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ABSTRACT

Near-surface imaging with ambient noise has grown into an increasingly common
tool over the past decade thanks to the virtual source method. However, if
non-ideal noise sources are present, experts must manually analyze the noise to
look for any issues they suspect, then design filters to remove these non-ideal
noises. Up until now, the deployment and maintenance of the receiver array
was the primary cost, but this is changing with advancements in Distributed
Acoustic Sensing (DAS), an emerging technology that repurposes a fiber optic
cable as a series of strain sensors. On the Stanford campus we have shown that
we can record seismic waves with fiber optic cables sitting loosely in existing
telecommunications conduits. As we look forward at the possibility of easily
plugging into unused fibers in telecom bundles on-demand, it is clear that manual
selection of non-ideal noise sources is the next bottleneck. Herein we show a
variety of methods, mixing traditional signal processing and machine learning, to
automatically assist geophysicists in analyzing the ambient noise recorded and
selecting non-ideal noises. We demonstrate that we can identify different types
of noise using clustering algorithms and that template matching can be used for
detecting specific events.

INTRODUCTION

By measuring the speed of seismic waves propagating in the Earth’s near-surface, we
can image the top tens to hundreds of meters of the subsurface, with deeper features
being resolved by lower frequencies. These seismic velocity images can be interpreted
to evaluate earthquake or landslide risk, to detect permafrost, to find sinkholes or
tunnels, or to track near-surface changes related to drilling activities. Additionally,
in cases of complex near-surface conditions, resolving this complexity is a prerequisite
to obtaining a high-quality image of the deeper subsurface.

By cross-correlating noise recorded at a selected receiver with noise recorded by all
other receivers in an array, we can extract signals mimicking an active seismic survey
with a source at the selected receiver, called its virtual source response function
(Lobkis and Weaver, 2001; Lin et al., 2008; Wapenaar et al., 2010a,b). Thus, when
active sources are too costly or logistically prohibitive, passive seismic can be a good
option for near-surface imaging. However, the theory is limited by the assumption
of homogeneous uncorrelated sources (Wapenaar et al., 2010a). Non-ideal sources
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can cause artifacts in extracted velocities, but with careful processing experts can
overcome these limitations (Bensen et al., 2007; Daskalakis et al., 2016; Zhan et al.,
2013), even for anthropogenic sources occurring at higher frequencies (Girard and
Shragge, 2016; Martin* et al., 2015; Martin et al., 2016; Nakata et al., 2011, 2015;
Zeng et al., 2016). Acquisition cost is a further issue: nearly all of the past ambient
noise studies on dense arrays have been temporary arrays which were labor-intensive
to install and maintain (Lin et al., 2008; Nakata et al., 2011, 2015; Zeng et al., 2016).

Distributed acoustic sensing (DAS) is a new acquisition technology being increas-
ingly adopted in the energy industry for microseismic monitoring (Webster et al.,
2013) and time-lapse seismic surveys (Daley et al., 2013; Daley* et al., 2014; Mateeva
et al., 2014; Bakku, 2015). DAS probes a fiber-optic cable with a laser interrogator
unit (IU) to repurpose that fiber as a series of strain sensors. Motivated by avoiding
the maintenance cost of node arrays, there have been several recent ambient noise ex-
periments using fiber optics buried in shallow trenches directly coupled to the ground
(Ajo-Franklin* et al., 2015; Martin* et al., 2015; Martin et al., 2016; Zeng et al.,
2016). In fact, we can sacrifice some ground-to-sensor coupling in favor of easier in-
stallation by running fibers in existing telecommunications conduits (Martin et al.,
2017). By running fibers in existing conduits, or even plugging into unused fibers
in existing telecommunications bundles, easy, on-demand, repeatable seismic studies
(even in urban areas) will soon be a reality.

With ambient noise data becoming increasingly easy to record, data volumes are
increasing, and we can only extract their full value if we further automate the process-
ing workflow. Herein we introduce some tools and metrics, mixing traditional signal
processing and machine learning, to automatically assist geophysicists in analyzing
the ambient noise recorded and selecting non-ideal noises.

We present this methodology in the context of a case study: a figure-eight-shaped
array of 2.4 km of fiber optics lying loosely in existing telecommunications conduits
underneath the Stanford University campus. This particular experiment is ideal be-
cause it demonstrates the wide variety of issues coming up on the horizon as we push
for broader use of ambient noise. The array detects a wide variety of seismic noise
sources that do not conform to the ideals of existing ambient noise theory: it sits in a
seismically active region, 20 km from the Pacific ocean, 7 km from the San Francisco
bay, with major highways on either side, a variety of roads with differing levels of traf-
fic near the fiber, regular quarry blasts within 15 km, plumbing and HVAC systems
throughout the site, multiple construction sites near the array, and foot and bicy-
cle traffic throughout. With over 600 sensors continuously recording 50 samples per
second since September 2016, manual inspection of most data is infeasible, making
automation tools critical to extracting subsurface information from the data.

After providing a brief overview of the recorded data and the pre-processing steps,
we present how unsupervised learning algorithms can help us identify the main types
of seismic noise present in the data. We then focus on the high amplitude noise and
use template matching to detect specific events.
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THE STANFORD DAS ARRAY

The fiber optic cable is deployed in Stanford’s telecommunication tunnels in a double
loop pattern (Figure 1). Every 8 meters of cable acts as a receiver and records vibra-
tion at a sampling rate of 50 Hz, creating a data matrix of 600 channels distributed in
space. As a result, we obtain neighboring time series which conveniently lend them-
selves to image processing (Figure 2). As the fiber optic cable is sitting loosely in
existing telecommunications conduits, it is very poorly coupled with the ground. We
balance the amplitudes by bandpass filtering (0.5 and 20 Hz) followed by automatic
gain control (AGC). As a result, more weight is given to less noisy channels and we
obtain balanced amplitudes across the whole array (Figure 2c).

Figure 1: The fiber optic cable (red line) is deployed under Stanford campus in the
telecommunication infrastructure tunnels. It forms a North-East and a South-West
loop. [NR]

AUTOMATICALLY IDENTIFYING DIFFERENT TYPES
OF SEISMIC NOISE

Statistical learning has become a highly explored field in many scientific areas as
well as marketing, finance, and other business disciplines. In recent years, new and
improved software packages have significantly eased the implementation burden for
many statistical learning methods, providing scientists and practitioners with com-
plete toolkits for training, testing, and deploying models with well-documented ex-
amples for all these tasks (Abadi et al., 2016; Pedregosa et al., 2011; Collobert et al.,
2002; Jia et al., 2014; James et al., 2013). As a consequence, machine learning tech-
niques are increasingly adopted to improve accuracy and speed up processing for
seismic applications (Fisher et al., 2016; Yoon et al., 2015)

In order to identify the main types of noise in the DAS data, we performed unsu-
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(a) (b)

(c)

Figure 2: (a) 4 min of raw data (50 samples per second); (b) data after bandpass
filter between 0.5 and 20 Hz; (c) data after AGC with a sliding window of 40 seconds.
[ER]
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pervised learning on a week-long subset of the data, encompassing the daily variations
in the noise field. We applied continuous wavelet transforms (CWT) both along the
time axis and the spatial axis to extract features. The CWT is commonly used in
pattern recognition, as it has the ability to decompose complex patterns into elemen-
tary forms (Mallat, 1999; Sinha et al., 2005). CWT measures the similarity between
a signal and an analyzing wavelet by comparing the input signal to shifted and com-
pressed or stretched versions of the wavelet. For an input signal f , and a mother
wavelet ψ, the CWT can be expressed as follows:

C(a, b ; f(t), ψ(t)) =

∫ ∞
−∞

f(t)
1√
a
ψ∗
(
t− b
a

)
dt ,

where a is the scaling factor, b the time shift, and ∗ denotes the complex conjugate.

We used the Morlet wavelet as the analyzing function and subsequently took the
amplitude of the resulting complex numbers. For each sample we obtained 100 CWT
scale factors, half of them resulting from decomposing the data along the time axis,
the other half from decomposing along the spatial dimension. At this stage, we
subsampled the features by averaging the CWT scales over windows of 0.5 s, as any
seismic events that last less than 0.5 s would be hard to interpret physically. This
resulted in a data matrix of 100 features for over a million samples.

Common clustering methods for wavelet domain time series include K-means,
agglomerative clustering and self-organizing maps (Liao, 2005; Köhler et al., 2009).
Herein we use K-means for faster computation. Figure 4 presents the detected clusters
over time, projected over the array’s geometry at two different time stamps. We ran
the algorithm for different numbers of clusters and qualitatively settled for 4 clusters,
each capturing a different portion of the CWT scales, and therefore, easier to interpret.
A higher number of clusters merely yielded subdivisions of these 4 main clusters.
After examining each cluster’s CWT and frequency components, the 4 main types
of identified noise can be described as follows (Figure 4): Dark blue represents the
incoherent ambient noise field; Light green corresponds to laser noise, responsible for
disruptions with large spatial extent over the array; Cyan corresponds to traffic noise.
Note how the clustering algorithm captured moving sources such as cars without being
provided any information related to the geometry of the array; Orange indicates other
sources of coherent noise of medium amplitude, mostly localized on the North-West
part of the fiber optic array. These coherent noise sources could be linked to remote
traffic noise (from cars that are not running exactly above the fiber), or construction
noise (the area circled by the North-West loop is under construction).

While the exact sources of these main types of noise might be difficult to interpret,
these results have an important consequence for seismic processing. By automatically
detecting different types of coherent noise, we can selectively filter them out in CWT
space, and apply inverse CWT to map the data back to the time domain to obtain
ambient field data without non-ideal noise sources.

SEP–168



Huot et al. 6 Automatic noise exploration

(a) (b)

Figure 3: Continuous wavelet transform (CWT) scales obtained over the spatial di-
mension at two different time stamps. The colored rectangles highlight the different
types of seismic signature that were detected by the clusters. [CR]

(a) (b)

Figure 4: Clustering results projected over the array’s geometry at two different time
stamps. The time stamps correspond to those from Figure 3. Dark blue represents the
incoherent ambient noise field; Light green corresponds to laser noise, responsible for
disruptions with large spatial extent over the array; Cyan corresponds to traffic noise.
Note how the clustering algorithm captured moving sources such as cars without being
provided any information related to the geometry of the array; Orange indicates other
sources of coherent noise of medium amplitude, mostly localized on the North-West
part of the fiber optic array. These coherent noise sources could be linked to remote
traffic noise (from cars that are not running exactly above the fiber), or construction
noise (the area circled by the North-West loop is under construction). [CR]
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CLUSTERING OF HIGH-AMPLITUDE EVENTS

In this section, we narrow down our study to the high-amplitude events. We per-
formed event detection by computing an edge density map using the gradient (Pre-
witt’s operator) followed by convolution with a stencil of ones (200 samples long in
time and 20 channels wide in space). We arbitrarily chose a conservative threshold,
at the discretion of the interpreter, to select events that stand above the background
noise.

Having selected potential events, we computed dot products between all possible
pairs which gave us a measure of similarity used for clustering (Figure 5). We chose
hierarchical trees to obtain clusters with varying number of events (James et al.,
2013) (Figure 5). Although we assumed an input number of clusters between 10-
20, there would generally be only a couple of clusters which captured most of the
data variability. Figure 6 represents the four largest. Note visual consistency for
inter-cluster events manifesting in the slope and the distribution of energy.

(a) (b)

Figure 5: (a) Similarity matrix between pre-selected high-energy events; (b) events
from (a) sorted by a hierarchical clustering algorithm. Although we assumed an input
number of clusters between 10-20, a small number of clusters already captures most
of the data variability. [CR]

EVENT DETECTION USING TEMPLATE MATCHING

We then attempted to identify active sources automatically using template matching.
As it is not feasible to manually label all the data, we selectively hand-picked several
classes of templates: one class contained events along a road which is only open to
school buses, as shown in Figure 7 (a), (b) and (c); another class contained events near
a road crossing where the fiber optic cable changes direction, as shown in Figure 7
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(a) (b)

(c) (d)

Figure 6: Example 25 events corresponding to each of the four largest identified
clusters. Every subimage in this figure is 300 samples long in time (vertical axis) and
30 samples wide in space (horizontal axis). Note visual consistency for inter-cluster
events manifesting in the slope and the distribution of energy. [CR]
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(d), (e) and (f). The size of the templates is 100 seconds by 30 channels (240 m). We
performed template matching using normalized cross-correlation (Lewis, 1995). The
data is assigned to a particular class when the normalized cross-correlation with the
templates from that class exceeds a certain threshold (0.5 in this study).

The detected sources are shown in the blue rectangles in Figure 8. The official
schedule of the corresponding bus line is shown in the red rectangles. We see that
using only a limited number of templates, we can detect events that approximately
match the official bus schedule. The time discrepancy can be due to the bus not
running exactly on time. The detected events that do not correspond to the schedule
could be empty buses or delivery trucks.

(a) (b) (c)

(d) (e) (f)

Figure 7: Manually picked events corresponding to vehicles at various locations on
the Stanford University campus where only buses are allowed to circulate. [CR]

CONCLUSIONS

In this study we employed unsupervised and supervised learning techniques to charac-
terize seismic data recorded by a fiber optics array deployed underneath the Stanford
University campus. First, we borrowed conventional processing techniques from the
field of seismology and applied clustering algorithms to distinguish between different
types of noise, automatically separating noise generated by cars from incoherent back-
ground noise without requiring any information related to the geometry of the array.
Clustering performed on the high amplitude events showed us we could automatically
sort traffic noise depending on the car’s travel direction. Template matching allowed
us to detect active sources and compare them to the local bus schedule.
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(a) (b)

Figure 8: Blue rectangles indicate the times of the identified active sources, while red
rectangles correspond to the official timetable of the local bus line. We see that using
only a limited number of templates, we can detect events that approximately match
the official bus schedule. The time discrepancy can be due to the bus not running
exactly on time. The detected events that do not correspond to the schedule could
be empty buses or delivery trucks. [CR]
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