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ABSTRACT

Level sets are subsets of a domain that have the same value for a certain function.
We can use them as a tool to update discrete boundaries of homogeneous bodies,
which makes them particularly useful for updating salt models. Often, salt takes
complicated geometries which causes a lack of direct illumination, as well as
interactions between boundaries. Deriving a formulation of the Hessian which
takes into account the level set parametrization should allow for better search
directions than simpler methods. We find that by linearizing the velocity model
perturbation with respect to the underlying background and level set parameters,
we can derive a Hessian application operator suitable for a linear inversion scheme
to get an improved search direction for updating the salt boundaries.

INTRODUCTION

Full Waveform Inversion (FWI) is generally used to update a continuous earth param-
eter like density or acoustic velocity. However, we often do not have enough frequency
information to resolve features that have sharp boundaries, which is generally true
for salt bodies in the Eastern Gulf of Mexico and other areas. It has been shown in
previous work (see Santosa (1996), Lewis et al. (2012) and Burger (2003)) that level
sets can provide a way to update these types of sharp boundaries.

However, this tool is meant to assist in our ability to invert for the entire earth
model, which includes regions best approximated by continuous rather than discrete
updates. This presents a problem of making updates to two domains; both an implicit
surface that represents the sharp boundary, as well as the continuous background
velocity field (as we do in traditional FWI). Previous work has demonstrated inversion
schemes that update these domains sequentially Guo and de Hoop (2013), and also
concurrently Dahlke et al. (2015) by finding global scaling variables for each gradient
using line search methods. Both of these methods, while relatively inexpensive, are
susceptible to local minima, and are ultimately first order updates that do not account
for the interaction between model points, or the effects of acquisition.

By deriving a Hessian on a new model space that contains both level set (salt)
and background (non-salt) parameters, we can better address the interaction between
the salt and non-salt components of the model, and ultimately find a better update
to these parameters.
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We address this by first outlining the theory behind a model parametrization
that contains both domains. Next we derive an application of the Hessian to this
model. Afterwards, we describe the numerical application of this operator in an
inversion scheme. Last we show numerical results of using this Hessian operator in
our inversion scheme, and compare against results from more simplistic approaches.

DERIVATION

The first step of this derivation is to describe the model space that we are working
with. We will call our velocity model m which we define as:

m(φ, b) = H(φ)(csalt − b) + b (1)

where H(◦) is the Heaviside function, φ is the implicit surface, b is the background
velocity model, and csalt is the acoustic velocity of the salt. The dimensions of m, φ,
and b are all NXxNZ since they exist over the same spatial domain (2D in this case).
This means that the implicit surface is greater than zero in the salt body region, and
less than zero outside of it. We generalize these parameters for the entire spatial
domain (ignoring i, j), and expand this definition with a Taylor series as:

m1 = m0 +
∂m

∂φ

∣∣∣
m0

4φ+
∂m

∂b

∣∣∣
m0

4b+ ....

By truncating this series and ignoring higher order terms, we can create a linear
approximation for the perturbation of the velocity model m with respect to φ and b:

m1 −m0 = 4m ≈ ∂m(φo, bo)

∂φ
4φ+

∂m(φo, bo)

∂b
4b. (2)

This can be written as a matrix operation:

4m ≈
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

] [4φ
4b

]
.

When we define 4p as

4p =

[
4φ
4b

]
,

this gives us:

4m ≈
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

]
4p.
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Where we define operator D as:

D =
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

]
=
[
δ(φ)(cs − b) 1−H(φ).

]
(3)

This operator D ultimately scales and masks the parameter fields 4φ and 4b.
With this new approximation of the perturbation in our velocity model, the applica-
tion of our Born operator (B) to our new model parameter space 4p = [4φ 4b]T
is:

4d = B4m
4d ≈ BD4p.

Alternatively, we can find the gradient for our model parameters by applying the
adjoint operations:

4p ≈ DTBT4d.

Similarly we can find the application of the Hessian of the FWI objective function as:

DTHD4p ≈ −DTBT4d. (4)

In equation 4, we can substitute H with either the full or Gauss Newton Hessian.
Previous work by Fichtner (2010) shows that the full Hessian of the FWI objective
function can be constructed by summing a WEMVA component with the Gauss-
Newton component of the Hessian. It is this formulation of the full Hessian application
that we use. The method I propose is to solve equation 4 for 4p using a conjugate
gradient inversion method.

Previous work (Dahlke et al. (2016)) showed a similar technique, with the transfor-
mation to 4p being done after an inversion for the 4m search direction is completed
(without the “constraint” of projection operator D). This means instead of solving
4, we solve:

H4m = −BT4d, (5)

followed by:

4p = DT4m. (6)

The method using equations 5 and 6 will be referred to as unconstrained inversion,
while the proposed method (the solution of equation 4) is constrained by D. We
compare the two methods later in this paper.
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NUMERICAL APPLICATION

Inside the D operator we have both a Heaviside function H(·) as well as a Dirac-
delta function δ(·). While computing the application of the Heaviside function on our
implicit surface φ is relatively simple for a discrete case (masking with a threshold),
the same cannot be said for the application of δ(·) to our numerical problem. Most of
our boundary is not explicitly represented as points where φ = 0, but simply by the
adjacency of positive and negative φ values. For this reason, we relax the definition of
our operator to use an approximation of the Dirac-delta function. Previous derivations
using calculus of variations (Santosa (1996), Dahlke et al. (2015)) have demonstrated
that we can reduce our FWI objective function using an update for φ defined as:

4φ = |∇φ|(csalt − b)BT4d. (7)

This is similar to the update we’ve derived using the linearization of the Taylor series
expansion:

4φ = δ(φ)(csalt − b)BT4d. (8)

For this reason, we substitute |∇φ| for δ(φ), as it suffices as an approximation of
the Dirac-delta function when we keep the implicit surface slope regularized as we
update it. In our case, this means using a double-well potential function fomulation
of Distance Regularized Level Set Evolution (DRLSE) as described in Li et al. (2010).
This step provides a forcing term to help keep the slopes of the implicit surface at
either zero or one. When that is maintained, the only place where |∇φ| > 0 is
immediately surrounding the boundary. Using this substitution, the D operator we
apply is:

D =
[
|∇φ|(csalt − b) .1−H(φ)

]
(9)

RESULTS

To test the effectiveness of this linearization, I pose the following question: can I
get a first-step update using this new method that is better than other methods?
To answer this, I choose to find search directions using the proposed method as well
as two other approaches, and then use a line search to find the step-length α for
each search direction. These three search directions methods are steepest-descent,
unconstrained inversion, and the proposed constrained inversion. I then do a model
update and compare the model space residual to see which update performed better.

The first of the two comparison methods is simply steepest descent, where the
search direction is my gradient: 4p = DTBT4d. The second method is a little more
subtle. With the second method, I use the application of the full Hessian as described
in Fichtner (2010) and invert for 4m, followed by the application of D as described
in equations 5 and 6.
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To perform the inversion for the search direction in either case, we made use of
the out-of-core solver developed by Biondi and Barnier (2017). We implemented a
conjugate-gradient (CG) approach to take advantange of the symmetry of the Hes-
sian operator (as opposed to conjugate gradient least-squares (CGLS), which doesn’t
require a symmetric operator). By using this method we were able to invert at the
cost of one forward operation per iteration rather than both the forward and adjoint
operations required by CGLS. One further requirement of using CG is that the oper-
ator must be positive definite, while for CGLS it need not be. For the Gauss-Newton
Hessian we can use either safely, but with the full Hessian, we risk a failure in our
inversion, depending on the velocity model that we are using. For the models we
use in this paper, we found the CG inversion to be stable, so it was used instead of
CGLS since it performs at half the cost. When CG is used, the objective function
value will not necessarily converge to zero since it isn’t a least squares formulation
like CGLS (see Aster et al. (2011) for more). For all cases shown, we start at an
objective function value of zero since we begin the inversion with a zero initial model.

We perform this comparison on two different velocity model examples. Both
examples have the same true model, but have different initial model states (see Figure
1). In case one, the base of the circular salt is perturbed downwards. In case two,
the top of the bottom reflector salt is perturbed upwards.

Figure 1: True model (left); the difference between the true and inital model for case
one (middle); the difference between the true and inital model for case two (right).
[ER]
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(a) (b)

Figure 2: Adjoint Born images for (a) perturbed salt base case; (b) perturbed bottom
reflector case; no clipping of amplitudes. [CR]

Figure 3: CASE 1: Search directions for the φ update resulting from Steepest descent
approach (left), unconstrained Hessian inversion (middle), and proposed Hessian in-
version scheme (right). [CR]
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Figure 4: CASE 1: Difference between true model and velocity model applying first
update to φ using a line search method to find step size α. (Left) based on steepest
descent, (middle) based on unconstrained Hessian inversion, (right) based on proposed
Hessian inversion incorporating projection operator D as a constraint. [CR]
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Figure 5: CASE 1: Objective function decrease for the three search direction inver-
sions; unconstrained search direction inversion with no D operator (blue), Proposed
method (red), and proposed method with scaling term equal to one (green). [CR]

Table 1: Case one: Perturbed base of salt

Update method Model residual norm
Steepest descent 8.617
Hessian inversion (unconstrained) 16.658
Hessian inversion (proposed) 1.863

For the first case, we find a significant improvement by using the proposed method
when compared to the other two methods. We can see from the search directions that
the new Hessian inversion result (Figure 3, right) has a more correct focusing of energy
on the base of salt rather than on the bottom reflector as with the other two methods
(Figure 3 left, middle). This leads to a better update when we perform a line search
on these search directions (Figure 4). When we difference the updated model with the
true model and take the L2 norm of the residual, we see that the proposed method
has an improved update when compared to either of the other approaches (Table 1).

One further question that we have is the effect of either the masking or scaling
components inside the D operator. Which of these makes the most difference? In
both cases, we have an unperturbed background velocity model where the scaling
term inside D varies spatially (note the horizontal gradient in Figure 1, left), so the
scaling term (csalt − b) inside D is non-trivial. To test this, we perform our proposed
method as before, with the exception of the scaling term being equal to one across
the whole spatial domain, eliminating its effect. We find that the search direction
that results from the inversion is similar to the result from the originally proposed
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definition of D (Figure 6) in terms of amplitude distribution. This similarity is also
reflected in the objective function descent (Figure 5), where the two curves are nearly
identical. We do find that the lack of the scaling term increases the magnitude of 4φ
in the correct direction by about 16% in the same areas that the original approach
tries to update. This improved search direction found by ignoring the scaling requires
further investigation.

Figure 6: Search direction of proposed method (left), and proposed method without
scaling component (middle). Percent difference between (left) and (middle) search
directions (right). [CR]

For the second case with the perturbed bottom reflector, we find that we still
have an improved result, but slightly less obvious. When we compare the objective
function decrease for the two inversion approaches (Figure 9), we can see that these
curves are far more similar than in the case one example (Figure 5). The steepest
descent result (Figure 7, left) correctly has most of its energy on the bottom reflector
rather than on the circular salt as the other two inversion methods do. However, the
inverison methods both correctly update a larger portion of the perturbation, with
the proposed method doing so with slightly less energy incorrectly applied to the
circular salt above. This leads us to get an improved update after line search (Figure
8). Looking at the model residual norm again, we find that the proposed method
again performs better, in this case with less of a margin than before (see Table 2).
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Figure 7: CASE 2: Search directions resulting from steepest descent approach based
on gradient (left), from unconstrained Hessian inversion (middle) , and from proposed
Hessian inversion scheme (right). [CR]

Table 2: Case two: Perturbed bottom reflector

Update method Model residual norm
Steepest descent 172.683
Hessian inversion (unconstrained) 144.088
Hessian inversion (proposed) 135.161
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Figure 8: CASE 2: Difference between true model and velocity model for perturbed
bottom reflector case after applying first update to φ using a line search method to
find step size α. (Left) based on steepest descent, (middle) based on unconstrained
Hessian inversion, (right) based on new Hessian inversion incorporating D operator
directly. [CR]
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Figure 9: CASE 2: Objective function decrease for the two search direction inversions;
Unconstrained search direction inversion (blue) and proposed method (red) using D
operator. [CR]

CONCLUSIONS

The results of the two simple model cases show that we are able to get an improved
search direction for the salt body boundary movement when we invert for our new
model parameter updates 4p using the new linearized derivative operator D defined
earlier. We also show that the while the masking component seems to make the most
significant difference when compared to the other two methods, there remains more
to be learned about the significance of the scaling component of the D operator.
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