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ABSTRACT

Ambient noise interferometry allows us to extract signals that mimick active
source surveys without the cost and permitting requirements of a true active
survey for near-surface imaging. In many environments, seismic velocities in the
near surface may change seasonally, reacting to temperature and saturation, and
even subsidence. We analyze time-lapse changes in virtual source response esti-
mates extracted from ambient seismic noise recorded at the Stanford Distributed
Acoustic Sensing Array (SDASA-1) between September 2016 and August 2017.
Our analysis indicates that only one week of noise is enough to yield stable virtual
source response estimates when compared with the estimate from the same full
month of noise. The virtual source response estimates we extract throughout one
year appear to show an improvement in signal-to-noise-ratio during months when
the ground is more saturated. The Rayleigh wave dispersion images show veloci-
ties in the same range as active source geotechnical surveys (Thomas et al., 2013).
Further, their Rayleigh wave dispersion images suggest changes in near surface
velocity tied to those saturation changes. But these apparent velocity changes
are also accompanied by power spectrum changes, so further investigation into
the ambient noise field is needed before these velocity shifts can be interpereted
with certainty.

INTRODUCTION

For the purpose of near-surface characterization, we are interested in processing am-
bient noise to avoid the cost, time, and permitting requirements involved in active
surveys. Ambient noise interferometry has successfully been used with point sensors
to create data mimicking active surveys at the scale of a city (Chang et al., 2016) and
time-lapse surveys at the reservoir scale (de Ridder, 2014). In urban areas, the long-
term use of traditional sensors, nodes or otherwise is logistically and economically
prohibitive for many applications: permission and permits for installation must be
obtained separately for each location, wired sensors can only span a short distance,
node batteries must be replaced regularly (often monthly), few cost-effective sensors
have wireless data communication capabilities, and failed or stolen sensors must be
replaced.
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Distributed acoustic sensing (DAS) installed in existing telecommunications conduits,
similar to the Stanford Distributed Acoustic Sensing Array (SDASA-1), may provide
a cost-effective alternative on the receiver side: the cost per sensor is below $1/me-
ter, higher density can be achieved through changes in the interrogator unit, a single
power source and communication point is required for the entire system of potentially
thousands of sensors, and sensors can be left in place indefinitely in a conduit as se-
cure as existing utilities with little to no maintenance cost. However, DAS systems
measure strain rates, a tensor quantity, distributed over subsets of fiber. This leads to
some potentially challenging theoretical issues that we must account for in processing
(Martin et al., 2017).

Passive Rayleigh wave interferometry has been applied recently to trenched-fiber DAS
data for imaging at geotechnical scales (Zeng et al., 2017; Martin et al., 2016), and
it appears to yield the proper velocities, but this yields no information between lines
in the array. In hopes of increasing our ray coverage throughout the space between
fiber lines, we have extended the calculation of virtual source response estimates to
pairs of fiber channels throughout 2D arrays, and have specifically applied this theory
at SDASA-1 (Martin and Biondi, 2017). In this report, we test whether the virtual
source response estimates throughout the 2D array show significant changes through-
out the first year of recording.

First, we establish that stacking roughly one week of cross-correlations is enough
to ensure that virtual source response estimates throughout the array are stable rel-
ative to the signal extracted from one month of noise. Next, we look at one year of
minimally pre-processed cross-correlations responding to two virtual source locations
(one east-west oriented and one north-south oriented) on SDASA-1. Virtual source
response estimates from epochs when the ground is more saturated show a clear in-
crease in signal-to-noise ratio at longer distances. We calculate dispersion images for
the Rayleigh wave portion of the virtual source response estimates (channels colinear
to the virtual source channel), showing how much energy travels at each velocity for
each frequency, and clarifying the apparent velocity changes throughout this one year
period. Still, the changes in apparent velocities are accompanied by changes in the
power spectrum of the background noise field, so further analysis of the ambient noise
field is needed before the picked velocities can be interpreted.

CONVERGENCE ANALYSIS

To test how long we need to average cross-correlations to get stable virtual source re-
sponse estimates, we study the similarity of short-term averages from varying window
lengths to month-long averages throughout September 2016. Note that convergence
of virtual source response estimates does not necessarily mean a more accurate signal,
just a more repeatable one. As in (Seats et al., 2012), for any virtual source v receiver
r pair, we use the normalized zero time-lag correlation between the long term average
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virtual source response estimate, l(v, r, τ), where τ is time lag, and any shorter virtual
source response estimate, s(v, r, τ ; t, t + w) averaging cross-correlations for windows
that start and end between time t and t + w. Thus, if the virtual source response
estimates are compactly supported on (−τ, τ), their correlation coefficient is:

RC(v, r; t, t+ w) =

∫ τ
−τ l(v, r, τ

′) · s(v, r, τ ′; t, t+ w)dτ ′(∫ τ
−τ l

2(v, r, τ ′)dτ ′
)1/2 (∫ τ

−τ s
2(v, r, τ ; t, t+ w)dτ ′

)1/2
(1)

Note that in practice RC is an approximation with sums over discretized signal vec-
tors instead of integrals of continuous functions. If RC(v, r; t, t + w) ≈ 1 for nearly
all window start times, t, this suggests little is gained by continuing to average (v, r)
cross-correlations averaged over a longer window, w.

As seen in Figures 1a to 1g, we calculated RC to see how it varied throughout our
30 days of cross-correlations. We calculated s for all receivers responding to channel
75 as a virtual source for each contiguous subset of w hours throughout the 30 days.
This was tested for w = 6, 12, 24, 48, 96, 192, and 384 hour sliding windows. Note that
windows with w > 1 overlap, so when w = 6, there is a window from midnight to 6
am on the first day, a window from 1 am to 7 am on the first day, and so on. The
horizontal stripes in RC plots for 6 and 12 hour windows repeatedly show lower RC

values during the daytime, even in parts of the array farther from roads. These daily
variations are barely picked up by the auto-correlation of channel 75, indicating that
processing decisions based on convergence require a measure of convergence through-
out the array, not just auto-correlations. Overall improvement could be quantified by
an RC matrix with higher entropy (more even convergence throughout the array and
over time), higher average values, or higher minimum values. One possibility is not
using any daytime noise, but this increases the recording time required. By the time
one week of data has been integrated, we have stable cross-correlations.

CALCULATING TIME-LAPSE CHANGES AND RESULTS

Previously, we showed that coherence virtual source response estimates could be ex-
tracted throughout the array out of one week of data (Martin and Biondi, 2017).
Using similar processing, we extended those analyses to calculate a monthly corre-
lation using six days of data from each month from September 2016 to April 2017,
including all 24 hours of the day. Even when averaging over multiple days of data,
ambient noise pre-processing decisions can cause significant biases in the estimated
Green’s functions retrieved by (Fichtner, 2014). Thus, we did minimal pre-processing:
data were divided into 5 minute windows with 50% overlap, were bandpassed from 0.5
-24 Hz, were thresholded to +/- 1, cross-correlated, then stacked for each hour. After
saving each hour’s average cross-correlations throughout the week, we normalized the
cross-correlations by their L2 norms. Finally these virtual source response estimates
were stacked over six days, yielding a virtual source response estimate.
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Figure 1: Calculations of Rc for cross-correlations between channel 75 and the rest of
the array throughout September 2017 for (a) 6 hour windows, (b) 12 hour windows,
(c) 24 hour windows, (d) 48 hour windows, (e) 96 hour windows, (f) 192 hour windows,
(g) 384 hour windows show convergence on nearly all receiver channels after one week
(indicated by Rc near 1). [CR]

SEP–170



Martin and Biondi 5 Time-lapse SDASA

Cross-correlation changes

Our convergence analysis indicates that just four days of data are be enough to yield
stable virtual source response estimates when compared to estimates from the same
full month of data. Still, to be on the safe side with respect to convergence, we show
cross correlations for one week of data from each month in Figures 2a to 3l. Although
these correlations may be relatively constant in the one month time scale, changes do
emerge over a longer time scale, indicating either significant change in the noise field
or velocity profile. Data collected in November through April yielded higher signal
to noise ratios at longer distances than data in June, July, August, September and
October. This can be seen comparing Figures 2h and 3h to Figures 2a and 3a, which
are the virtual source response estimates to the same virtual source channels shown in
September in Martin and Biondi (2017). We hypothesize that as the ground became
more saturated with rain starting in the late fall, the coupling between the conduits
and soil improved, which meant an improvement in sensitivity on both the virtual
source and the receiver side. We are continuing to investigate time-lapse changes
in this challenging environment with many transient noise sources. Even for static
virtual source response estimates, the issues with pre-processing related biases are
especially pertinent in environments with transient noise sources, so we are working
towards scalable methods for automatic identification and filtering of these sources
in urban environments (Huot et al., 2017).

Dispersion image changes

We calculate Rayleigh wave dispersion images from virtual source response estimates
limited to channels along the same line as these, as seen in Figures 4a to 5l. These
dispersion images were calculated via tau-p transforms followed by a Fourier transform
along the tau axis. These dispersion images tell us how much energy is traveling at
each velocity for a given frequency, summarizing the Rayleigh wave speeds in each
of the cross-correlation plots. Energy in the 10-20 Hz range tends to travel at faster
velocities in the summer months in response to channel 75, and this trend sort of
continues in response to channel 35 (but some months this energy is not well-focused
enough to differentiate). At lower frequencies, 3-10 Hz, energy travels faster in the
wetter months in response to channel 35, but there is no clear trend in response to
channel 75. Below 3 Hz and above 20 Hz there is no focused peak in these dispersion
images.

Due to its apparently higher signal-to-noise ratio, we focus on results from April,
seen for the whole month in Figure 6a to 6d. To better distinguish signal from noise,
we do not normalize each frequency so that the value at the peak velocity in the
dispersion image is 1. These show velocities and frequencies in the correct range for
geotechnical surveys, suggesting this may be a reasonable tool for earthquake hazard
analysis. At 5 Hz the main velocity near channel 61 is 700 m/s, and such a wave
would be sensitive to features in the top 45 to 70 meters. Over at channel 141, the
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Figure 2: Cross-correlations around one corner of the array responding to a virtual
source at channel 35 show an increase in signal to noise ratio at longer distances from
September 2016 (top left) and October 2016 (top right) through July 2017 (bottom
left) and August 2017 (bottom right). Each month’s cross-correlations were calculated
independently (not stacked as more months were recorded). [CR]
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Figure 3: Cross-correlations around one corner of the array responding to a virtual
source at channel 75 show an increase in signal to noise ratio at longer distances from
September 2016 (top left) and October 2016 (top right) through July 2017 (bottom
left) and August 2017 (bottom right). Each month’s cross-correlations were calculated
independently (not stacked as more months were recorded). [CR]
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Figure 4: We calculated dispsersion images from the Rayleigh-wave parts of the
cross-correlations in Figures 2a to 2l between September 2016 and August 2017. The
Rayleigh waves are expected to primarily be extracted from channels 15 to 50. The
peak velocity for each frequency is normalized to 1 (so energy being spread in the
20-25 Hz range actually indicates that we do not extract much coherent energy in
that range). [CR]
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Figure 5: We calculated dispsersion images from the Rayleigh-wave parts of the cross-
correlations in Figures 3a to 3l. The Rayleigh waves are expected to primarily be
extracted from channels 50 to 100. The peak velocity for each frequency is normalized
to 1 (so energy being spread in the 20-25 Hz range actually indicates that we do not
extract much coherent energy in that range). [CR]
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peak velocity for 5 Hz waves is closer to 400 m/s, which would be sensitive to features
at a scale of 25 to 40 meters. At both locations, the peak at 5 Hz is continuous over a
range of frequencies and is likely the fundamental mode. At 10 Hz, the main velocity
near channel 61 is around 400 m/s, which would be sensitive to features at a scale of
roughly 13 to 20 meters. Farther north, at channel 141, the peak velocity for 10 Hz
is closer to 300 m/s, which would be sensitive to features in the top 10 to 15 meters.
For earthquake hazard analysis, engineers must estimate surface wave and S-wave
velocity in the top 30 meters of the subsurface. Thus, the frequencies at which we
extract signals are in the right range for geotechnical studies, and the ability to cut
the cost of these surveys could enable more widespread near surface stability studies.
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Figure 6: Throughout April we calculated virtual source response estimates through-
out both loops of the entire array, and the dispersion images just for fiber in-line with
the virtual source channel’s orientation. In addition to the in-line channels yield-
ing Rayleigh waves, we can also see channels parallel to the virtual sources yielding
something made primarily of Love waves. Responding to virtual source channel 25
(left, marked as 69 when both loops are there), we see a reaction between 0.6 and
1.0 seconds on parallel channels 300 to 370. Responding to a virtual source at chan-
nel 75 (right, marked as 141 when both loops are there) we see a reaction between
channels 320 and 400 between 0.2 and 0.5 seconds which is likely to be primarily
converted wave energy due to the orthogonal orientation between the virtual source
and receivers. [CR]
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DISCUSSION

The findings here indicate the likely potential of DAS interferometry to detect near-
surface changes, but further work must be done to ensure that spatially and tempo-
rally heterogeneous noise sources are not the cause of these changes. In this report
we used very minimal preprocessing, but new tools developed within SEP need to
be incorporated into ambient noise analysis to remove nearby vehicles (Huot et al.,
2017) and earthquake recordings (Yuan et al., 2017). Furthermore, it has been docu-
mented that even power spectrum changes can cause false apparent velocity changes,
so we need to test the robustness of our velocity changes to spectral whitening and
cross-coherence (Daskalakis et al., 2016). Further, we intend to build on these results
by performing surface wave inversion.

While the methods used have their limitations, these findings establish that changes
in the virtual source response estimates in an urban area throughtout one year can
be significant, whether by changes in the background noise field or by changes in the
velocity profile due to saturation or other effects. We believe this is the first year-long
study of ambient noise interferometry from a dense array in an urban area, and it was
made possible primarily by our novel acquisition method: DAS in existing telecom
conduits. This method of deploying many dense sensors is much easier to maintain in
an urban area over long periods of time than geode or node systems. As we further
probe the cause of these changes in interferometry, we will no doubt learn more about
trends in anthropogenic noise on campus, and potentially even our urban hydrology
system.
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