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ABSTRACT

Full waveform inversion (FWI) reconstructs the velocity model based on the
information contained in reflections and diving waves, in addition to a tomo-
graphic component that contributes when reflected events are not well focused.
The wavenumber-domain analysis of the contributions of each of these elements
shows that they are mostly complementary. The illumination patterns in the
wavenumber domain are scaled by the data frequency, further expanding the
wavenumber-domain region that is illuminated by reflections data. When cycle-
skipping is not occurring, FWI applied to wideband data should be able to re-
construct all the scales of the velocity model. Our tests on synthetic datasets
support this analysis; however, they also show that FWI applied to wideband
data (2.5-30 Hz) with long offsets (up to 9km) is not able to reconstruct a small
region of the wavenumber plane close to the origin. For our specific examples,
the poorly reconstructed scales have vertical wavelengths longer than 400 m and
horizontal wavelengths between 150 m and 600 m.

INTRODUCTION

The ultimate goal of seismic imaging is to image all scales of the subsurface velocity
model. Full waveform inversion (FWI) aims to extract the information that is con-
tained in the data for all the scales of the model. FWI estimates are more reliable for
some scales (short wavelengths) than for others (long wavelengths) because of “cycle
skipping” caused by the non-linearity of the wave equation with respect to the model
parameters. To better understand the challenge, and possibly devise more robust
inversion algorithms, we analyze the contributions to the process of imaging differ-
ent scales of the model by different data components. In particular we analyze the
contributions by: 1) reflections, 2) diving (overturned) waves, and 3) a tomographic
component that is related to reflections focusing (reflection tomography). These last
two categories are linked to transmission (forward-scattered) effects, whereas the first
one is linked to reflection (back-scattered) effects.

Our analysis is based on the “classic” graphic understanding of the model wavenum-
ber illumination provided by single-scattered data as a function of the recording ge-
ometry that has been presented by Wu and Toksoz (1987). Their analysis is based
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on the assumption of single scattering in a constant medium background, but it pro-
vides a good starting point to analyze diving waves that are recorded only when
the background model increases with depth. More challenging is the analysis of
the reflection-tomography contributions that come into play only when the back-
ground model contains scatterers. The single-scattering framework can be extended
to provide a qualitative understanding of the illumination provided by reflection to-
mography. However, the wavenumber components that are illuminated by reflection
tomography are not only dependent on the scattering geometry, but also on the
wavenumber content of the the imaged reflector in the background model. Therefore,
we think that a more complete theory that formally explains double-scattered events
should be developed to quantitatively analyze the illumination provide by reflection
tomography.

To illustrate and validate our analysis we modeled three synthetic datasets and
imaged them by FWI. These datasets were modeled assuming random velocity per-
turbations superimposed onto a linearly increasing background model. The random
perturbations for the first dataset were generated assuming a uniform distribution
with zero mean and variance of 1.5 m/s. To generate the other two datasets we scaled
these random perturbations by a factor of 10 and 20. Because of the low-frequency
content of the source function, FWI converges for all three datasets.

MODEL-SCALES ILLUMINATED BY REFLECTION
SEISMIC DATA

Wu and Toksoz (1987) introduced a simple graphical method to analyze the illumi-
nation of the seismic experiment as a function of acquisition geometry. The method
is based on a single-scattering assumption and on plane-waves decomposition of the
wavefields. Figures 1 and 2 summarize the basic idea. Figure 1 shows an incident
plane wave (red) propagating downward at an angle α with respect to the vertical
direction. Subsurface heterogeneities scatter back the incident plane wave. The scat-
tered wavefield can be decomposed into its plane-waves components. The Figure
represents one of them (green) propagating back towards the surface at an angle β
with respect to the vertical direction. The angle γ is the scattering angle for these
two plane waves. Figure 2 shows the corresponding wavenumber representation of the
scattering phenomenon represented in Figure 1. If we assume the plane waves to be
monochromatic, we can represent them as the vectors ks and kg in the wavenumber
plane as follows:

ks =
ω0

V0

(sinαkx − cosαkz) ,

kg =
ω0

V0

(sin βkx − cos βkz) , (1)

where kx and ky are the unit vectors along the wavenumber axes, ω0 is the angular
frequency of the plane waves, and V0 is the constant velocity of the medium. The
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Figure 1: The incident plane wave
(red) generated by the source(s)
propagates downward at an an-
gle α with respect to the verti-
cal. The scattered wavefield can
be decomposed into several plane
waves; one of them (green) propa-
gates back towards the surface at
an angle β with respect to the ver-
tical. The angle γ is the scattering
angle for these two plane waves.
[NR].
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Figure 2: Wavenumber represen-
tation of the plane-waves scat-
tering phenomenon represented in
Figure 1, accordingly to equa-
tions 1 and 2. [NR].
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model wavenumber vector km (black in the Figure) illuminated by the data component
corresponding to the scattered plane wave is equal to

km = ks − kg. (2)

Figure 2 shows also the scattering angle γ as a function of the wavenumber-domain
vectors.

Figure 3 shows the region of the model space that are illuminated by a single
frequency, for all possible angles α and β. The circumference of the large gray cir-
cle corresponds to the normal-incidence reflections, which are the highest-resolution
events that can be recorded at ω0. The orange circle is the region of the wavenumber
plane that is illuminated by forward-scattered plane waves; that is, scattered plane
waves for which 90o ≤ γ ≤ 270o. We will refer to these events as transmission events.

The light-blue circles on the side, and partially covered by the orange circle, are the
regions of the wavenumber plane that require the vertical wavenumber of the incident
and scattered plane waves to have the same sign. This condition is equivalent to the
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condition that the incident plane wave and the scattered plane wave are traveling
along the same vertical direction. In a constant velocity background and under the
assumption of single scattering, these plane waves cannot be recorded by seismic data
acquired at the surface. Therefore, conventional reflections (that is back-scattered
energy recorded at the surface) can only illuminate the regions of the gray circle that
are not covered by the orange and light-blue circles.

However, if in addition to reflections we record also diving waves caused by a back-
ground model with increasing velocity with depth, we can illuminate an additional
region of the wavenumber plane. The part of the orange circle visible in Figure 4 shows
the region of the wavenumber plane that can be illuminated by diving waves. The
recorded data are forward scattered and the incident and scattered energy propagate
along the same horizontal direction, but opposite vertical directions (at least with
a constant velocity background; in the presence of a vertical gradient this condition
does not need to be exactly fulfilled).

Second-order scattering illuminates an additional region of the wavenumber plane.
These contributions are present in the FWI gradients if the background model con-
tains sufficient short-wavelength heterogeneity to cause substantial back scattering,
as typically happens for FWI iterations after the first one. We can consider this
term the “reflection tomography” component of seismic imaging. Reflection tomog-
raphy illuminates the regions of the orange circle that are visible in Figure 5. These
wavenumber components are illuminated by forward scattered energy for which the
incident and scattered plane waves propagate along the same vertical direction, ei-
ther downward for the source wavefield, or upward for the receiver wavefield. When
the source plane wave is scattered, the incident wavenumber vector points down (up-
ward for −ks in Figure 5) and the scattered wavenumber vector (ks′ in the Figure)
points downward. Conversely, when the reflected plane wave is scattered, the in-
cident wavenumber vector kg points up, and the scattered wavenumber vector kg′

points upward. It should be noted that the reflection tomography contribution not
only depends on the presence of reflectors in the background model, but also that it
depends on their orientation and frequency content.

The transmission components (diving waves and reflection tomography) are the
most prone to cycle skipping when the background model is far from the correct one.
Common workflows based on ray-tracing tomography are usually capable to estimate
starting models that avoid cycle skipping of diving waves arrival. In contrast, ray-
tracing tomography is less likely to yield sufficiently accurate models to avoid cycle
skipping in the reflection-tomography FWI component.

Figure 6 shows the same circles shown in Figure 3 with their copies, scaled down
by a factor of two, superimposed onto them. These smaller circles correspond to plane
waves with half the frequency of the previous one; that is, ωh = ω0/2. When we record
wideband data (i.e. ωh ≤ ω ≤ ω0) the different data components (reflections, diving
waves, and reflection tomography) illuminate the regions of the wavenumber plane
that are swept as the circles continuously expand from the small ones to the large
ones, as indicated by the blue arrows in Figure 6.
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Figure 3: The regions of the model
space that are illuminated by a
single frequency, for all possible
angles α and β. The gray areas are
illuminated by surface data with
reflections. The orange circle is
illuminated by forward-scattered
plane waves. The light-blue areas
cannot be illuminated by surface
data. [NR].
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Figure 4: The portion of the or-
ange circle not covered by the
light-blue circles is illuminated by
diving waves recorded by long-
offset surface data when the veloc-
ity increases with depth. [NR].
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Figure 5: The portion of the or-
ange circle not covered by the
light-blue circles is illuminated by
the “reflection tomography” com-
ponent of the data. It is present in
the FWI gradients when the back-
ground model contains scatterers
as typically happens for FWI iter-
ations after the first one. [NR].
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Figure 6: The circles shown in
Figure 3 with their copies scaled
down by a factor of two superim-
posed onto them. These smaller
circles correspond to plane waves
with half the frequency of the pre-
vious one. Wideband data illumi-
nate the regions of the wavenum-
ber plane that are swept as the
circles continuously expand from
the small ones to the large ones.
[NR].
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SYNTHETIC EXAMPLE

To illustrate the concepts presented in the previous section we modeled three synthetic
datasets assuming random perturbations superimposed onto a background model
with velocity linearly increasing with depth; the background velocity was defined
as v(z) = (1 + 0.44z) km/s. Because velocity increases with depth, this background
model creates overturned events. The random perturbations for the first dataset (#1)
were generated assuming a uniform distribution with zero mean and variance of 1.5
m/s. The other datasets were generated using the same random perturbations scaled
up by a factor of 10 (#2) and 20 (#3). The random perturbations ensure that the
perturbed model is different from zero at all the wavenumbers. We modeled 48 sources
equally spaced 150 m apart. The receiver array was 10 km wide and stationary for
all sources. Figure 7 shows that the spectrum of the sources is different from zero
between 2.5 Hz and 30 Hz. The spatial grid was 10 m in both directions; therefore
the Nyquist wavenumber was .05 m−1.

First-iteration FWI images

Figure 8a shows the search direction at the first iteration of a FWI process applied to
dataset #1; we can clearly see the contributions of the reflected events and the diving
waves superimposed onto each other. To help distinguish these two types of contribu-
tions to the search directions we approximately separated the corresponding events
in the data domain by applying a linear muting as a function of offset that removed
the diving waves from the data. Figure 8b shows the search direction computed by
back-projecting the muted residuals, whereas Figure 8c shows its complement; that
is, the search direction corresponding to the diving waves.

Figure 9 shows the wavenumber spectra computed from the images shown in
Figure 8. The shape of these wavenumber spectra fits the graphical analysis presented
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Figure 7: Frequency spectrum of
the wavelet used to model the
datasets. [CR]

Figure 8: Search directions at the first iteration of a FWI process applied to
dataset #1. To produce panel a) all components of the data (reflections and div-
ing waves) are backprojected into the model. To produce panels b) and c) reflections
(b) and diving wave (c) are separately backprojected into the model. [CR]

Figure 9: Wavenumber spectra computed from the images shown in Figure 8 and
corresponding to a) reflections and diving waves, b) reflections, and c) diving waves.
[CR]
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in Figures 3 and 4. The characteristic eye-glasses that correspond to the light-blue
circles in Figure 4 are clearly visible in Figure 8a as areas of amplitudes close to
zero. As graphically illustrated by Figure 6, because the sources were wideband these
circles are stretched horizontally and their borders are fuzzy.

For dataset #1 the velocity perturbations are very small; therefore, we expect
the images shown in Figure 8 are good approximations of the true perturbations
within the respective wavenumber regions. Figures 10a and 10b compare the band-
passed true perturbations to the imaged reflections, respectively. To facilitate the
comparison Figure 10b shows the same image as shown in Figure 8b. To generate
Figure 10a we applied a mask in the wavenumber domain that was designed to at-
tenuate all the wavenumbers except within the region where we would expect the
reflected events to be imaged. We can notice that wherever the random perturba-
tions align to create semi-coherent events, these events are consistent between the two
displays. Because velocity increases with depth the wavelengths increase with depth
in the image (Figure 10b). Furthermore, because of the limitations of a surface-bound
acquisition geometry, the angular bandwidth drastically decreases with depth in the
actual image (Figure 10b).

Figure 10c shows the wavenumber spectrum of the image shown in Figure 10a and
has similarities with Figure 9b. The lower amplitudes at high horizontal wavenumbers
in Figure 9b with respect to Figure 10c are caused by the loss of angular bandwidth
with depth.

Similarly to Figure 10, Figure 11 compares bandpassed true perturbations to
the imaged diving waves, respectively. In the shallow section there is an approxi-
mate correspondence between the imaged velocity anomalies and the true bandpassed
perturbations. Figure 11c shows the wavenumber spectrum of the image shown in
Figure 11a. As for the previous Figure, to facilitate the comparison between the
bandpassed true perturbations and the estimated image, Figure 11b shows the same
image as shown in Figure 8c.

Second-iteration FWI images

From the analysis presented in the previous section, we would expect that at the
second iteration of a FWI procedure the reflection-tomography component of the
gradient will fill some of the wavenumber-components missing from the images after
the first iteration. Figure 12 shows the effects of the reflection-tomography component
when FWI is applied to dataset #2. Figure 12b shows the search direction of the
second iteration of FWI after applying a lowpass filter in the wavenumber domain
to remove the most of the reflection components from the image. This image was
generated by back-projecting the residuals after applying a linear mute to remove
the diving-waves arrivals. We applied the same mute that we applied to the first-
iteration residuals to generate the reflection image shown in Figure 8b. The muting
of the residuals and the lowpass of the image were applied to isolate the reflection-
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Figure 10: Bandpassed true perturbations (panel a) compared to the imaged reflec-
tions (panel b). Wherever the random perturbations align to create semi-coherent
events, these events are consistent between the two images. Panel c) shows the
wavenumber spectrum of panel a). [CR]

Figure 11: Bandpassed true perturbations (panel a) compared to the imaged diving
waves (panel b). In the shallow section there is an approximate correspondence
between the imaged velocity anomalies and the true bandpassed perturbations. Panel
c) shows the wavenumber spectrum of panel a). [CR]
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tomography contributions as much as possible. These contributions tend to have lower
amplitudes and would be easily missed if not isolated from the stronger contributions
of the reflections and diving waves.

Figure 12a shows the true perturbations after applying the same lowpass filter
applied to the second-iteration search direction. Comparing Figure 12a with Fig-
ure 12b we can match several narrow velocity anomalies. These anomalies are better
resolved in the reflection-tomography image than in the corresponding diving-waves
image obtained at the first iteration of FWI applied to dataset #1 (Figure 12c.)
This increase in lateral resolution is reflected in the wavenumber spectrum of the
reflection-tomography image that is shown in Figure 13a. The spectra corresponding
to the reflections and diving-waves images obtained after the first iteration are shown
again in Figure 13b and 13c. This example shows that the contribution of reflection
tomography is complementary to the one of diving waves and reflections. However, it
also shows that a smaller region of the wavenumber plane is illuminated by the reflec-
tion tomography component than we would have expected from the graphic analysis
presented in the previous section.

Figure 14 compares the lowpassed second-iteration search directions obtained for
datasets #1, #2, and #3. Multiple scattering caused by the random velocity per-
turbations causes a slow down of the recorded reflections and causes the reflection-
tomography component of the velocity updates at the second iteration to be biased
towards negative updates. Because the kinematic error is very small for dataset
#1 the image in Figure 14a is contaminated by reflections. In contrast, the stronger
multiple-scattering caused by the larger velocity perturbations in datasets #2 and #3
causes an overall slow down of the recorded reflections and thus it enhances the to-
mographic component. Figure 14c shows similar features as Figure 14b, but it is
more biased towards negative velocity updates because events are slowed down by
multiple-scattering more in dataset #3 than in dataset #2.

FWI images

When we perform many iterations of FWI on the whole data; that is, without sep-
arating reflections from diving waves as in the experiments shown above, all the
three components analyzed above (reflections, diving waves and reflection tomogra-
phy) simultaneously contribute to the inversion process. If the initial velocity error is
sufficiently small, the FWI process converges to an optimal model that approximates
the true model for all the wavenumbers that are illuminated by the data.

Figure 15 shows the results of applying FWI to all the data components (reflections
and diving waves) for dataset #1 after 10, 50, and 150 iterations of FWI using a BFGS
solver. Figure 16 shows the wavenumber spectra of the models shown in Figure 15.
The first 10 iterations solve for the shallow long-wavelength anomalies, mostly driven
by the diving waves in the data. Iterations between 10 and 50 reach to the deeper
part of the model and start to bring up the short wavelengths directly illuminated by
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Figure 12: Bandpassed true perturbations (panel a) compared to the ”reflection to-
mography” contributions to the second search direction of a FWI process (panel b).
Panel c) shows the shallow part of the image obtained from the first iteration of FWI
applied to diving waves in dataset #1. (Figure 11b.) [CR]

Figure 13: Wavenumber spectra computed from the images shown in: a) Figure 12b,
b) Figure 8b, and c) Figure 8c. [CR]

Figure 14: Figure 14 compares the lowpassed second-iteration search directions ob-
tained by applying FWI to datasets #1, #2, and #3. Notice the increasing (left to
right) bias towards negative updates related to the slow down caused by increasing
multiple scattering in the data. [CR]
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the reflections. The last 100 iterations equalize the amplitudes of the model in depth
and across the wavenumbers by resolving some of the intermediate wavelengths at
deeper depths.

The spectral holes with the shape of eyeglasses are squeezed by the the later FWI
iterations compared to the first ones. However, they are persistent indicating that
there are some wavelengths of the model that cannot be resolved from the surface
data even in presence of low frequencies, large offsets, and a vertical velocity gradient.
Figure 17 shows windows around the origin of the spectra shown in Figure 16. It shows
that the FWI process has not resolved model components with vertical wavelengths
longer than 400 m and horizontal wavelengths between 150 m and 600 m.

DISCUSSIONS AND FUTURE WORK

The graphic analysis of the wavenumber illumination by reflections, diving waves,
and reflection tomography shows that FWI has the potential to image all scales
of the velocity model, if cycle-skipping does not occur. However, the synthetic-data
examples shows that there is a region of the wavenumber plane that is not illuminated
by the data. The most likely culprit for this limitation is that reflection tomography
does not resolve all the wavenumbers that the graphic analysis we presented would
indicate. A more complete theory that formally explains double-scattered events
should be developed to quantitatively analyze the illumination provide by reflection
tomography and help develop methods to overcome this limitations.
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Figure 15: Velocity models obtained by FWI applied to dataset #1 after: a) 10
iterations, b) 50 iterations, and c) 150 iterations. [CR]

Figure 16: Wavenumber spectra of the velocity models obtained by FWI applied to
dataset #1 after: a) 10 iterations, b) 50 iterations, and c) 150 iterations. [CR]

Figure 17: Windows of the wavenumber spectra shown in Figure 16 that focuses on
the area of the wavenumber plane that are least resolved by the FWI process. [CR]


