Multichannel data: separating independent causes

Jon Claerbout and Kaiwen Wang

ABSTRACT

The algorithm for blind deconvolution of a nonstationary time series of vector
components (i.e. multichannel) has three stages: (1) Linear-least-squares multi-
channel prediction-error filtering, (2) Cholesky factorization of the zero-lag co-
variance matrix, and (3) Rotation angle scanning for maximum sparsity.

INTRODUCTION

The “blind deconvolution” problem for a vector-valued signal is shown in Figure 1.
In practice z1(t) and x2(t) may be different wave types that mix and register on our
two-component (y;(t), y2(t)) instruments.

[Solved in nonstationary 3-D world

U

Unknown

White Unknown] Observation ‘(Find this white
x(t) causal filter J y(t) 'L causal filter z(1)

|| Solved here in a nonstationary world |

Unknown Observation Find
Filter bank mel

Desired
result

1(+

Uncorrelated Two channels,

Uncorrelated

& both white colored & & both white
correlated
/: b22
x2(1) y2(1) z2(1)

Figure 1: The left side of the diagram hypothesizes nature outside our view. Given
the correlated observations y in the middle we here design the causal process A to
create the outputs z on the right. We construct uncorrelated white z, then hope it
approximates the underlying physical world x, and that B ~ A~!. [NR]

SEP-170

Claerbout and Wang 2 Vector-valued signal decon

The multichannel structure of Figure 1 arises in diverse physical settings. For
example underwater measurements may represent waves upgoing and waves downgo-
ing, but we don’t measure them directly; we measure pressure and displacement. Or
the earth may contain pressure waves and shear waves while we measure vertical and
horizontal motions. Waves may arrive at our multicomponent recoreders from two
directions. If your multicomponent recorder records two different things, like pressure
and velocity, your channels will have differing spectral characteristics. That’s good.
It’s a central aspect of this model.

Fourier analysis suggests a crude approach to Figure 1. For scalar waves, given the
spectrum Y (w)*Y (w) the solution to the problem is A(w) = 1/4/Y (w)*Y (w). But this
implies a symmetric function of time, not causal. Fourier space requires stationary
statistics, forbids ¢;-norm. The square root of a matrix of Fourier functions is easily
found, but the disadvantages of Fourier space overwhelm the simplicity of the time
domain. Causality is easily expressed with Z-transforms, equivalently either a matrix
of them, or a polynomial of matrix coefficients.

Theory behind Figure 1 appeared in engineering literature half a century ago.
I gave it little attention because I had no data of vector-valued signals. The old
theory for such signals also depended on the geophysically unrealistic assumption of
stationarity. My google search for terms like “adaptive multichannel filter theory”
did not turn up methods recognizably suitable for my community of geophysical
data analysts (although I believe it should be out there somewhere in the engineering
literature). Then I stumbled onto appropriate methodology for non-stationary signals.
It is much easier to put into practice than the stationary theory. Hooray! Our research
group began getting multicomponent (vector-valued) data. Here I put all the pieces
together and am looking for people who want to try it.

The first stage is multichannel prediction-error theory. Here the approach to ma-
trices of filters learns from the old theory of stationary methods (but nonstationarity
makes it much easier). PEFs (prediction-error filters) remove all lagged correlations
from the data. But at zero lag there remains crosscorrelation between the channels.
That’s easily dealt with by the Cholesky method.

Intriguing is what comes last, something wholly unfamiliar. Even after solving the
problem posed in Figure 1, the solution is unique only within an arbitrary unitary
matrix. But this two channel problem, although nonlinear, is easily amenable to a
one-parameter exhaustive search. That search can be done to maximize sparsity of
the final signals. We humans love the simplest representation of our data. This should
be it. Hooray!

In related good news it looks like this final unitary process could overcome a
perennial problem in geophysical data processing. Since the processing stream is in-
expensive it is easy to program a wide-ranging exploration of the process parameter
space. The sparsity measure could then tell how to choose the best processing pa-
rameters. Hooray again! A complete, but untested code, for the only subtle part of
the whole process, the vector-signal PEF, is found at the end of this document.

SEP-170

Claerbout and Wang 3 Vector-valued signal decon

Range of applicability

This two-component signal model is not suitable for two scalar signals recorded at
separate locations. If you are processing a string of multicomponent recorders (down a
well, for example) each multicomponent recorder yields statistics which may be shared
and averaged with neighboring recorders, but the signals themselves would not mix,
so, given these statistics, the process described here is simply a time-variable linear
operator. This mathematical model is based on causality and simultaneity of the two
channels responding to the outside world.

The model here naturally extends to three and more physical dimensions. Whether
it is suitable for many-channel market signals I cannot say.

If the underlying model B were to introduce delay, its hypothetical inverse A
would need to contain inverse delay (non-causality!). Then the methods of this paper
must fail. In marginal cases (tiny delay) the notion of sparsity has helped for scalar
signals. Its a promising area beyond our present scope.

SCALAR NONSTATIONARY SIGNALS

To my surprise and delight, I find nonstationary signal analysis simpler and more
amenable to practice than textbook stationary theory.

Nonstationary prediction without mathematics(!)

Start with data (a signal of thousands of values). Take any filter a of maybe ten lags.
The filter will change slowly as we slide it along the data. Set the filter down on the
data. The ten data values under the filter are designated d. Take € to be a tiny scalar
(for example € = 1/(4000 ||d||)).

At any one time instant the filter a has output (a-d). We set the goal that (a-d)
should be something we have chosen. We might have chosen another signal (shaping),
or the next incoming data value (prediction). The filter output (a-d) over-shoots or
undershoots this goal. We will add or subtract a teeny ¢ amount of data d to the
filter a, then see which of the + does the better job. Trying the modified filter a+ ed
two possible predictions emerge.

(ated)-d = (a-d)te(d-d). (1)

Comparing these predictions to the hoped for value reveals which sign for e better
improves our filter. Update the filter a. Move to time ¢t + At. Update d. Repeat
indefinitely. The filter adapts to make the best fit your goal (often prediction, more
often prediction error).

The above idea can be based on conventional math. The gradient of /5 normed pre-
diction error e turns out to be d x PredictionError(d). Let signum(e) = e/|e|. Then

SEP-170

Claerbout and Wang 4 Vector-valued signal decon

the above algorithm amounts to stepping along with d x signum(PredictionError(d))
which smells like nonstationary ¢; norm decon. Wow!

Many variations of this theme are easy, such as constrained filters, gapped filters,
predicting further ahead, or predicting other signals. We mostly use these ideas for
making prediction error (a white signal). We make that by constraining the first
filter coefficient to be +1 so all the rest are effectively predicting negatively to try
extinguish the data value under the 4+1. In the limit of very many iterations and
e — 0 the result tends to that of stationary theory.

Any color found in the prediction-error output should have been usable to enhance
the prediction. Presuming it did, the result is optimal prediction-error output. This
tends to whiteness, being limited only by the number of filter coefficients and the
non-zero size of e.

Of academic interest the relation between the ¢; norm and the ¢5 norm methods
is easy suggesting that a wide range of other norms and penalty functions are easily
attained in the same way. The heart of the matter seems to be choosing any function
of the components of d that is polarity preserving (so when dotted into d assures a
positive scalar). So it seems the /;/, norm is as easy as augmenting the filter a with
a vector of components € d;/ \d?/ ?|. Naturally my favorite is the softclip function, the
derivative of a hyperbolic penalty function.

Pseudo code for scalar signals

In all least-squares data fitting, the residual goes into the adjoint to produce the
gradient direction. Stripped of details, f5>-norm scalar-signal code is

a(1) = 1.0
do for all time t
do tau= 1, na
e(t) += a(tau) * y(t-tau+l) # forward
do tau= 2, na
da(tau) += e(t) * y(t-tau+l) # adjoint
do tau= 2, na
a = a - epsilon * da

Syntax: "a+=b" means "a=atb"
e = nonstationary prediction error

Arrays in Fortran/Matlab range from a(1l) to a(n) while in C/C++/Java they
range from a(0) to a(n-1). Matrix operations are more naturally expressed in For-
tran/Matlab while polynomial and convolution operations are more naturally ex-
pressed in C/C++/Java. While it may be natural to express each concept in its
favored language, my pseudo codes were confusing until I stuck to just one language
convention. Since I chose Fortran/Matlab the math idea [;° a(7)y(t—7)dr is rendered
do tau=1,naf{a(tau)*y(t-tau+l)}.

The #forward code line computes the prediction residual e(t) at some time t.
At that time, the first tau loop is performing the dot product (a - d) mentioned

SEP-170

Claerbout and Wang) Vector-valued signal decon

earlier with d being a backwards running chunk of data y(t-tau). The #adjoint
loop corresponds to a matrix transposed because compared with the forward loop,
input and output have swapped their roles. Their tau loops have differing ranges.
This because the a(1)=1.0 produces the prediction residual, so a(1) is not changed.

Linguistically, it would be more correct to call (—1,-,-, ...) the prediction-error
filter, but nobody wants to use that filter because its output polarity is opposite that
of the original data. So the PEF is defined as (41, aq, as, ...).

Gradient derivations

Formal theory underlies the idea of adding an e bit of d to the filter. The algebra to
show that d x PredictionError(d) is the gradient that arises from a new data point
is in Appendix I.

Sergey Fomel and I developed a complicated, subtle nonstationary PEF theory. It
led to an update direction with a conceptual distance parameter. Then I discovered
its implementation amounts to a simple-minded step in the direction of the gradient.
Operationally, the two methods had turned out to be one and the same! The “simple
minded conceptual parameter” amounts to our epsilon e.

Easy question: Given that seismic data is typically gained with ¢?, how should
gain and decon work together?

How big is epsilon?

Epsilon € is the fractional change to the filter at each stage of iteration. In a process
called leaky integration, any value at time t is altered by a fractional amount e
during transition to t + At. Every smoothed value is diminished by (1 — ¢€), and then
updated by e times its current estimated value. After A steps any value is reduced
by the factor (1 —€)*. Setting that to 1/e = 1/2.718 says 1/e = (1 — ¢)*. Taking the
natural logarithm, —1 = An(1 — €) & —\¢, so to good approximation

e = 1/A (2)

By the well known property of exponentials, half the area in the decaying signal
appears before the distance A, the other half after.

In casual discussion I think of this memory function as a rectangle function of
length A. Least squares analysis begins with the idea there should have more re-
gression equations than unknowns. So A should roughly exceed the number of filter
coefficients na. To avoid overfitting, I'd begin with A = 10xna.

I have more thoughts on choosing A, but this is too early to present them. The
nonstationary environment is such a strong component of many valuable applications
that reports of wise and clever choices for ¢, if they cannot be found now, they are
sure to arise soon.

SEP-170

Claerbout and Wang 6 Vector-valued signal decon

VECTOR NONSTATIONARY SIGNALS

In scalar signal analysis, it is known that the prediction-error signal e(t) is white
Claerbout (2014) (page 182). Its autocorrelation is a delta function. Something
similar (but intriguingly different) happens with vector-valued signals. Vector and
scalar cases are are based on causality. Innovations arrive simultaneously on both
channels. The two channels may show different spectra, but the method fails when
one component has been delayed with respect to the other, so don’t try it with two
scalar channels recorded at different locations.

Nonstationary vector-valued signals require a three-stage process. The first stage
mimics the prediction-error process of scalar signals. That eliminates time-lagged
correlations. The next stage, the Cholesky stage, eliminates zero-lagged crosscorre-
lation between the two channels; and it scales the channels to unit variance. At the
last stage notice the vector process defined by Figure 1 has multiple solutions. From
any vector solution, others follow by any unitary matrix U tranformation. (With
scalar-signals the arbitrariness is in a scale factor ¢¢.) We get to choose the U having
minimum entropy z output. Unexpected. Intriguing!

Nonstationary variance/covariance

Equation (3) defines a running variance o7 (t) of the signal y(¢). Such a recursive

process is called leaky integration. Likewise (4) defines a running crosscorrelation
between two channels.

O';(t) = (1—¢) Jj(t —At) + eyt (3)
op,(t) = (1—€) op,(t—At) + eyi(t)ys(t) (4)
af,(t, 7) = (1—¢) af,(t —At) + ey®)ylt+71) (5)

Likewise (5) defines a 2 x 2 matrix of running lagged covariance where y(t) is a two-
component column vector while y(¢t + 7)" is a likewise a row. Stationary time-series
theory actually displays the 3-D lagged covariance 0)2,(7') (FGDP page 140).

Our 2-component PEF marching along the time axis updating prediction-error
filters should chew up the lagged correlations. That provably happens with scalar
signals Claerbout (2014) (page 182). Thus the PEF output e(t) has a 3-D covariance
that vanishes at nonzero lags. We are left with the zero lag, a nice 2 x 2 matrix of
prediction-error variances W.

we=0 = [ge] o~ [e ©)

0321 €22

The dot products are an oversimplification intended to clarify the meaning of leaky
integration to new users. The dot products are also a handy way to initialize the
update expressions.

SEP-170

Claerbout and Wang 7 Vector-valued signal decon

Scalar signal scaling

A length measurement A = 1/e (in pixels) measures the averaging region. Thus both
A and e are without physical units, though one might say A has “units” of pixels.
Prediction filters are dimensionless because from voltage, they predict voltage. Hence
the units of ed match those of o. The properly scaled ¢, update expression is

Aa = - (%) d (7)

Oq4

Replacing the prediction error e by its signum function yields an ¢;-norm prediction
after restoring nondimensionality by changing o3 to 0.

Aa = _ (M) d (8)

g4

Let o, be a running standard deviation of prediction error. Now I'm feeling an /5-norm
filter update slightly more consistent than equation (7) is

Aa = - (;;) d 9)

Understanding physical units with scalar signals leads next to vector signal scaling.

Vector signal scaling

The leading coefficient of a vector signal PEF (prediction-error filter) is an identity
matrix. The two 1’s in the I pass through the observed data y(t). Coefficients under
all the other lags adapt to negatively predict it so as to get minimal output.

When components of data or model are out of scale with one another, bad things
happen: The adjoint operator will not be a good approximation to the inverse. Phys-
ical units may be contradictory. Steepest descent creeps along slowly. These dangers
would arise with vector-valued signals if the observations y; and y, had different phys-
ical units such as pressure and velocity recorded from up- and down-going waves. Or
such as uncalibrated vertical and horizontal seismograms.

One could devise the filter updates by an effort of deep thought while inspecting
Figure 1, but it’s easier and more reliable to blindly base your updates on the negative
adjoint of forward modeling. But, we do need to think about channels being out of
scale with one another. Thus we scale each component of data y and residual e by
dividing out their variances as we did in equation (9). Recall that any component of
a gradient may be scaled by any positive number. Such scaling is merely a change in
coordinates.

This is a good time to read the code at the end of this article.

SEP-170

Claerbout and Wang 8 Vector-valued signal decon

Averaging in time and space

The code contains leaky integrations to assure the filter A varies smoothly in time.
Actually, the leaky integrations may smooth over both time and space. In other words,
when updating an old filter A(t — At, z), we could update the old filter located at
A(t,z — Azx). That would be learning over x while filtering over ¢. More generally,
an update could leap from a weighted average over time and space. For example, we
could update A — A + AA with

_ A2 A2

Notice that the weights sum to unity. The averaging region is an area roughly A, \;
pixels squared in size. The coding requires not only saving A at the previous time,
it requires a saved A for every time at x — Ax.

Stationary decon should remove a shot waveform. Nonstationary decon starts from
there but has the added possibility of removing the waveform of the outgoing wave.
That evolves with traveltime (@) and forward scattered multiples). It also evolves
with space, especially receiver offset. We could build such nonstationary filters on
either field data or synthetic data, then apply them to field data. The relations among
pressure, velocity, upcoming, and downgoing waves vary systematically with offset.
You could work out theoretical expressions for these relations, but instead you could
see how this data fitting code would handle it.

How can the nonstationary PEF operator be linear?

Let E be the prediction-error operator and e its output. By definition
e = Ey (11)

The operator E may seem to be a nonlinear function of the data y. But it is nearly
linear, even strictly linear in a certain sense. Notice that E could have been built
entirely from spatially nearby data, not at all from y. Then E would be nonstationary,
yet a perfectly linear operator on y.

I am no longer focused on conjugate-gradient solutions to stationary linear prob-
lems, but if I were, I could at any stage make two copies of all data and models. The
solution copy would evolve with iteration while the other copy would be fixed and
would be used solely as the basis for PEFs. Thus the PEFs would be changing with
time while not changing with iteration. This makes the optimization problem a linear
one, fully amenable to linear methods. In the spirit of conjugate gradients (as it is
commonly practiced), on occasion we might restart with an updated copy. People
with inaccurate adjoints often need to restart. (Ha ha.)

SEP-170

Claerbout and Wang 9 Vector-valued signal decon

CHOLESKY DECORRELATING AND SCALING

The two independent channels of unit-variance random numbers in x entering filter
B in Figure 1 have the identity matrix I as a covariance. Here we arrange to have
the same identity covariance for the values z exiting from A on the right.

Consider the expectation (leaky sum over time) E[e€’]. Theoretically it’s a 3-D
function of lag and the two channels. We're going to assume our PEF's are perfect so
that it is no longer a function of lag. Thus we presume that E[e¢€'] is like the W we
computed with equation (6) at zero lag 7.

2 2

Elee] = l Ten T] - W (12)
0.621 0522

Use the Cholesky method to factor W into a triangular matrix V times its trans-

pose, so W = VV'. (The Cholesky method is nearly trivial: Write a triangular matrix

of unknown elements. Multiply it by its transpose. Notice a sequential method that

unravels the unknown elements.)

W = VV (13)
VIWWV) Tl = 1 (14)
CWC' = I (15)

where we have defined C = V~!. Using this new matrix operator C we get a new
vector signal q.

q = Ce (16)
The expectation of this new variable q is
Elaq] = E[Cee'C]] (17)
= CElee'|C’ (18)
Elaqd] = CWC' = 1 (19)

This shows Cholesky does for us two things: (1) it descales, and (2) it decorrelates e
at zero lag.

ROTATING FOR SPARSITY

The most intriguing part of the entire process arrives at this the last stage. As the
universe marches on, things get mixed and entropy increases. We seek the opposite.

Rotations and reflections are called unitary operators. For now we are ignoring
reflections (polarity changes). (Consider that to be an application labeling issue.)
Scanning a single parameter # through all angles allows us to choose the one with the
most sparsity (least clutter). A general form for a 2 x 2 rotation operator is

[cosf siné }

u = —sinf@ cosf

(20)

SEP-170

Claerbout and Wang 10 Vector-valued signal decon

We will meet our goal of finding A and z of Figure 1 with:
z=Uq=UCe=UCEy=Ay (21)

A unitary operator U does not change the length of any vector. It satisfies U'U =1,
so for any v we see (Uv)'Uv = v'U'Uv = v'v. Let us check that the covariance of
z = Uq is constant independent of §. Equation (19) leads to

zzZ = UE[qd]U = UIU =1 (22)

This is saying the energy stays constant as we sweep through 6.

Finding the angle of maximum sparsity (minimum entropy)

Given any angle 6 for equation (20) we have z = Uq. We can scan 6 over one degree
increments. Defining the entropy at any particular time as (|z1] + |22])/1/27 + 22 we
easily choose the angle of minimum entropy for that time.

The more difficult question is dealing with noise. We want estimates based on
time averages. Ultimately, we will have arrays of vector valued signals. We will also
want local averages in the space of the arrays. At the deadline for this progress report,
we are not certain we have have properly dealt with the issue of estimating a best
angle by forming averages over time and space.

Jon’s theory, apparantly defective

The code below is a guess at the solution to the problem of averaging the Cholesky
output q(t) over time to finally find a best angle for rotation. I define z; and 2z,
by leaky integrating over time ¢ the four quantities q;(t) cos @, qa(t)sin @, q;(t)sin#,
¢2(t) cos @, which contain all the parts of the product of vector q multiplying the
matrix of (20). Then I define entropy at time t by (|z1] + |22|)/\/2} + 25. Finally, I
scan all angles for the minimum entropy, and choose that angle 6.

initialize {qlcos,q2sin,qlsin,q2cos}(1:360)=0, entropy(1:360)=0
do over all time t {
You insert steps "q = C E y" here.
do ith= 1, 360 {
th = 2 * 3.1416 * (ith-1)/360.

gqlcos(ith) = (l-epsilon)*qlcos(ith) + epsilon*(ql(it)*cos(ith))
g2sin(ith) = (l-epsilon)*q2sin(ith) + epsilon*(gq2(it)*sin(ith))
gqlsin(ith) = (l-epsilon)*qlsin(ith) + epsilon*(ql(it)*sin(ith))
g2cos(ith) = (l-epsilon)*q2cos(ith) + epsilon*(gq2(it)*cos(ith))
z1 = qlcos(ith) + g2sin(ith)

z2 = -qlsin(ith) + g2cos(ith)

entropy(ith) = (abs(zl) + abs(z2)) / sqrt(zlxzl + z2*z2)

}

SEP-170

Claerbout and Wang 11 Vector-valued signal decon

ithbest = 1 # Find the best theta
do ith= 1, 360
if (entropy(ith) < entropy(ithbest)) ithbest = ith
You put theta(ithbest) into the U matrix and make "z(t) = U C E y(t)"
}

Kaiwen’s theory: works on easy synthetics

The code below is to find a best angle for each time step to rotation. It follows Stew
Levin’s suggestion to apply phase unwrapping afterwards to avoid switch or flip of
trace. We define u; and us by leaky integrating over time ¢ the [and [, norm of
(21, 22). Then We define entropy at time ¢ by u;/us. Finally, We scan all angles for
the minimum entropy, and choose that angle for the wrapped 6. We see that the
period of 0 is m/2, so we choose the jump tolerance to be m/4 and correct phase
change.

Matlab code:

ul=zeros(360,1);
u2=zeros(360,1);
entropy=zeros(360,1) ;
for i=na+l:nt
for ith=1:360
theta=2*pix*(ith-1)/360;
ul(ith)=(1-epsilon)*ul(ith)+epsilon*norm(...
[q(1,i)*cos(theta)+q(2,1i)*sin(theta) -q(1,i)*sin(theta)+q(2,1i)*cos(theta)],1);
u2(ith)=(1-epsilon)*u2(ith)+epsilon*norm(...
[q(1,i)*cos(theta)+q(2,i)*sin(theta) -q(1,i)*sin(theta)+q(2,i)*cos(theta)]);
entropy (ith)=ul(ith)/u2(ith);
end
[*,I]1=min(entropy) ;
theta=2*pi*(I-1)/360;
theta_wrapped(i)=theta;
end
theta_unwrapped=theta_wrapped;
for j=2:length(theta_unwrapped)
difference = theta_unwrapped(j)-theta_unwrapped(j-1);
while abs(difference) > pi/4
if difference > pi/4
theta_unwrapped(j:end)
elseif difference < -pi/4
theta_unwrapped(j:end)
end
difference = theta_unwrapped(j)-theta_unwrapped(j-1);

theta_unwrapped(j:end) - pi/2;

theta_unwrapped(j:end) + pi/2;

end
end
for i=na+l:nt
U=[cos(theta_unwrapped(i)) sin(theta_unwrapped(i));
-sin(theta_unwrapped(i)) cos(theta_unwrapped(i))];
z(:,1)=Uxq(:,1);
end

SEP-170

Claerbout and Wang 12 Vector-valued signal decon

Why the scan works

Why does this U process of scanning 6 lead to sparsity? Suppose the vector signal
element qu at time at ¢t = N has all its energy in its first component. Say the vector
signal is [—1, 0]’ with energy and magnitude both now equal unity. The rotated signal

is now
cosf) siné -1 —cosf
[—sin& cos&] [0 } o [sin@} (23)
Let the rotation angle be 45° so sine and cosine are both 1/\/§ The sum of the

magnitudes becomes 2/v/2 = v/2 > 1. As expected the rotation took away the
original sparsity.

3-component vector data

For 3-component vectors the scan would run over two angles so the u(itheta) would
be expanded to u(itheta,iphi).

NOT QUITE MINIMUM DELAY

We have solved the spectral factorization problem for nonstationary vector-valued
signals. It might seem to be a unique solution. But it is not. If the physics B
includes delays, we won'’t find their inverse delays in our computed A because our A
is causal. Presuming that z = x amounts to making the so-called “minimum-phase”
assumption for vector-valued signals. I don’t know the general form for matrix causal
all-pass (pure delay) filters but I do know it for scalar filters, and it suggests a very
big world of delay possibilities.

But tiny delays are not uncommon in practice and may be overcome. Particularly
instructive is my experience with scalar signals:

Deconvolution has been an industry standard for half a century. Conventionally,
it is an fo-norm process that makes a minimum-phase assumption. This means the
inverse filter should be causal. It is obvious to everyone that the shot waveform is
causal, but that should not be confused with its inverse. A dangerous ingredient is
the marine ghost. Its heart is a second-difference operator d, so its inverse involves
a growing ramp! So, like many others, I set out to look for a causal shot waveform
with a noncausal inverse. This isn’t easy, but with Antoine Guitton (and earlier work
with Yang Zhang and Yi Shen) we invoked the concept of sparsity. To do so takes us
beyond the 5 norm. We got amazing results:

On all the data tested, four field data sets, and a fifth modeled at a sponsoring
company, we were able to show images having events with signal polarity that was
self evident. The first multiple would have a polarity obviously opposite the primary.

SEP-170

Claerbout and Wang 13 Vector-valued signal decon

A white reflection denoted a hard reflector, a black one denoting a soft one, so bottom
of salt was easily recognizable by the polarity change. I found it thrilling be able to
view many other events on seismic data in such a geologic manner.

MISCELLANY
Avoiding near Nyquist confusion

PEF's seem to focus equally on all frequencies up to the Nyquist. Sometimes analysts
choose to focus more on the lower range. This can be done by “gapping”, namely,
constraining to zero a few filter coefficients near the leading 1.

Leaky integration alternatives

The choice of an area in which to gather statistics is fairly subjective. From equation
(10) and the leaky integration expression we may wonder the contours of the 2-
D integration response. Contours of the product e */*=2/*s in (¢, z) are a simple
triangle, so other than the sharp corner, it feels reasonable though very basic.

Sometimes I feel I'd be more comfortable if I could say statistics had been uni-
formly weighted before decay sets in. I could easily make exact boxes with (1 —
ZN)/(1 — Z) but I don’t like the sharp truncation after N lags. I also don’t like
the sharp corner at the beginning of the exponential. Perhaps something like a box
(1—2Z")/(1 — Z) terminated by a damped exponential +Z% /(1 — (1 — €)Z). Those
two outputs could simply be added. Alternately, those two polynomial ratios could be
added, then rearranged to the single ratio (1—pZ—(1—p)ZW+Y) / (1—(14p) Z4pZ?).
Multiply the numerator times the Z transform of z;, namely X (Z), and the denomi-
nator by Y (Z), and identify time lags with powers of Z obtaining the recursion:

Yo = (L4 p)ye—1 — pyr—2 + o — pre—1 — (L = p)T(—(v+1)) (24)

For N =2, p=.5, and x3 = .99, I obtain y, = .00 .00 .99 .99 .99 .49 .25 .12 .06 .03.

TEST CASES

To compare inputs with outputs, display as 50 channels per sheet of wiggle trace in
10 groups of 5, the 5th being a dead trace to clarify display.

Easiest case, mizing, but no filtering

polarity = 1.
do i=1,1000,40 { # jump in steps of size 40

SEP-170

Claerbout and Wang 14 Vector-valued signal decon

x1(1) = 2.

x2(i+20) = polarity
polarity = -polarity
+

2 [1]

The unscrambling would all be done by Cholesky and Unitary.

A case with an obvious answer

I'm not sure the method of this paper should unscramble it. I’'m not really sure what
these methods should be capable of, but this one should be really impressive if it
works.

1./(1—.62) —3/(1—.92)
2/(1—62) 1J(1-.92)

For more fun, we might prefer wavelets that oscillate.

B = (26)

Horizontal phones, two far away signals, near each other, one stronger, the other 5x
weaker coming in at slightly different angles

S random numbers

T [w] - | random numbers } for i = 1,10000 (27)

B = (28)

[5/(1—.6Z) 1/(1-.92)
| 4/(1—.62) 1/(1-.92)]

SUGGESTIONS AND RANDOM THOUGHTS
Gapped filters for oversampled data

Seismic data is typically oversampled on time. This implies that relatively, the upper
half of the bandwidth may be mostly noise. Could we improve the wave-type sepa-
ration by altering it in some way? We might design PEFs for prediction distances
greater than one At sample.

A non-causal PEF approximation

A PEF is causal, has a white output, and is able to fit any spectrum. Extending that
PEF to allow some negative lags quickly loses the white-out aspect, and we would be

SEP-170

Claerbout and Wang 15 Vector-valued signal decon

using more coefficients than needed to represent any spectrum. At the same time,
we’d like to extend the PEF into negative lags to enable it to attack the d;; inherent
to most seismograms. So, we’'d like a few negative lags and we are often happy to
give up a few positive lags. With non-stationary methods, testing has become much
easier. We should try out the filter (a_3,a_1,1,0,0, a3, a4, as, -+).

Four component data

Some data is sampled with four components, three velocity directions and pressure.
This process would output four channels. This sounds redundant. What might we
learn from the weakest channel?

Step sizes

How large should be the down-gradient hops? One first guess is to compare successive
hops. The polarity of the dot product of the two successive gradients gives the
indicator. If they are in the same direction, we might increase the step size. If in
opposite directions, we would then decrease it. Is this a sensible strategy? If so, it
could be widely used broadly in data fitting, in applications having little to do with
statistics. A diverse collection of tests could be intriguing.

In fitting seismic waveforms to field data, we know the data is 95% repeatable,
while we are astonished if any theory can drive the fitting residual down by as much
as 50%. Does it make sense to struggle with second derivatives whose purpose is to
define the location of perfect fit? Shouldn’t we focus on more efficient ways of driving
down the gradient? For example, gradients are functions of locations in space and
frequency, so instead of looking for a global distance to hop, we should think of ways
to break up the gradient into parts that can hop separately with different sized hops.
Non-stationary PEFs might do some of that.

What good is a 3-D PEF?

Although it’s clear how to fit 3-D PEF's to data, I doubt the utility of it. When I see
3-D data, (t,x,y), I visualize it containing planes. A plane in 3-D looks like a line in
both (¢, z) and (¢, y) space. It’s more efficient to fit two planes each with a 2-D PEF
la(t, z),a(t,y)] than with a single 3-D PEF a(t, z,y). What kind of 3-D fields require
3-D PEFs? I don’t know.

Segregating elastic waves

Naturally, we will attempt separation of pressure and shear waves with these mul-
tichannel methods. These methods compete, however with traditional scalar signal

SEP-170

Claerbout and Wang 16 Vector-valued signal decon

methods based on the idea that S waves tend to have double the stepout of P, namely
namely, v? = (z/t)(dx/dt). This opens the door to fake recording channels.

Fake channels

Might multichannel technology be made more serviceable by faking extra channels as
functions of the first? For example: ys(t,z) = y1(t,z + Ax) — 1 (t, z — Ax).

I have a feeling oceanographers are well along in this area. Do a youtube search
for “perpetual ocean” to see an awesome video. Physics involves curl and divergence,
both of which motivate investigating the statistics of neighboring vector-field mea-
surements. This video might look as though they have spatially dense measurements.
Perhaps so, but we might also be seeing a well-crafted vector field made from coarser
measurements.

DAS string

SEP’s new DAS string introduces us to the uncomfortable notion of having one com-
ponent of a vector quantity but not the other. It suggests a new form of missing data
problem to solve. I'm not advocating we try solving it yet on our string, but I am
ready to start discussing the problem.

Consistent wavelet polarities

Greg Beroza reminds us of repeating earthquakes. Especially small quakes may repeat
with the same polarity. We should think about whether and how such phenomena
can be best recognized.

CONCLUSION AND OPPORTUNITIES

In theory (hopefully) the nonstationary vector spectral factorization problem is solved.
Its main application is segregating wave types in multicomponent data.

Of equal or greater interest is the solution methodology. Although introduced
here in 1-D, it is generally applicable to higher dimensional data. It introduces non-
stationary decon to many areas including regridding, missing data, and whitening
inversion residuals.

e No need for synthetics. The simplicity of the nonstationary technology invites
immediate experimentation with multidimensional field data.

e Robust applications (such as using the ¢; norm) will become far more common.

SEP-170

Claerbout and Wang 17 Vector-valued signal decon

Sparse model estimation is an easy extension of the usual /5-norm regularization.

The multidimensional filter is like a small molecule. It is built on statistics from
a larger, differently shaped, region of data.

e New avenues arise for handling waveform variation over (shot-receiver) offset.

e Experimentation with e will lead to deeper understanding of nonstationarity.

Finite difference representation of differential equations (curl, divergence) might
induce very weak non minimum phase that can be overcome via sparsity.

ACKNOWLEDGEMENT

I’d like to thank Enders Robinson for teaching me 55 years ago about stationary
multichannel time series. Multicomponent seismograms were rare then (and imaging
soon to be more fun). I thank Kaiwen Wang for showing my initial unitary trans-
formation was totally wrong. I thank Joseph Jennings for thoughtful comments on
early versions of this manuscript. He picked up numerous errors and identified several
incomplete explanations. I'd also like to thank Mohamed Hadidi who helped me take
a derivative with respect to a matrix. I also thank Carl Wunsch who brought the
perpetual-ocean video to my attention.

REFERENCES

Claerbout, J., 2014, Geophysical image estimation by example: Lulu.com.

APPENDIX I: GRADIENT DERIVATION

I proposed the nonstationary problem (29) to Sergey Fomel who solved it. He solved
it with powerful algebraic tools. The detailed algebra is found in earlier work by
Fomel and Claerbout. Then I discovered that a simple step down the gradient led
to the same updating of the filter. Though differing philosophically [(1) deviate
from stationarity, and (2) step down the gradient], both methods update the filter
with Aa = —eed. Both philosophies obligate the practitioner to choose a suitable
numerical value for e. Finally, while preparing a lecture, I realized what you saw near
the beginning of this paper that a simple approach almost devoid of mathematics
leads to Aa = +ed which amounts to a nonstationary ¢;-norm PEF. Below I derive
algebraically the f5-norm gradient.

Start with any old PEF. We are going to improve it a tiny amount by considering
just one new data value d, ;. Call the old PEF a = (1,a,, as, as, - --). The updated
PEF a will be made by moving a small distance down the gradient (opposite polarity
of the gradient).

SEP-170

Claerbout and Wang 18 Vector-valued signal decon

Consider the regression:

dpy1 dyp dp—y dp_g 1 0
2\ : : ; 2\
A “ o~ | g (29)
A 42 Ay
A s \ds

The top block says we seek a PEF a, that should improve fit of the newly arrived
data value d,, ;1. The lower block needs a large numerical value for A to limit the
amount of filter change. Define the fitting residual r

dn dnfl dn72 a _dn+1
X 0 o ! A
S B 22 T | (30)
0 0 A 5 \ s
Let

dn aq
d= dp—1 , A= az
dn—2 as

With these definitions and I being an identity matrix the residual definition (30) is

_ dT _dnJrl
S A o
We take the derivative of r’r to find the search direction.
_ T
Aa = — (some constant) N a:élr r (32)
Form the transpose of the residual (31), and then differentiate it by a”. (By a” we
mean the complex conjugate transpose of a.)
or’ 0 _
T = 3T {a’ld M| — [~dyy1 A2} = [d A (33)

Multiply that onto r from (31) keeping in mind that d”a is a scalar and that the
expression (d”a + d,,, 1) is the prediction error e.

8rT dT _dn+1
wocwa{[E)a- [E) w
= d(d'a) + N’a+dd,,.; — \a (35)
T
% r = (d%a+d.)d (36)
Aa — —%ed (37)

Scale out the physical dimensions to see the filter update we’ve been using from the
beginning of this paper.

SEP-170

Claerbout and Wang 19 Vector-valued signal decon

APPENDIX II: RATFOR CODE (UNTESTED)

Compared with earlier pseudocode where the gradient is an unscaled adjoint, here
the gradient has divided out the variances o, and o,. You may always scale gradient
components by positive numbers.

Non-stationary prediction error for vector signals in Ratfor/Fortran syntax
#

integer it, nt=1000, ia, na=10, gap=1, lambda=4000, ic, jc, nc=2

real y(nc,nt), e(nc,nt), aa(nc,nc,na), sige(nc), sigy(nc), eps

eps = 1./lambda

do ic=1,nc {

do jec=1,nc {
do ia=1,na { # ia = the lag axis (formerly tau).
aa(ic,jc,ia) = 0.
i 333
do ic=1,nc {
aa(ic,ic,1) = 1. # Identity matrix.
}

do ic=1,nc {
do it=1,nt {
e(ic,it) = 0.

1}

read input y(nc,nt) # Read multichannel data.

do ic=1,nc { # Initial variance estimates.
sumsq=0
do it=1,nt

sumsq += y(ic,it)**2
sigy(ic) = sqrt(sumsq/nt)
sige(ic) = sigy(ic)
3
Here we go! Happy streaming. Wheee!
do it= na, nt {

do ic=1,nc
e(ic,it) = 0.

do ia=1,na { # lag axis.
do ic=1,nc { # Vector into a matrix of filters.
do jc=1,nc { #
e(ic,it) += aa(ic,jc,ia) * y(jc, it-ia+1)
1}

Running variance.
do ic=1,nc { sigy(ic) = (l-eps)*sigy(ic) + eps*sqrt(y(ic,it)**2) }

do ic=1,nc { sige(ic) = (l-eps)*sige(ic) + eps*sqrt(e(ic,it)**2) }

do ia=gap+l, na { # adjoint = e * y’

do ic= 1, nc { #

do jc= 1, nc { #
aa(ic,jc,ia) -= eps * (e(ic,it)/sige(ic)) * (y(jc, it-ia+l) /sigy(jc))
33

}

SEP-170

