a constant velocity medium c(x) =
1 km/s, for ω = 40 rad/sec, and a unit impulse source placed at (5 km, 5 km) : a)
Real part, b) Imaginary part. [ER]
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PML boundary conditions on all sides of the model and show the results for two
different values of angular frequency — Figures 3a and 3b show the results for ω = 20
rad/sec, and Figures 4a and 4b show the results for ω = 40 rad/sec. The figures
reveal superposition between direct waves from the source and reflected waves from
the interface in the top layer, while we only have transmitted waves in the bottom
layer. Also the wavelength of the solution is twice in the second layer as compared
to the first layer, which is expected theoretically.
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Figure 3: Solution to the Helmholtz equation at ω = 20 rad/sec with a two layer
(horizontally constant) medium given by c(x) = 1 km/s for z = 0-5 km, and c(x) =
2 km/s for z = 5-10 km, and a unit impulse source placed at (5 km, 2.5 km) : a) Real
part, b) Imaginary part. [ER]

Linearized Born scattering

In the linearized Born scattering tests, we design the experiment using a constant
velocity background medium given by c(x) = 1 km/s with the source placed at the
center of the model at (5 km, 5 km). The Helmholtz equation is solved to obtain the
background solution û(x, ω). We use PML boundary conditions on all sides of this
model for this test, and set the angular frequency ω = 20 rad/sec. Next, we create
a velocity perturbation at a single point in the model at (5 km, 7.5 km) of 10% (0.1
km/s), and zero everywhere else. This is our δc(x).

We first create a new velocity model by adding the perturbation to the background
velocity, given by c̃(x) = c(x) + δc(x). The Helmholtz equation is then solved to

get the new solution given by ˜̂u(x, ω). We then calculate the true perturbed solution

as δ̃û(x, ω) = ˜̂u(x, ω) − û(x, ω). The real and imaginary components of the true
perturbed wave field generated this way are plotted in Figures 5a and 5b respectively.

Next, we perform linearized Born modeling using equation 10 to get a first order

SEP–170



Sarkar and Biondi 9 Helmholtz 2D

X [km]

Z
 [

k
m

]

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−5

(a)

X [km]

Z
 [

k
m

]

 

 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−5

(b)

Figure 4: Solution to the Helmholtz equation at ω = 40 rad/sec with a two layer
(horizontally constant) medium given by c(x) = 1 km/s for z = 0-5 km, and c(x) =
2 km/s for z = 5-10 km, and a unit impulse source placed at (5 km, 2.5 km) : a) Real
part, b) Imaginary part. [ER]
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Figure 5: True difference between the solutions to the Helmholtz equation û(x, ω) and˜̂u(x, ω) at ω = 20 rad/sec, formed respectively using a constant velocity background
medium given by c(x) = 1 km/s, and that with a perturbed medium obtained by
adding 0.1 km/s to the background at (5 km, 7.5 km). The primary source is a unit
impulse located at (5 km, 5 km). The quantity plotted is the perturbed wave field

δ̃û(x, ω) = ˜̂u(x, ω)− û(x, ω) : a) Real part, b) Imaginary part. [ER]
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estimate of the true perturbed solution, given by δû(x, ω). The real and imaginary
components of δû(x, ω) are plotted in Figures 6a and 6b respectively. As we can see

from the colorbars, the amplitudes of δ̃û(x, ω) are much lower compared to δû(x, ω).
However, the solutions resemble each other upon visual inspection. The errors can
be attributed to the relatively large magnitude of the velocity perturbation, which is
expected to decrease as we reduce the magnitude of the perturbation at a quadratic
rate. This is what we demonstrate next.
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Figure 6: First order estimate of the perturbed wave field using Born modeling
δ̃û(x, ω) at ω = 20 rad/sec, with a scatterer located at (5 km, 7.5 km) of 0.1 km/s :
a) Real part, b) Imaginary part. [ER]

We proceed by varying the velocity perturbation δc(x) placed at the same location

as before, but this time varying it from 1%, 2%,...,10%. The quantities δ̃û(x, ω)
and δû(x, ω) are recalculated for each case and then we calculate the 2-norm of the

difference ||δ̃û(x, ω)− δû(x, ω)||2. The results are plotted in Figure 7. As we can see
from the image, the relationship is approximately quadratic.

Free surface modeling

In this experiment, we use a constant homogenous velocity c(x) = 1 km/s, and place
the source at the center of the model at (5 km, 5 km), just like the first numerical
experiment. We use PML boundary conditions on the left, right and bottom sides of
the model. But to simulate the air-water interface on the top of the model, we use
the homogenous Neumann boundary condition on the top side. This is expected to
generate reflections from the top surface. We show the results for two different values
of angular frequency — Figures 8a and 8b show the results for ω = 20 rad/sec, and
Figures 9a and 9b show the results for ω = 40 rad/sec.
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Figure 7: Plot of the norm of the error ||δ̃û(x, ω)−δû(x, ω)||2 vs δc(x)
c(x)

%, where δ̃û(x, ω)

is the first order Born scattered wave field and δû(x, ω) is the true perturbed wave
field. [CR]
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Figure 8: Solution to the Helmholtz equation with a constant velocity medium c(x) =
1 km/s, for ω = 20 rad/sec, and a unit impulse source placed at (5 km, 5 km),
and homogenous Neumann Boundary Conditions on the top side : a) Real part, b)
Imaginary part. [ER]
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Figure 9: Solution to the Helmholtz equation with a constant velocity medium c(x) =
1 km/s, for ω = 40 rad/sec, and a unit impulse source placed at (5 km, 5 km),
and homogenous Neumann Boundary Conditions on the top side : a) Real part, b)
Imaginary part. [ER]

TFWI forward modeling

The goal of the last and final experiment is to perform TFWI linearized extended Born
forward modeling using the Helmholtz equation, as described in equation 12. We will
also attempt to reconstruct the time domain recorded waveform in this experiment.
We start by using a constant homogenous velocity medium with c(x) = 5 km/s as
the background, and place the source at the center of the model. However this time
instead of using a point source, we choose a spatially varying Gaussian source (in
both X and Z directions) centered at (x0 = 5 km, z0 = 5 km) and standard deviation
σ = 0.1 km, with the source injected in phase at all the spatial points. Thus, if we
denote the time domain wavelet as w(t), then the time domain source denoted by
f(x, t) is given as

f(x, t) = w(t)
1√

2πσ2
exp

(
−(x− x0)2 + (z − z0)2

2σ2

)
. (13)

We use a Ricker wavelet w(t) with peak frequency fp = 10 Hz, sampling interval
∆t = 8 ms, number of samples Nt = 250 and a delay of δt = 0.2 s. This gives us a
total modeling time of Nt∆t = 2 s. The functional form of the wavelet is given by

w(t) = (1− 2π2f 2
p (t− δt)2) exp

(
−π2f 2

p (t− δt)2
)
. (14)

The wavelet w(t) and its amplitude spectrum are plotted in Figures 10a and 10b
respectively, while the spatially varying Gaussian field for source injection is shown
in Figure 10c.
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Figure 10: Source function f(x, t) used for the TFWI experiment : a) Ricker wavelet
in time w(t), b) Amplitude spectra of w(t), c) Spatially varying Gaussian field used
for source injection. [CR]
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The source function f(x, t) is then discrete Fourier transformed in time, which gives
us an angular frequency sampling of ∆ω = 2π

Nt∆t
. The Fourier transformed coeffi-

cients of f(x, t) correspond to the Nt angular frequencies given by the ordered set{(
−Nt

2
+ 1
)

∆ω, . . . , 0, . . . , Nt

2
∆ω
}

, where the angular frequencies are spaced by units
of ∆ω. This gives us the set of frequencies for which we need to solve the Helmholtz
equation. However, because the time domain solution to the wave equation is purely
real, the solution to the Helmholtz equation satisfies the following symmetry condition

û(x,−ω) = û(x, ω)∗, (15)

which means that we only need to solve the Helmholtz equation for the positive
frequencies, and the solutions for the negative frequencies are obtained simply by
complex conjugation. Once all the solutions for the different frequencies have been
found by solving the Helmholtz equation, we can inverse discrete Fourier transform
the solution to get the time domain wave field.

In order to demonstrate this process, we place our receivers at a depth given by
z = 2.5 km, and for all grid points in the X direction. We first solve for the background
wave field using this process and the resulting time domain wave field at the receiver
locations is shown in Figure 11.
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Figure 11: Background wave field at receiver depth z = 2.5 km for a constant ho-
mogenous velocity medium c(x) = 5 km/s, formed by inverse Fourier transforming
the frequency domain solutions of the Helmholtz equation. [CR]

Next for the extended linearized Born modeling, we use an extended velocity model
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of the following form

δce(x, t) = v(t)
1√

2πσ2
exp

(
−(x− x1)2 + (z − z1)2

2σ2

)
, (16)

where we have chosen a product representation for the extended model with the
time signature given by v(t), and is modulated in space by a Gaussian centered at
(x1 = 5 km, z1 = 3.5 km) with standard deviation σ = 0.1 km, as shown in Figure
12. We try three different cases for v(t) — (a) v(t) = δ0(t), (b) v(t) = δa(t) and (c)
v(t) = δ−a(t), where a = 0.5 s.
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Figure 12: Spatially varying Gaussian field component of the extended velocity model
δce(x, t). [CR]

To use the Helmholtz solver, we proceed by discrete Fourier transforming δce(x, t) to
get δĉe(x, ω) for each case, and at the same set of discrete angular frequencies as in
the case of the background wave field. Then the forcing term in equation 12 is easily
calculated as a point-wise multiplication with the already solved background wave
field to get 2ω2

c3(x)
û(x, ω)δĉe(x, ω) at each angular frequency to be solved for. Finally,

we inverse discrete Fourier transform the solutions to the Helmholtz equation to get
the time domain solution. These results are again displayed for all receivers at depth
z = 2.5 km in Figures 13, 14 and 15 for the three cases with v(t) given by δ0(t), δa(t)
and δ−a(t) respectively.

The first case with v(t) = δ0(t) corresponds to standard Born modeled wave field,
while the second case with v(t) = δa(t) and the third case with v(t) = δ−a(t) corre-
spond to the cases where the Born modeled wave field is delayed by +0.5s and -0.5s,
respectively.
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Figure 13: Extended linearized Born modeled wave field for the TFWI experiment
recorded at receiver depth z = 2.5 km for v(t) = δ0(t). [CR]
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Figure 14: Extended linearized Born modeled wave field for the TFWI experiment
recorded at receiver depth z = 2.5 km for v(t) = δa(t), where a = 0.5 s. [CR]
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Figure 15: Extended linearized Born modeled wave field for the TFWI experiment
recorded at receiver depth z = 2.5 km for v(t) = δ−a(t), where a = 0.5 s. [CR]

DISCUSSION AND FUTURE WORK

In this paper, we have developed a 2D Helmholtz equation solver library in C++.
We provided some numerical examples by solving the Helmholtz equation using the
library for homogenous and inhomogenous media, for different frequencies. We also
performed a Born linearization test to verify the theoretical prediction that the error is
indeed quadratic with respect to the magnitude of the velocity perturbation. Finally,
we showed how extended linearized Born forward modeling can be performed in the
frequency domain.

Future work with this library is aimed at extending it to solve the 3D Helmholtz
equation. The eventual goal of this research project, started this summer, is to use
the library to solve TFWI problem in the frequency domain which will likely bring
enormous computational savings. The immediate near term goal is to integrate the
Helmholtz solver with an inversion library and experiment with 2D TFWI.
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