C++11 non-linear solver

Robert G. Clapp, Stuart Farris, Taylor Dahlke, and Fileen Martin

ABSTRACT

Inverse problems such as velocity estimation from reflection/refraction data are
inherently non-linear. We developed a library to address non-linear problems
using C++11. We demonstrate the library on two simple examples.

INTRODUCTION

The last twenty years has seen an increasing percentage of SEP theses concerned
with solving large inverse problems. During that period a large number of inversion
libraries have been developed. Nichols et al. (1993) developed a framework using an
early version of C++. For years many small inversions problems were handled by the
Fortran90 library developed by Fomel and Claerbout (1996). Schwab and Schroeder
(1997) developed a library using Java. For out of core and multi-node applications
the python library described in Clapp (2005) was used. A second attempt at a C++
optimization library was described in Martin et al. (2014).

All of the above attempts concentrated on solving linear problems. The summer of
2015 saw the first significant attempt at building a framework for non-linear problems
with a Fortran 2003 library described in Almomin et al. (2015). The library described
in Almomin et al. (2015), while well designed, is limited to in-core problems and only
acccesible to Fortran programers. Biondi and Barnier (2017) addresses the first issue
by emulating the design of Almomin et al. (2015) but written in python for out-of-core
problems.

In this paper we descibe a non-linear version library written in C+-+11 using the
same design as the Fortran library descibed in Almomin et al. (2015). We begin by
reviewing the design principals of the library. We then present two simple inversion
examples using the library. Finally, we discuss planned future additions to the library.

THE DOCKER ENVIRONMENT

One unique aspect of this project is the integration of the library that we’ve built with
a portable environment system called Docker. Docker is a recent software product
that holds an advantage over other environment replicating systems, and holds special
promise for integrating with future SEP work in terms of reproducibility. One of the
leading challenges for software reproducibility and deployment has been the difficulty

SEP-170

10

11

12

13

14

Clapp et. al. 2 C++11 non-linear solver

in replicating the working environment. Virtual machines are a common way to
circumvent this problem, but these machines can take minutes to launch, versus
seconds (or less) with most Docker containers.

Creating a docker container for each SEP report would allow the reader to launch
the same environment that the author used. Further, since most all SEP research
is run on linux-based systems, most containers would share the same parts of their
container images. Docker is unique in that when multiple (similar) containers are run,
the bulk of resources can be shared between them since they operate from the same
base image. This makes the system light, and easier to deploy. For these reasons, we
employ Docker in this report to showcase how the product can be used to enhance
the reproducibility of SEP research.

One aspect of using Docker containers to replicate run environments is that we
can easily build the environment that we want to use by means of a Dockerfile. An
example of such a file shows how one can be used to setup the solver library that
is used for the examples in this report, and would be used by you, the reader, to
replicate the results you see here.

From rgc007/geelab:2017

MAINTAINER Bob Clapp <bob@sep.stanford.edu>

RUN yum -y install xorg-xll-server-Xvfb whichcmake boost-
develyum clean all

RUN dbus-uuidgen >/etc/machine-id

RUN git clone http://zapad.Stanford.EDU/SEP-external/
gieeSolver.git /opt/gieeSolver

RUN git clone http://zapad.Stanford.EDU/bob/genericI0.git /opt
/genericIO

RUN mkdir -p /opt/gieeSolver/build

RUN mkdir -p /opt/genericI0/build

RUN cd /opt/genericIO/build

RUN cmake -DCMAKE_INSTALL_PREFIX=/opt/genericI0 -DSEPlib_DIR=/
opt/SEP/1ib

RUN make install

RUN cd /opt/gieeSolver/build

RUN cmake -DCMAKE_INSTALL_PREFIX=/opt/gieeSolver -
DgenericI0O_DIR=/opt/genericI0/1ib -DBoost_INCLUDE_DIR=/usr/
include

RUN make install

Listing 1: Sample Dockerfile

In 1, we first call the base image that we wish to build or install on. Afterwards,
we can use the RUN operator to execute a series of commands that install programs
and utilities on top of the starting image that we designate. In this case, we clone the
libraries that are used for the examples in this report, and then install those libraries
into the environment that we’ve specified. Once this container is built, we can save
it as an image for later users to run without having to execute the script that holds

SEP-170

Clapp et. al. 3 C++11 non-linear solver

these build commands. This interface makes creating an distributing environments
(such as the one included with this report) a relatively simple task.

SOLVERS

This library was designed to have interfaces similar to the of Biondi and Barnier
(2017). This means that we work with solver objects defined by a problem, a stepper,
and a terminator. A problem object is associated with an objective we wish to min-
imize, and has methods associated with getting that objecting value for a particular
model, getting gradients, data misfits/residuals, and managing the domain and range
of a problem. A stepper decides for a given problem how far to move from the
current model along a certain update path (think of any line search). A terminator
has a test () method that returns a boolean indicating whether to continue iterating
when solving an inverse problem.

The solver class, called nlsolver, sets up a method to solve a given problem,
using a particular stepper, and a specified terminator. All solvers have a method
called run() that actually solves the problem using the stepper and terminator. But
the solver class is abstract, so specific types of solver algorithms must be implemented.
Many types of both linear and nonlinear solvers can be implemented in this frame-
work. Two examples of solvers we have implemented are linear conjugate gradient,
and nonlinear conjugate gradient. The linear conjugate gradient solver class, called
linSolverCG, is one of the simpler optimization solver algorithms that can be im-
plemented as a special case of a nlsolver because it only requires a problem and
terminator, but does not need a stepper because the step length is predetermined
in the usual way.

The nonlinear conjugate gradient solver class, called nonlinSolverCG, is a type
of nlsolver that requires pointers to a problem, a stepper, a terminator, as well
as a string indicating the method for calculating the CG update, 5. As in Biondi and
Barnier (2017), the user is only expected to interact with a nonlinSolverCG object
through two methods: instantiation, and run(). Once run() is called, everything
else happens behind the scenes based on what problem, stepper, terminator and (3
update were specified at the instantiation.

The steps happening behind the scenes when run() is called are:

1. Use betaAssigner () method to figure out which 3 update to use
2. Calculate gg, the gradient of the initial model guess, xg

3. Set dy = —go, the first update direction

4. While terminator’s test () method says to continue iteration:

(a) Calculate gg.1, the gradient of objective at the current model x,

SEP-170

Clapp et. al. 4 C++11 non-linear solver

As in the library of Biondi and Barnier (2017), the nonlinear CG solver has mul-
tiple options for how to calculate 3, so when a nonlinear CG solver object is instan-
tiated, the user must provide a std::string referred to as its betaMethod, and a
method called betaAssigner ensures the proper beta calculation happens. A user
can simply use the method run with no additional parameters regardless of how [is
calculated.Primarily following Hager and Zhang (2006), currently supported methods
for 3 calculation are:

betaMethod B =
FR gr+1l?/lgwll?
PRP 9tvayn/ | gell®
HS I/ (dfyr)
CD gk+111?/(—df gi)
LS g}{+1yk/<_dzgk)
DY g+ 11?/ (df yi)
BAN Ihayn/ (ngyég)

2
HZ, (e — 20, 42) " 20
ST p=0

Note that ST is simply steepest descent.

RE-IMPLEMENTING GIEE

A secondary goal of the C4++ nonlinear solver is to re-implement the linear solvers
and operators transcribed in Geophysical Image Estimation by Example (GIEE),
(Claerbout, 2014). While the ultimate goal of this solver is to address nonlinear
problems, the lessons, examples, and experience in GIEE are invaluable for a budding
geophysical image processor. Furthermore, many of the nonlinear problems addressed
by the SEP are built around the linear ideas described in GIEE. Therefore, we deem
it necessary to add GIEE to the C++ nonlinear solver.

Here we begin to re-implement GIEE by converting all of the in-text examples
from Fortran to C++ one chapter at a time. These chapters are found in the solver
directory opt/gieeSolver/giee/. Each chapter will contain a Makefile that can
reproduce all of its figures. For example, Chapter One: Basic Operators and Ad-
joints illustrates the derivative and convolution operators using a few simple fig-
ures. To reproduce these figures, simply enter the Docker environment, as described
above, move to the directory associated with chapter one, and run the appropri-
ate make rule. Listing 2 illustrates these steps on the command line. The Figures

SEP-170

Clapp et. al. 5) C++11 non-linear solver

1 and 2 will then appear within the figure directory associated with chapter one,
/opt/gieeSolver/giee/ajt/Fig/.

cd /opt/gieeSolver/giee/ajt
make stangrad90.v
make conv.v

Listing 2: GIEE Examples

600 800 1000 1200 1400 1600 1800 2000

00+ 009 008 0001

002

Topographic map, Stanford area
600 800 1000 1200 1400 1600 1800 2000

00+ 009 008 0001

0oz

Southward slope

Figure 1: Illustration of derivative operator reimplemented from GIEE. [ER|]

We plan to re-implement all of the chapters from GIEE using the C+4 nonlinear
solver framework in ascending order.

INVERSION EXAMPLES
NMO operator

We demonstrate the solver library on a simple normal moveout (NMO) operator,
where we invert for the slowness and time position of hyperbolic reflection events.
Both examples use conjugate gradient inversion, with one example being regularized.

SEP-170

Clapp et. al. 6 C++11 non-linear solver

input

.o
teall [TTTTTTTTTTTTTT

el _TTTTITTITTITITNY

Figure 2: Illustration of transient and internal convolutions reimplemented from
GIEE. [ER|]

filter

Conjugate gradient inversion

We begin with a true model as shown in Figure 3. From this we apply the forward
NMO operator to create hyperbolas. We apply a smoothing to these hyperbolas to
avoid inversion crime (Figure 4). We then apply 25 iterations of conjugate gradient
inversion, begining with an empty (all zeros) initial model. We get results that roughly
match the true model in spatial extent as well as amplitude (Figure 5).

Regularized conjugate gradient inversion

For this case, we regularized the model space with a first order LaPlacian smoothing
operator. We set the parameter € to 10.0, which controls the strength of the regular-
ization term. Using a higher € value means we will gain a smoother inverted result.
Figure 6 shows the result of this regularized inversion. Note that this result is less
spiky than the unregularized inversion result in Figure 5.

FUTURE WORK

There are several ways that we want to grow this project. From a library perspective
we need to add additional non-linear solvers and line search methods. We also need
an expanded library of operators. This project started as way to begin the transition
of both the book and class associated with Claerbout (2014) from using Fortran90

SEP-170

Clapp et. al. 7 C++11 non-linear solver

S
0.2
(@) ~—
Kee
o
~
| ©
o
N O
=
o
o
v
o
~ O

Figure 3: The true model showing the 7 and s space representation of four hyperbolas.
[ER]

SEP-170

Clapp et. al. 8 C++11 non-linear solver

Offset [m]

~

Figure 4: The initial data used for the CG inversion. In this case, we performed the
forward operator on the true model and smoothed the result. [ER]

SEP-170

Clapp et. al. 9 C++11 non-linear solver

Slowness [s/m]
0.2 0.3 0.4 0.5 0.6

~

Figure 5: The result of performing 25 iterations of conjugate gradient inversion using
the NMO operator. [ER]

SEP-170

Clapp et. al. 10 C++11 non-linear solver

Slowness [s/m]
0.2 0.3 0.4 0.5 0.6

~

Figure 6: The result of performing 25 iterations of conjugate gradient inversion using
the NMO operator and regularizing with the LaPlacian. [ER|]

SEP-170

Clapp et. al. 11 C++11 non-linear solver

to C++. At this stage the labs for the class have been convereted but many of the
examples have yet to be finished. We are also considering adding a python interface
to the library. This would allow the class to be taught in ipython notebooks while
still introducing all of the concepts needed for students to later use the C++ library.

CONCLUSION

In this paper we described the current state of a C++ non-linear inversion library.
It allows the user to solve to store in-core linear and non-linear problems using an
approach similar to SEP’s Fortran 2003 and python equivalents.

REFERENCES

Almomin, A., E. Biondi, Y. Ma, K. Ruan, J. Jennings, R. Clapp, M. Maharramov, and
A. Cabrales-Vargas, 2015, Seplib nonlinear solver library — manual: SEP-Report,
160, 39-70.

Biondi, E. and G. Barnier, 2017, A flexible out-of-core solver for linear/non-linear
problems: SEP-Report, 168, 1-15.

Claerbout, J., 2014, GEOPHYSICAL IMAGE ESTIMATION BY EXAMPLE.:
LULU COM. (OCLC: 986953183).

Clapp, R. G., 2005, Inversion and fault tolerant parallelization using Python: SEP-
Report, 120, 41-62.

Fomel, S. and J. Claerbout, 1996, Simple linear operators in Fortran 90: SEP-Report,
93, 317-328.

Hager, W. and H. Zhang, 2006, A survey of nonlinear conjugate gradient methods:
Pacific Journal of Optimization, 2, 35-58.

Martin, E., R. G. Clapp, H. Le, C. Leader, and D. Nichols, 2014, SEPVector: A
C++ inversion library: SEP-Report, 152, 359-364.

Nichols, D., H. Urdaneta, H. I. Oh, J. Claerbout, L. Laane, M. Karrenbach, and M.
Schwab, 1993, Programming geophysics in C++: SEP-Report, 79, 313-471.

Schwab, M. and J. Schroeder, 1997, A seismic inversion library in Java: SEP-Report,
94, 363-381.

SEP-170

