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ABSTRACT

We continue the mixed theoretical-computational study of the difference between
full Newton and Gauss-Newton approximation of the Hessian matrix in the con-
text of full waveform inversion (FWI) started in the SEP report 160. We also
continue to use an acoustic isotropic wave equation approximation during our dis-
cussion. We analyze the connection of the residual-dependent component of the
full Hessian with the physical double scattering described by the wave equation.
We explain how to avoid inversion instabilities of the full Newton Hessian when
this matrix is not positive definitive. With the help of a simple two-perturbation
model we study the advantages of full Newton compared to the Gauss-Newton
approximation.

INTRODUCTION

Improving convergence rate of any FWI method is fundamental given the high compu-
tational cost of the required propagations during the problem optimization (Virieux
and Operto, 2009). For this reason many authors have explored the use of the Hes-
sian matrix as a potential preconditioner to reach the problems’ optimal solution in
the least number of iterations (Pratt et al., 1998; Epanomeritakis et al., 2008; Tang,
2008; Korta et al., 2013; Deuzeman and Plessix, 2015). Therefore, it is critical to un-
derstand the connection of each component of this matrix with the physical behavior
of any wave equation to find new approximations to be used to precondition FWI
optimization.

Newton-like algorithms for non-linear optimization are employed to account for
the local curvature of the objective function such that the inverted models present
a comparable resolution (i.e., the ability to retrieve a given parameter during the
inversion) between model parameters. The differential parameter resolution in the
context of multi-parameter FWI is know as inversion crosstalk or trade-off (Operto
et al., 2013). Therefore, it is critical to develop an optimal inversion method that
utilizes Hessian matrix information.
A detailed computational review of Hessian-based preconditioned FWI has been pre-
sented by Métivier et al. (2013). In their work the authors describe different algo-
rithms to perform truncated Newton optimization steps. In their synthetic acoustic
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constant-density Marmousi test they find that truncated Gauss-Newton performs
better than full Newton approximation. They attribute this difference to slower con-
vergence rate of full Newton matrix during its linear inversion. On the other hand,
when applying truncated full Newton to a simpler near-surface FWI problem, the
inverted model presents higher spatial resolution when compare to truncated Gauss-
Newton using the same number of iterations when inverting the Hessian matrix. From
this study, it is therefore unclear whether full Newton has any advantage compare
to Gauss-Newton in the case of seismic exploration data inversion. In this report we
continue the study shown in Biondi et al. (2015), and review the connection of the
full Hessian with the double-scattering mechanism present in any wave equation. We
also compare least-square full Newton and Gauss-Newton Hessian matrix inversions
for a simple two-perturbation model.

BRIEF ANALYSIS OF THE FWI HESSIAN MATRIX

We start our analysis by defining the classical amplitude-matching FWI objective
function as follows:

φ(m) =
1

2
‖f(m)− d‖22 =

1

2
‖r(m)‖22, (1)

where m represents the model parameters such as wave-propagation velocities, atten-
uation, or density, f(m) is the wave-equation modeling operator, and d is the observed
data. The difference between the latter two is represented by the data residual vector
r(m). It is known that we can decompose our observed data into an infinite scatter-
ing series (Weglein et al., 2003). This representation of the data provides an intuitive
way to look at the non-linearity present in a typical FWI problem. To do so we can
expand the data vector as follows:

d = f(m0) +
∂f(m0)

∂m
∆m +

1

2
∆m∗∂

2f(m0)

∂m2
∆m + . . . , (2)

where m0 is the background model, and ∆m is the difference between the true model
and the background. This infinite series is effectively a multivariate Taylor expan-
sion of the data vector. The first two terms on the right-hand side of the equation
represent the propagation in the background and the first-order scattering (i.e., Born
approximation). The additional terms in the series represent the multiple scattering
(e.g., multiples and non-linear amplitude behavior).
In the case m0 is our starting model for a FWI algorithm we see that our initial
residuals are given by the terms on the right of the background data f(m0). If the
residuals are approximately linear, meaning:

r(m0) = d− f(m0) ≈
∂f(m0)

∂m
∆m; (3)

then, the inverse problem is almost linear, and thus easily solvable up to the null space
of the linearized operator. This condition is usually satisfied when the initial model
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is reasonably close to the true one, meaning the background model explains most of
the observed data in terms of both kinematic and amplitude responses (Biondi and
Almomin, 2014).
When a Newton-like scheme is used to minimize equation 1 the following truncated
expansion around the initial model is performed:

φ(m0 + ∆m) ≈ φ(m0) +
∂φ(m0)

∂m
∆m +

1

2
∆m∗∂

2φ(m0)

∂m2
∆m. (4)

The main approximation in the previous relation is to assume a convex quadratic
behavior of the objective function close to the initial model. We already see that if this
assumption is not fulfilled, any Newton method may fail completely to find the local
minimum of the objective function. The key for the success of this class of algorithms

resides in the Hessian matrix of the objective function ∂2φ(m0)
∂m2 being positive definitive.

In fact, in any Newton-like optimization we try to solve the following linear system:

∂2φ(m0)

∂m2
∆m = −∂φ(m0)

∂m
. (5)

This system is obtained by setting the derivative of equation 4 with respect to the
model perturbation ∆m to zero. It is known that the full Hessian matrix can be de-
composed into its Gauss-Newton approximation plus an additional residual-dependent
component (Fichtner, 2010). In fact, we observed that:

∂2φ(m)

∂m2
=

(
∂f(m)

∂m

)∗ (
∂f(m)

∂m

)
+

(
∂2f(m)

∂m2

)∗

r(m), (6)

where the first term is composed of the product between forward and adjoint Born
operator, and the second one is connected to the second-order scattering in the series
of equation 2. Because of this connection many authors see an additional value to
the full Hessian when a Newton-like method is employed in solving FWI problems
(Pratt et al., 1998; Epanomeritakis et al., 2008). It is still under debate whether this
additional value is meaningful or not in seismic exploration (Métivier et al., 2013).
In addition, as shown by Biondi et al. (2015) the residual-dependent component of
the Hessian matrix is connected to the wave-equation migration velocity analysis
(WEMVA) operator (Sava and Vlad, 2008).

We now discuss a few considerations when a single full-Newton step is performed
during full waveform inversion. The Newton system of equations at the first iteration
is given by:[(

∂f(m0)

∂m

)∗ (
∂f(m0)

∂m

)
+

(
∂2f(m0)

∂m2

)∗

r(m0)

]
∆m̃ = −

(
∂f(m0)

∂m

)∗

r(m0). (7)

The ideal solution of this linear inversion would be:

∆m̃ = ∆m, (8)

meaning we converge to the true perturbation of the data expansion around the initial
FWI model (equation 2) in one Newton step. Unless our problem is close to being
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linear this result is difficult to find. Assuming that most of the non-linearities of an
FWI problem are given by the second-order scattering, we can truncate the Taylor
expansion to the first three terms and make the inversion closer to linearity. The
initial residuals are thus given by the following:

r(m0) = −∂f(m0)

∂m
∆m− 1

2
∆m∗∂

2f(m0)

∂m2
∆m. (9)

Substituting equation 9 into 7 we obtain:[(
∂2f(m0)

∂m2

)∗ (
−∂f(m0)

∂m
∆m− 1

2
∆m∗∂

2f(m0)

∂m2
∆m

)]
∆m̃ (10)

=
1

2

(
∂f(m0)

∂m

)∗

∆m∗∂
2f(m0)

∂m2
∆m,

where we notice that the right-hand side term is basically the image produced by the
first-order multiples in the data. The term on the left is more complicated, but can
be decomposed into two different operators; a WEMVA-like operator applied to the
true Born data and the second-order scattering, respectively. We will converge in a
single Newton step to the correct solution if equality 8 holds. In the next section we
explore these considerations on a simple two-perturbation synthetic test.

SYNTHETIC TEST

In this section, we show an example of FWI in which a single truncated Newton
step is performed on a simple synthetic model where two perturbations of 100 m/s
are added to a constant velocity background of 2000 m/s (Figure 1). We inject a
Ricker wavelet with central frequency of 20 Hz and use evenly spaced receivers and
sources at the surface by 10 m and 100 m, respectively. A shot gather containing
reflection only data is shown in Figure 2a. The choice of this model introduces a
mild non-linearity when the correct background velocity is considered as starting
model for the inversion. In fact, comparing the observed data with the correct Born
approximation (i.e., second term in the expansion 2) we clearly see that most of the
recorded amplitudes are represented by this linear modeling operator (Figure 2b).
The comparison of the difference between non-linear data and Born approximation
with the second-order scattering term in the series provides us with an insight of the
non-linearities in the treated FWI problem. From Figure 2c we observe that most of
the higher-order scattering is contained in the second-order one. The amplitudes of
these events are approximately one order of magnitude smaller than the first-order
approximation (compare Figures 2b and 2c). Because of these observations we decide
to consider only first- and second-order scattering in this test.

First of all we compute the initial search direction given the recorded data. Fig-
ure 3a shows the search direction obtained using both orders of scattering. The
maximum of this search direction corresponds to the peaks of the used perturbations.
To understand the effect of the presence of second-order scattering in the data we
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Figure 1: True velocity perturbation used during the reported synthetic test. The
background model is a constant velocity of 2000 m/s. [ER]

compute the image of this energy (Figure 3b). We first see that the relative ampli-
tude is approximately 90 percent weaker compared to the total image. In addition,
the phase of the imaged points is slightly different than the one in the total search
direction. This plot describes the image mainly produced by the self-interaction of
the scattered wavefield with the perturbation. Because of the chosen perturbation,
the image of the interaction between the two anomalies is almost negligible.

As explained in the previous section, the hope of converging to the original model
perturbation in a single Newton step depends on matching the image of the multiples
by the application of the residual-dependent Hessian component to the true perturba-
tion (equation 10). Figure 4a displays this application. Despite the similar amplitude
behavior, the phase of the image is quite different; thus, it is unlikely that a single
Newton step will provide the correct answer even though the mild non-linearity of the
problem. Again, the contribution of the second-order scattering in the application of
this Hessian component is weaker with respect to the first-order scattering residuals
(compare Figures 4a and 4b).

We test two different approximations of the FWI Hessian matrix against the full
Newton one. We compare Gauss-Newton, full Newton, and a Hessian approximation
obtained by a matrix expansion. In fact, by decomposing the full Hessian H into
its Gauss-Newton HGN and residual-dependent Hr components, we can write the
following inverse approximation:

(H)−1 = (HGN + Hr)
−1 =

(
I + H−1

GNHr

)−1
H−1
GN ≈

(
I−H−1

GNHr

)
H−1
GN , (11)
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(a)

(b)

(c)

Figure 2: (a) Reflection data observed for one shot when the velocity perturbation
in Figure 1 is used. (b) Comparison between non-linear data (red curve) and Born
approximation (blue curve) using the true perturbation for a receiver at 1000 m. The
black curve represents the higher-order scattering effects present in the observed data.
(c) Comparison between true second-order scattering and black curve in Figure 2b.
The direct arrival has been removed because we assume to start the inversion with
the correct background. [ER]
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(a)

(b)

Figure 3: (a) First search direction when only first- and second-order scattering is
considered to be present in the recorded data. (b) First search direction due to the
second-order scattering in the data (i.e., right-hand side term in equation 10). [ER]
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(a)

(b)

Figure 4: Application of the residual-dependent hessian component to the true per-
turbation using the total residuals (a) and the second-order scattering component
(b). The amplitudes are normalized with respect to the image shown in Figure 3a
[ER]

SEP–168



Biondi et al. 9 FWI Hessian matrix analysis

where we assume that the inverse for the Gauss Newton component exists, and that
the matrix norm ‖H−1

GNHr‖ is negligible compared to the norm of an identity matrix
with the same size. From this equation we see that a correction factor, which is
given by the product of a WEMVA-like operator and Gauss-Newton inverse matrix,
is subtracted from the inverted perturbation.

In all of these linear inversions the different matrices are solved iteratively in the
least-squares sense as follows:

φ(∆m) =
1

2
‖H(m0)∆m−∆mmig(m0)‖22 , (12)

where H is the Hessian matrix to be inverted, and ∆mmig(m0) is the first FWI search
direction (i.e., Figure 3a in this test). We choose this approach to mitigate the prob-
lem of the full Hessian matrix being symmetric indefinite (i.e., having positive and
negative eigenvalues); an issue that has been also observed by Métivier et al. (2013).
In fact, when we employ the symmetric solver proposed by Biondi and Barnier (2017)
on the full Hessian matrix, after few iterations, the inversion starts diverging and be-
coming unstable. This least-squares approach stabilizes the inversion, although with
this approach we are squaring the condition number of the actual inverted matrix.

Figure 5: Relative objective function value for least-squares inversion of Gauss-
Newton Hessian matrix. A similar behavior is seen for all the other described trun-
cated Hessian inversions. [CR]

In the first Hessian inversion we consider a Gauss-Newton approximation. Fig-
ure 5 shows the relative variation of the objective function 12 when 300 iterations of
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conjugate-gradient algorithm are performed. At the last iteration the objective func-
tion value is five orders of magnitude smaller than the initial one. Figure 6a shows
the inverted perturbation at the last iteration. First, we observe that the amplitude
of the anomalies is underestimated. Secondly, despite the considerably decrease in
the objective function, the wavelet signature is still present in the inverted anoma-
lies. When this inverted perturbation is reprojected non-linearly in the data space,
the modeled amplitudes closely match the recorded ones (Figure 6b), meaning that
most of the linear component of the data has been inverted and potentially we are
encountering a null space of the linear operator. We then inverted iteratively the
full Newton hessian and the matrix shown in equation 11. Figure 6c shows the com-
parison of these inversions on a depth profile passing through the left-hand anomaly.
From this comparison we observe that practically there is no difference between full
Newton and Gauss-Newton inversion results. The similar behavior of the solutions
could be attributed to the values of the Gauss-Newton matrix elements that dominate
the inversion. On the other hand, we the full Newton approximation shown in equa-
tion 11 provides a model slightly closer to the true perturbation. This fact potentially
means that the correction term in this approximation could enhance the additional
value of the full Newton matrix in the residual-dependent component and avoid the
instabilities possibly present in the full Hessian. In fact, in this case we are inverting
the more stable positive semi-definitive Gauss-Newton matrix (see equation 11).

CONCLUSIONS AND FUTURE DIRECTIONS

We discuss the difference between the full Hessian and its Gauss-Newton approxima-
tion in the context of FWI. We show the connection of the residual-component of
this matrix to the second-order scattering present in the data. We also discuss the
value given by truncated Newton steps and when those could potentially converge
to the true perturbation in one single matrix inversion. With the help of a simple
two-anomaly model we study the effect of a single Hessian matrix inversion step.
Moreover, with the proposed approximation of the full Newton matrix we are able to
enhance the residual-dependent component and avoid unstable inversion results. In
the future, we are going to study the advantage of performing truncated Newton steps
during a non-linear inversion framework. In addition, further studies of the proposed
full Hessian approximation are going to be made to better evaluate its potential in
more complex inversion scenarios.
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(a)

(b)

(c)

Figure 6: (a) Inverted perturbations using a Gauss-Newton approximated Hessian.
(b) Comparison between observed data (red curve), data generated using the in-
verted perturbations (blue curve) in Figure 6a, and their difference (black curve).
(c) Comparison between Gauss-Newton (blue curve), full Newton (black curve), and
approximated full Newton (red curve) of the inverted perturbations against the true
anomalies (green curve). [CR]
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates,
D. Corrigan, D. J. Foster, S. A. Shaw, and H. Zhang, 2003, Inverse scattering series
and seismic exploration: Inverse problems, 19, R27.

SEP–168


