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ABSTRACT

We propose a modified tomographic full waveform inversion (TFWI) optimization
scheme that allows us to avoid the original nested-loop approach and reduce the
number of inversion parameters. We use the variable projection method to solve
for the linear component of the inverse problem. We show the convergence to the
correct velocity model on a synthetic dataset lacking frequencies below 10 Hz.

INTRODUCTION

Almomin (2016a) showed the potential of TFWI in simultaneously recovering all
model scale components while being immune to cycle-skipping. However, this tech-
nique is hampered by three major challenges. Global convergence has not yet been
mathematically proved even though it has been heuristically observed. Moreover, it
heavily relies on the user to tune the many inversion parameters present in the origi-
nal nested-scheme approach. Finally, it is highly computational intensive. Therefore,
this current formulation is hardly applicable on production field datasets.

To overcome the first and second issues, we propose a new formulation in which
the extended modeling term simply ensures phase matching between observed and
predicted data. During our optimization process, we reduce the contribution of the
additional extended term over iterations while ensuring the convergence of the total
objective function. Since our cost function is quadratic with respect to the extended
component, we use the variable projection method to minimize it (Rickett, 2013;
Huang and Symes, 2015). We also demonstrate the potential of our new formulation
on a 2D synthetic example in which the low frequency content is removed.

We first describe the mathematical difference between our proposed algorithm and
the original nested-loop formulation in Biondi and Almomin (2014). We then apply
our technique on a 2D synthetic model similar to the one shown in Mora (1989) and
compare the results to the ones obtained using FWI.

TFWI THEORY

We review the original TFWI formulation proposed by Biondi and Almomin (2014),
and analyze the potential reason for its slow convergence rate. Then we describe our
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proposed method to potentially overcome this issue.

Original formulation

In the TFWI optimization algorithm devised by Biondi and Almomin (2014), the
minimized objective function is effectively the standard FWI data misfit,

ΦFWI(m) =
1

2
‖f(m)− dobs‖22, (1)

where f is the wave-equation operator, m is the velocity model, and dobs represents
the observed data. The optimization is performed in a nested scheme, using an
extended Born modeling operator, an auxillary model composed of a background
model b, and an extended perturbation (i.e., reflectivity) p̃. This nested scheme is
designed to protect the algorithm from cycle-skipping encountered in standard FWI
workflows, especially when low frequencies are missing in the data.

To understand why the original scheme may suffer from slow convergence rate, we
propose to follow step by step one full iteration of the “outer” loop, say from i to i+1
(equation 1). That is, to compute the model update from mi 7→mi+1 = mi+∆mi. In
our notation, the upper script indices correspond to the outer loop iteration number,
while the subscript indices correspond to the inner loop iteration number. In order
to find the model update ∆mi needed at iteration i, the following objective function
is minimized,

Φi
TFWI(b, p̃) =

1

2
‖f(mi) + B̃(b)p̃− dobs‖22 +

ε2

2
‖g(p̃)‖22

=
1

2
‖B̃(b)p̃−∆di‖22 +

ε2

2
‖g(p̃)‖22, (2)

where B̃ is the extended Born modeling operator, and g is an operator enhancing
the non-physical energy of the the extended reflectivity. This last operator can be
linear or non-linear with respect to the extended reflectivity. ∆di = dobs − f(mi) is
kept constant during the minimization of Φi. This assumption might be the cause
of the slow convergence rate of the original scheme. Note that Φi is non-quadratic
with respect to the background b, but quadratic with respect to the extended per-
turbation p̃. Minimizing equation 2 is thus a “nonlinear” optimization problem. The
inner inversion starts by setting b0 = mi and p̃0 = 0. Minimizing equation 2 is
performed using a gradient-based descent method. At each inner step, a scale mix-
ing algorithm (wavenumber filtering) is applied to both gradients ∇bΦi and ∇pΦi

(the non-extended component of ∇p̃Φi) to ensure that b is only updated with low-
wavenumber components, and that p̃ is only updated with higher-wavenumber com-
ponents. The wavenumber cut-off is based on the dominant frequency in the data as
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well as the average velocity of the initial model (Almomin, 2016). Let bi
opt and p̃i

opt

be the solutions found at the last inner iteration of outer loop i (i.e., after minimizing
equation 2). A final low-wavenumber bandpass filter is applied to both bi

opt and pi
opt,

where pi
opt is the non-extended component of p̃i

opt. The new model mi+1 is given by

mi+1 = mi + ∆mi

= mi + F
(
bi

opt + pi
opt −mi

)
= F

(
bi

opt + pi
opt

)
+ (I− F) mi, (3)

where F is a low-pass filter in the wavenumber domain, and I is the identity
operator. So far, at the end of outer loop i that we just described above, we found a
pair of variables bi

opt and p̃i
opt such that

f(mi) + B̃(bi
opt)p̃

i
opt ≈ dobs, (4)

which corresponds to minimizing the data fitting term of equation 2 with the
constraint that most of the non-physical energy of p̃i

opt has been reduced to zero,
which in turn means that p̃i

opt is not extended (i.e., p̃i
opt ≈ pi

opt). If we also assume
that dobs = f(mtrue), equation 4 becomes

f(mi) + B(bi
opt)p

i
opt ≈ f(mtrue). (5)

Even though this updating scheme has been shown to work heuristically, there is
no mathematical jusification to update mi using equation 3. Equation 5 can be seen
as a first-order Taylor expansion neither about mi nor bi

opt since they are different.
However, if we had allowed the first term of equation 5 to vary as bi, the Taylor
expansion could be justified (and therefore using equation 3 to update mi would
seem reasonable) as long as pi

opt is “small” enough. This stepping method does not
ensure that the new model decreases the FWI objective function (equation 1). This
phenomenon has been observed in Almomin (2016b).

Modified formulation

In our formulation we propose to minimize the following objective function

Φ(m, p̃) =
1

2
‖f(m) + B̃(m)p̃− dobs‖22 +

ε2

2
‖Dp̃‖22, (6)
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where D is a linear operator with respect to p̃ that enhances the non-physical
extended energy of p̃. This equation differs from equation 2 because f(m) is not kept
constant and g = D is linear with respect to p̃. Since Φ is quadratic with respect
to p̃, we use the variable projection method to solve equation 6 (Golub and Pereyra,
1973; Rickett, 2013; Huang and Symes, 2015), which corresponds to minimizing the
following objective function

Φ(m) =
1

2
‖f(m) + B̃(m)p̃opt(m)− dobs‖22 +

ε2

2
‖Dp̃opt(m)‖22, (7)

where p̃opt is an extended perturbation model, defined as the minimizer of the
following objective function Φm,

Φm(p̃) =
1

2
‖B̃(m)p̃−

(
dobs − f(m)

)
‖22 +

ε2

2
‖Dp̃‖22. (8)

For a fixed m, Φm reaches its minimum for

p̃opt(m) =
[
B̃∗(m)B̃(m) + ε2D∗D

]−1
B̃∗(m)

(
dobs − f(m)

)
, (9)

where ∗ denotes adjoint operators. Note that p̃opt also depends nonlinearly on
m. The data residual component on the right side of equation 7 is a modified FWI
objective function where an additional term is used to ensure the phase alignment
between modeled and observed data. During the optimization process we slowly
reduce the contribution of this additional term by adding a regularization term on
the right side of equation 7. Therefore, finding the minimum of this equation is
equivalent to minimizing ΦFWI (equation 1).

Equation 8 can be solved by preconditioning the variable p̃,

q̃ = Dp̃, (10)

which becomes

Φprec
m (q̃) =

1

2
‖B̃(m)Eq̃− (dobs − f(m))‖22 +

ε2

2
‖q̃‖22, (11)

where E = D−1. Solution of equation 11 is given by
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Figure 1: True velocity model similar to the one shown in Mora (1989) where an
anomaly is embedded into a two layer subsurface. The velocity of the anomaly and
of the second layer is 10% lower than the upper one. [ER]

q̃opt(m) =
[
E∗B̃∗(m)B̃(m)E + ε2I

]−1
E∗B̃∗(m)(dobs − f(m)), (12)

where I is the identity operator in the extended model space. We choose to
precondition the problem since the operator D is badly conditioned as shown by
Clapp (2005)

RESULTS

We apply our proposed technique on a 2D synthetic model similar to the one described
in Mora (1989). Figure 1 displays the true velocity model used in this test. We
generate synthetic data with a Ricker wavelet containing energy from 10 Hz up to 25
Hz (Figure 2). We use 20 shots with 100 m spacing and we place receivers every 10
m. We apply our technique and compare the results to the ones obtained with FWI.
For both inversions we inject the full bandwidth without using a multiscale approach
(Bunks et al., 1995). The initial model is a constant background with a velocity of the
top layer. For both inversions we use a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization scheme (Liu and Nocedal, 1989). The linear problem solved during the
TFWI optimization has been preconditioned as described in the previous section.

Figure 3 displays the FWI inverted model after 25, 100, 200 iterations. We notice
that for the first 25 iterations mostly the reflectivity component of the model is
retrieved by the inversion algorithm (Figure 3a). As we increase iteration number
the algorithm is able to obtain the short-wavenumber component of the anomaly.
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Figure 2: Spectrum of the used wavelet. [ER]
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Although most of the data are matched after 100 iterations (Figure 4), it is necessary
additional 100 iterations to further improve the tomographic part of the model.

Figure 5 shows the TFWI inverted model after 5, 20, and 40 iterations. Because
most of the reflection component of the data is matched by the optimal extended
reflectivity, the modified TFWI algorithm inverts directly for the tomographic com-
ponent of the model. Additionally, the reflection part of the model is correctly in-
verted. In fact, the reflector below the anomaly is present in the TFWI inverted
model. As the algorithm progresses, the contribution of the extended reflectivity de-
creases (Figure 6). We observe the same inversion behavior as for the FWI result. In
fact, despite that most of the data are matched after 20 iterations, the model is still
changing significantly with additional 20 iterations.

To compare the FWI and TFWI inverted model we plot a vertical and a horizontal
velocity profiles passing through the center of the anomaly along with the true model
(Figure 7). Both inversion algorithms achieve similar results that in good agreement
with the true velocity model. The ringing effects are caused by the limited bandwidth
nature of the recorded data. In addition, the velocity contrast of the reflector below
the anomaly is incorrectly placed due to the depth uncertainty present in the data.

To understand the advantage of preconditioning the linear inversion, we compare
the convergence curves at the first non-linear iteration of the TFWI problem for
preconditioned and un-preconditioned linear inversion (Figure 8). These curves show
that the rate of convergence of the linear problem is greatly improved thanks to the
preconditioning approach used.

CONCLUSIONS AND FUTURE WORK

We highlighted issues associated with the original implementation of the TFWI algo-
rithm and proposed a new optimization scheme to potentially overcome these prob-
lems. In this new method we let the non-linear modeling operator vary during opti-
mization. We also make use of the variable projection method to optimize the linear
component independently of the non-linear one. Moreover, we showed the advantage
of preconditioning the linear inversion to improve the convergence rate of the linear
problem. On a model composed of two layers and a velocity anomaly we demon-
strated the consistency of the proposed TFWI algorithm with FWI. Despite the lack
of energy below 10 Hz in the generated data, FWI did not cycle skip in this case
and both methods retrieved similar velocity models. Future work will involve the
verification of global convergence on a more complicated model in which FWI fails to
attain the global minimum. In addition, a complete comparison of different TFWI
algorithms will be performed.
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(a)

(b)

(c)

Figure 3: FWI results after (a) 25, (b) 100, and (c) 200 iterations, respectively. [CR]
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Figure 4: Relative FWI objective function (equation 7). [CR]
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(a)

(b)

(c)

Figure 5: Modified TFWI results after (a) 5, (b) 20, and (c) 40 iterations, respectively.
[CR]
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Figure 6: Relative TFWI objective function (equation 7). The total, data, and model
objective functions are plotted. [CR]

(a) (b)

Figure 7: Horizontal and vertical velocity profiles of FWI and TFWI results at the
lastest iteration, and true model. Both profiles are passing through the center of the
velocity anomaly. [CR]
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Figure 8: Convergence curves for preconditioned (solid curves) and un-preconditioned
(dashed curves) linear inverse problem (equations 8 and 11) at the first non-linear
iteration of the modified TFWI. [CR]
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APPENDIX

In this appendix we derive the gradient of equation 7. To compute the gradient of
equation 7, we first define

rd(m) = f(m) + B̃(m)p̃opt(m)− dobs (13)

rm(m) = Dp̃opt(m). (14)

The gradient of Φ is given by

∇Φ(m) =

(
∂rd(m)

∂m

)∗

rd(m) + ε2
(
∂rm(m)

∂m

)∗

rm(m), (15)

and we have
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(
∂rd(m)

∂m

)∗

=

(
∂f(m)

∂m

)∗

+

(
∂(B̃(m)p̃opt(m))

∂m

)∗

= B∗(m) +

(
∂B̃(m)

∂m
p̃opt(m) + B̃(m)

∂p̃opt(m)

∂m

)∗

= B∗(m) + T∗(m) +

(
∂p̃opt(m)

∂m

)∗

B̃(m)∗, (16)

where T∗(m) =

(
∂B̃(m)

∂m
p̃opt(m)

)∗

. Similarly,

(
∂rm(m)

∂m

)∗

=

(
∂p̃opt(m)

∂m

)∗

D∗. (17)

Equation 15 becomes

∇Φ(m) =
[
B∗(m) + T∗(m) +

(
∂p̃opt(m)

∂m

)∗

B̃(m)∗
]
rd(m) + ε2

(
∂p̃opt(m)

∂m

)∗

D∗rm(m)

=
[
B∗(m) + T∗(m)

]
rd(m) +

(
∂p̃opt(m)

∂m

)∗ [
B̃∗(m)rd(m) + ε2D∗rm(m)

]
. (18)

Since p̃opt satisfies equation 9, we have

[
B̃∗(m)B̃(m) + ε2D∗D

]
p̃opt(m) = B̃∗(m)(dobs − f(m)). (19)

Therefore,

B̃∗(m)rd(m) + ε2D∗rm(m) = B̃∗(m)
(
f(m) + B̃(m)p̃opt(m)− dobs

)
+ ε2D∗Dp̃opt(m)

=
[
B̃∗(m)B̃(m) + ε2D∗D

]
p̃opt(m)− B̃∗(m)(dobs − f(m))

= 0. (20)

Finally, equation 15 reduces to

∇Φ(m) =
[
B∗(m) + T∗(m)

] (
f(m) + B̃(m)p̃opt(m)− dobs

)
. (21)
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