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ABSTRACT

Wave-Equation Migration Velocity Analysis is one of the fundamental processes
for performing Linearized Waveform Inversion with Velocity Updating, and also
the most computationally intense. We recently proposed the implementation
of the former by means of employing Random Boundary Conditions for storage
alleviation, at the cost of performing extra wavefield propagations. We show
the result of this implementation. However, the scattered source wavefield and
the scattered receiver wavefield depend on the direction of propagation of the
corresponding wavefields that originate them. Therefore, the source wavefield
must propagate forward in time when scattering. Likewise, the receiver wavefield
must propagate backward in time when scattering. This restriction leads to the
fact that we require twelve propagations per iteration plus one, instead of the
eight iterations plus one that we had initially expected. Additionally, Random
Boundary Conditions can introduce random noise that could potentially harm
the inversion result if they are not properly implemented.

INTRODUCTION

Some colleagues and I recently proposed Linearized Waveform Inversion with Veloc-
ity Updating (LWIVU) (Cabrales-Vargas et al., 2016a,b, 2017) as a new inversion
technique aimed at improving the subsurface reflectivity, which allows the subsurface
velocity model to vary. Such variability is not intended to correct reflector position-
ing, but to improve amplitudes affected by the accumulated effect of inaccuracies in
velocity or slowness, therefore yielding more confindence in the estimation of the sub-
surface reflectivity. Cabrales-Vargas et al. (2017) discuss some aspects of the LWIVU
processing components, such as the Gauss-Newton Hessian construction by means
of point-spread functions. Gauss-Newton Hessian can be precomputed, stored, and
applied “on the fly,” interpolating as needed. On the contrary, Wave-Equation Mi-
gration Velocity Analysis (WEMVA) (Biondi and Sava, 1999; Biondi, 2006) has to
be performed twice at each iteration during the inversion. Cabrales-Vargas et al.
(2017) propose the use of Random Boundary Conditions (RBC) (Clapp, 2009) in
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WEMVA to prevent saving wavefields in disk and the corresponding 1/0O access. In
Reverse-Time Migration (RTM), the price of using such RBC is an extra propagation
of the source wavefield. On the same grounds, the estimated number of wavefield
propagations within LWIVU was four for each WEMVA step (Cabrales-Vargas et al.,
2016a,b, 2017).

However, I have found that a single application of WEMVA demands seven prop-
agations when implemented with RBC, not five (counting an initial propagation of
the source wavefield). It signifies twelve propagations per LWIVU iteration instead
of eight (WEMVA is performed twice per iteration.) In the first section of this re-
port I discuss the reason for the additional propagations. Next, I implement the
WEMVA operator in a simple two-layer model to verify the effects of the RBC, and
an alternative implementation using Energy Imaging Conditions (EIC) (Rocha et al.,
2016).

WAVE-EQUATION MIGRATION VELOCITY ANALYSIS
WITH RANDOM BOUNDARY CONDITIONS

The WEMVA process represents a linear operator that maps perturbations in the
slowness squared field into perturbations in the migrated image. If the process is
performed using zero subsurface offset, the WEMVA operator is self adjoint; thus,
the same operator retrieves a perturbation in slowness squared from a perturbation
in the image.

The WEMVA process can be split into the following steps:

e Forward propagation of the source wavefield in background slowness field
e Backward propagation of the receiver wavefield in background slowness field

e Scattering of the source wavefield upon the perturbation in the image or in the
background model

e Scattering of the receiver wavefield upon the perturbation in the image or in
the background model

e Zero-lag time cross-correlation of the source wavefield and scattered receiver
wavefield

e Zero-lag time cross-correlation of the receiver wavefield and scattered source
wavefield

Let us assume that we can store disk the propagated wavefields. We can execute the
WEMVA process as shown in Algoritm 1. This procedure demands four propagations
(indicated in italics): two propagations in the background model, and two propaga-
tions after scattering. Notice that only the source and the receiver wavefields need to
be stored, not the scattered wavefields.
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Algorithm 1 WEMVA implementation saving both source and receiver wavefields

e Forward propagate the source wavefield and store; then, scatter upon perturba-
tion and forward propagate the scattered source wavefield.

e Backward propagate the receiver wavefield and store; then, scatter upon pertur-
bation and backward propagate the scattered receiver wavefield.

e Perform cross-correlations.

Now let us assume that we can only store one wavefield. We begin with the source
wavefield for simplicity. In this case we can proceed as indicated in Algorithm 2.
Notice that now we need to perform two extra propagations compared to the previous

Algorithm 2 WEMVA implementation storing one wavefield at a time

e Forward propagate the source wavefield and store it.

e Backward propagate the receiver wavefield and scatter upon perturbation; then,
backward propagate the scattered receiver wavefield “on the fly.”

e (rosscorrelate the scattered receiver wavefield with the stored source wavefield
as the former is propagated.

e Delete the source wavefield.
e Backward propagate the receiver wavefield and store it.

e Forward propagate the source wavefield and scatter upon perturbation; then,
forward propagate the scattered source wavefield “on the fly.”

e (Crosscorrelate the scattered source wavefield with the stored receiver wavefield
as the former is propagated.

case. This is the price the we must pay for preventing the storage of more than one
wavefield at a time.

We can go further and prevent the storage of the propagated wavefields whatsoever
using RBC to ensure the reversibility of propagations, similar to the RTM case (Clapp,
2009). In such a case, we proceed as indicated in Algorithm 3. Notice that by using
RBC we have to pay the price of performing an extra propagation with respect to
storing one wavefield, or three with respect to storing both wavefields. This is the
implementation that I will employ for the WEMVA step in LWIVU. In the last
reports (Cabrales-Vargas et al., 2016a,b, 2017) we had estimated fewer propagations
because we had assumed that propagation of the scattered wavefields was independent
of the time direction. In other words, we (incorrectly) reasoned as indicated in
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Algorithm 3 WEMVA implementation storing none of the wavefields (using RBC)

e Forward propagate the source wavefield; then save the last two time frames.

e Backward propagate the receiver wavefield and scatter upon perturbation; then,
backward propagate the scattered receiver wavefield “on the fly.”

e At the same time, backward repropagate the source wavefield and cross-correlate
with the scattered receiver wavefield. Save the last two frames of the receiver
wavefield.

e Forward propagate the source wavefield and scatter upon perturbation; then,
forward propagate the scattered source wavefield “on the fly.”

o At the same time, forward re-propagate the receiver wavefield and cross-correlate
with the scattered source wavefield.

Algorithm 4.

Algorithm 4 Wrong implementation

e Forward propagate the source wavefield; then, save the last two time frames.

e Backward propagate the receiver wavefield and scatter upon perturbation; then,
backward propagate the scattered receiver wavefield “on the fly.”

e At the same time, backward repropagate the source wavefield and scatter upon
perturbation; then, backward propagate the scattered source wavefield. Cross-
correlate corresponding wavefields as they are propagated backwards in time.

In summary, considering that the LWIVU process demands two WEMVA imple-
mentations (one for the gradient in model space and the other for its projection onto
the data space), we obtain the following number of propagations for each case:

e Storing both wavefields: Two propagations per iteration + two initial propaga-
tions of the source and the receiver wavefields.

e Storing one wavefield: Eight propagations per iteration + one initial propaga-
tion of the source wavefield.

e Storing none of the wavefields (using RBC): Twelve propagations per iteration
+ one initial propagation of the source wavefield.

The significant increase in the number of wavefield propagations when avoiding
their storage is because storing prevents their recomputation throughout the process.
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Only the scattered wavefields are recomputed because the perturbations change as
iterations progress. On the contrary, storing none of the wavefields demands recom-
putation of all wavefields as needed.

SYNTHETIC EXAMPLES

In this section I show the application of the WEMVA operator and the adjoint using
a simple two-layer model with a Gaussian positive-velocity anomaly (Figure 1). I
first isolate the anomaly to obtain the corresponding perturbation in background
slowness squared (Figure 2), which is negative. Then, I apply forward WEMVA and
obtain the corresponding perturbation in the image (Figure 3). Notice the presence
of the low-wavenumber tomographic component, as well as the virtual absence of
random artifacts which can potentially be produced by the RBC. Next, I apply adjoint
WEMVA to the perturbation in the image for recovering an approximation to the
original perturbation in the background (Figure 4). The perturbation in the image
maps back into a shape that resembles the original Gaussian anomaly, although the
amplitude is wrong because an inversion process is needed for recovering the original
amplitudes. Notice that the aforementioned tomographic component maps onto a
reflector resembling the perturbation in the image, which amplitude obscures the
approximated anomaly. These results are similar to those obtained with tapering
boundary conditions (Cabrales-Vargas et al., 2016b), although I have not yet set
forth an inversion in the present case.
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I repeat the experiment replacing the cross-correlation imaging conditions (CIC)
(Claerbout, 1992) with EIC. Figure 5 shows that the tomographic component has
been attenuated in forward WEMVA. Likewise, after applying adjoint WEMVA with
EIC the unwanted reflector was virtually removed (Figure 6), although some mild
random artifacts can be seen now that the reflector’s amplitude no longer obscures the
estimated anomaly. This separation of tomographic and reflectivity components can
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potentially help in producing more reliable results during the inversion. Nonetheless,
my implementation of WEMVA using EIC has not passed the dot-product test yet.
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CONCLUSIONS

I rectified the number of propagations by iteration that LWIVU requires when the
WEMVA step is performed with RBC. The restriction of time directionality during
the computation of the scattered wavefields makes the number of propagations rise
to seven for a single application of WEMVA, and twelve per iteration plus one within
LWIVU, where two WEMVA applications are required.

Using RBC does not introduce significant random artifacts to the WEMVA re-
sults. The incorporation of EIC attenuates both the tomographic component in the
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perturbation in the image and the reflectivity component in the perturbation in the
background model. I still have to revisit this variation to verify whether it passes the
dot-product test.
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