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ABSTRACT

Based on the SEPIlib non-linear solver library described previously, we implement
an out-of-core Python-based generic solver for linear /non-linear inverse problems.
We closely follow the object-oriented structure of the previous library and add
new features in order to handle any programming language describing the appli-
cation of user-defined operators. Our out-of-core feature addresses many treating
memory-intensive inverse problems frequently encountered in geophysical appli-
cations. We demonstrate the new solver capability with simple linear problems
and a non-linear acoustic isotropic full-waveform inversion (FWI) example.

INTRODUCTION

Geophysicists deal with inverse problems routinely. Many operations such as decon-
volution or velocity estimation are inverse problems in disguise (Claerbout, 1992).
Clearly it is advantageous to have at our disposal a generic solver capable of handling
most of the inverse problems encountered. Métivier and Brossier (2016) present a
generic non-linear solver written in FORTRAN 90 based on reverse communication.
Although their library offers many methods to solve a given inverse problem, it lacks
the flexibility of being able to work with programming languages different than FOR-
TRAN. This constraint is greatly restrictive. In fact, nowadays modeling/processing
routines are written in many different programming languages and combined together
to fully exploit the available computation architecture (e.g., core libraries written in
C++ or CUDA handled by a Python or Shell interface). For this reason we chose
to implement a generic solver written in the freeware scripting language Python that
can be used for any inverse problem in which its core operators are coded with any
programming language. We achieved this goal by using a system-called operator con-
cept. In addition, the presented solver is implemented using an out-of-core philosophy,
making it capable of handling memory-intensive inverse problems.

We first start by summarizing the object-orient structure of the solver, which is
closely related to the one present in Almomin et al. (2015). Secondly, we explain the
concept of a system-called operator that allows us to combine the solver with any
other programming language. Finally, we describe the usage of the generic linear and
non-linear solvers along with a few examples demonstrating their capabilities.
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SOLVER STRUCTURE

The great flexibility of the object-oriented structure of the library described in Al-
momin et al. (2015) is also found in this new solver implementation. In fact, we
decided to retain the same class structure:

e problem class: object describing the inverse problem to solver,
e solver class: object that takes problem class and solves the given problem,

e stepper class: object containing the method to use in case a line search is
necessary,

e stopper class: object that quits the inversion in case any stopping criterion is
met.

This implementation allows us to define any inverse problem and separate it from
the method that we want to utilize for finding the problem’s solution. The only
requirement is that the problem has to be defined as an indirect problem (i.e., the
solution has to be found using an objective function (Weglein et al., 2003)). Therefore,
the problem class has to contain an objective function method. If a gradient-based
method is employed, then linear forward and adjoint operator methods have to be
present. We will explain this necessity when describing the generic non-linear solver.
The stepper class is used whenever a line search algorithm is necessary to perform an
optimization step during the inversion (e.g., whenever we are treating a non-linear
problem). The definition of this class is avoidable when a linear problem has to be
solved because step lengths are usually already embedded into the solver algorithm
(e.g., the conjugate-gradient (CG) method (Aster et al., 2005)). Lastly, the stopper
class just defines different stopping criteria that the user can use to stop the inversion.
For a more detailed description of the FORTRAN 2003 version see Almomin et al.
(2015).

The typical inverse problem encountered in geophysics is the L2-norm inverse
problem:

s(m) = 3 If(m) — [ = 7 r(m)]3 (1)

where m is the model vector, f(m) is the modeling operator, d is the observed data
vector, r(m) is the residual vector, and ¢(m) is the objective function to be minimized.
The modeling operator can be either linear or non-linear. Obviously, the two problems
are treated with different solvers. The two proposed solvers minimize the objective
function shown in equation 1. In addition, in the current solver version, we also
included the minimization of a L2-norm regularized problem defined as follows:

1 €2 1 €2
Preg(m) = o [|f(m) — dlf5 + 7 Il A(m - m,s)|5 = §|lrd(m)||§ + Ellrm(m)llg, (2)
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where A is a linear regularization operator, and m,..r is a reference model.
In both cases, when a gradient-based method is used to optimize these objective
function we have to compute their gradients as follows:

votm) = (520 st 3)
Vony(m) = (250 ryfm) + 24 Ar, (m), ()

where * denotes the adjoint operation. We now turn our attention to the concept
with which we are able to perform an out-of-core language-independent inversion.

THE SYSTEM-CALLED OPERATOR CONCEPT

From the previous equations we notice that the most complex operation to be per-
formed is applying different operators (i.e., the modeling operator f(m), its lineariza-

tion (%), and the linear regularization operator A forward and adjoint). In fact,

in order to solve our inverse problem, we just need to tell the computer how to ap-
ply different operators to given vectors. To perform simple vector operations we use
python-system calls to the standard SEPlib program Solver_ops; on the other hand,
to apply the different required operators we define a new object called operator.

Whenever we create a new operator object we have to specify a series of termi-
nal/shell commands that describes the application of the given operator to a provided
input file and places the result of this operation into an output file. With this tem-
plate the computer knows how to apply any supplied operator to a given vector and
where the result will be placed. Therefore, to perform any inversion we have to just
specify the solver the set of commands that we would run from terminal to apply the
operators for our inverse problem into parameter files. As an example the following
lines describe the application of a generic forward modeling operator that employs
SEP-formatted files with the solver-operator definition:

#This is a comment
#Applying forward modeling operator
RUN: ./bin/forward.x < input.H par=Par/parfile.p > output.H

Note that in front of the command that has to be run it is placed the keyword RUN:.
This syntax tells the operator object how to parse the parameter file that describes
the given operator. In this case, we see that whenever the solver needs to apply the
forward modeling operator f(m), it has to substitute input.H and output.H with
the actual input-file and output-file names, respectively.

The operator object handles multiple lines when the operator is composed as a
set of commands. In fact, a more complex operator could be the following:
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#Applying foward modeling operator as a series of commands
RUN: ./bin/forwardl.x < input.H par=Par/parfile.p > tmpl.H
RUN: ./bin/forward2.x < input.H par=Par/parfile.p > tmp2.H
#Combining the results of the previous commands

RUN: ./bin/combine.x filel=tmpl.H file2=tmp2.H output=output.H
#Cleaning temporary files

RUN: rm tmpl.H tmp2.H

In this case, the operator is composed of two different programs where their outputs
are combined after their application. Note that the commands are run sequentially.
Hence, whenever we start a command the subsequent one is going to be run after
exit code of this process is returned. As we can see from this description, there
is no assumption on what programming language the user employed to code their
executables. In fact, with this definition of system-called operator, the python solver
can handle operators written in any programming language. In addition, because the
solver uses filenames, it is not necessary to store any array inside the solver itself.
The actual python class implementation is in file operator_obj.py contained in the
folder python_solver/ of the related zip file of this report.

GENERIC LINEAR SOLVER AND EXAMPLES

In this section we provide a brief explanation of how to use the generic linear solver.
The name of the python script is generic_linear_prob.py and can be found in
the folder python_solver/. If the script is run without any input it provides a
documentation of all the possible parameters that can be used during a linear in-
version. Before running any inversion it is necessary to run make install from the
main folder, which compiles two necessary programs related to the solver, and add
the screen-printed path to the user’s environment variable PYTHONPATH. This op-
eration has to be performed only once. A simple L2-norm linear inversion can be
performed by calling the script in the following manner:

./python_solver/generic_linear_prob.py fwd_cmd_file=./Par/tmp_fwd.txt \
adj_cmd_file=./Par/tmp_adj.txt data=data.H init_model=init_model.H \
inv_model=inv_model.H suffix=_problem iteration_movies=obj,model,residual \
niter=10 log_file=Generic_lin_test.txt wrk_dir=inversion_test

Because we want to solve a non-regularized linear problem we just need to specify
the linear forward and adjoint operators (i.e., f(m) = Fm, and F* necessary for the
gradient computation). These two operators are provided in the command line with
fwd_cmd_file=./Par/tmp_fwd.txt and adj_cmd_file=./Par/tmp_adj.txt param-
eters, respectively. All inversion files are going to be placed in the work directory
wrk_dir=inversion_test. Along with the inverted model inv_model=inv_model.H,
the solver can return separate different files containing the objective function value,
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inverted model, residual vector, and gradient as function of iteration number (see
parameter iteration_movies). In the logfile log_file=Generic_lin_test.txt the
user can find information about the inversion run, such as step lengths, elapsed time,
and others.

Simple matrix tests

In this report’s Makefile there are several simple matrix tests that can be run to
understand the solver usage. Here, we report three simple matrix tests.

In the first test we want to minimize the objective function of equation 1 when
the forward operator is a lower-triangular matrix of size 100 by 100 elements with
linear CG method. The makerule to run this example is Generic_lin_test. Figure la
shows the operator matrix used during the inversion. To ensure an invertible linear
system, the main diagonal of this matrix is different than zero. The data vector
is simply constant and equal to one. After running the solver for 50 iterations the
initial objective function value decreases by more 99.4 percent (Figure 1b). Figure lc
displays the residual vector at the last iteration. We can see that the residual elements
oscillate around zero and that the first element is furthest from the true data. This
behaviour is probably due to the matrix structure chosen in this test.

In our second linear test we minimize the objective function of equation 2 for the
same matrix of our first example but adding a model-norm regularization term. As
discussed by Claerbout (2014), there are different ways for estimating a balancing
weight for the regularization term. We implement the solver so that it can provide
an estimated e that balances the first gradient g(my) in the data space:

€ = [[Fg(mo)|| /|| Ag(mo)]| . (5)

With this € definition we correctly balance the two objective function components
by using a model (the gradient) that has proper model-scale size (i.e., numerical
values). In fact, the step-length scaling is removed by the division of the two factors.
Moreover, this approach prevents the denominator of this equation to be zero when
the user-provided initial model is contained in the null space of the operator A. In the
described example we use a regularization weight of 1.0. Because of the regularization
term, the solver cannot find a step length after 45 iteration and stops when the total
objective function decreases by 98.79848 percent (Figure 2a). The behavior of the
residual vector at the last iteration is similar to that of the previous test (Figure 2b).
The make rule to run this example is Generic_lin_reg_test.

In the last linear test using matrices, we want to solve a symmetric negative
definite system of equations. In this case the objective function to be solved is the
following (Aster et al., 2005):

1

Gsym (M) = §m*Hm —m*d, (6)
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Figure 1: (a) Lower-triangular square matrix used in the first linear inversion test.
(b) Relative objective function value as function of iteration number. (c) Residual
vector at the last iteration. [ER]
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Figure 2: (a) Relative objective function value as function of iteration number. (b)
Residual vector at the last iteration. Both plots belong to the second linear test
described in the text. [ER]
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where H is a symmetric positive or negative definite matrix. If the matrix is positive
definite, this objective function is monotonically decreasing during the inversion. For
this test we choose a second-order derivative operator (Figure 3a). Because of the
boundary conditions employed the system is invertible. For data vector d we again
use a constant value of one for all the elements. This choice results in finding a
function whose second-order derivative is always constant and positive (i.e., a convex
parabola). Indeed, this is the result that we obtain after running for 44 iterations
the linear symmetric system CG Figure 3b. To run this example the makerule is
Generic_lin_test_symmetric.
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Figure 3: (a) Symmetric negative definite matrix used in the third linear inversion
test. (b) Inverted model at the last iteration. [ER|

GENERIC NON-LINEAR SOLVER AND EXAMPLES

The same installation procedure applies for the generic non-linear solver. To run
a non-linear inversion we ensure that whenever we are evaluating the gradient of
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the objective function we have to apply the adjoint linearized operator to the data
residuals (see equations 3 and 4). In addition, we need to specify the forward linearized
operator that is used to estimate the initial step length for any line search algorithm.
Indeed, as input parameters the user has to provide three different operator-template
parameter files. A simple call of the non-linear solver takes the following form:

./python_solver/generic_non_linear_prob.py \
fwd_nl_cmd_file=${P}/nl_fwd.txt fwd_cmd_file=${P}/1lin_fwd.txt \
adj_cmd_file=${P}/lin_adj.txt data=data.H init_model=init_model.H \
inv_model=inv_model.H suffix=_nlproblem \
iteration_movies=obj,model,residual niter=10 \
log_file=inversion_log.txt wrk_dir=nl_inversion

Aside from this complication, the solver call is similar to the linear one. The required
forward linearized operator fwd_cmd_file is necessary when an initial step-length
guess has to be made during the line-search algorithm. In fact, a simple way to
estimate the value of this guess is to linearize the modeling operator f(m) around
the current model my and find the step length « that minimizes the given objective
function along the current search direction Am. For instance, this procedure for the
objective function in equation 1 would take the following form:

¢(mo + aAm) = o Hf(mo) to— 2

Am —d

(7)

The linearization of the non-linear operator enables us to analytically compute the
optimal step length by minimizing the derivative of the previous objective function
with respect to a:

2

dp(my 4+ aAm) B r(mo)*—aféx‘J)Am
=0=>a=— . (8)
do H@f(mo)Am
om 9

where the search direction is projected into the data space through the forward lin-
earized operator.

In the next section we describe an application of the solver in a full waveform
inversion problem. Although we do not show here the usage of any regularization term
during the inversion, you can see its use in Barnier et al. (2017). In their examples
the solver provides them with a balancing weight for their regularization term. In
this case, the solver finds an e that balances the two terms in the objective function of
equation 2. If the initial model is in the null space of the regularization operator, the
solver will perform a steepest-descent search and recompute the estimated weight.

Full waveform inversion

We test the non-linear solver on a synthetic FWI example where we use an isotropic
acoustic wave-equation modeling operator. Here, we minimize a simple L2-norm data
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difference (equation 1). Figure 4a shows the true velocity model used in this test. We
place 200 shots and 2000 receivers spaced 100 m and 10 m at the surface, respectively.
To generate the observed data we inject a Ricker wavelet of dominant frequency of 15
Hz. We then apply a bandpass filter to th observed data to a maximum frequency of 5
Hz. We invert this bandwidth only in this example. The starting model is generated
by smoothing the true model (Figure 4b).
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Figure 4: True (a) and initial (b) velocity models used in the described FWI example.
[ER]

We apply the same preconditioning technique proposed by Biondi et al. (2017) in
which an approximated Gauss-Newton Hessian inverse is estimated from model-space
Hessian matrix applications. We run 14 iterations of a non-linear conjugate-gradient
method (Fletcher and Reeves, 1964). From Figure 5 we clearly distinguish a difference
when we precondition the gradient. In fact, this simple approach improves the con-
vergence rate of the algorithm. In terms of inverted models, we also see a noticeable
difference (Figure 6). We observe that the preconditioned inverted model presents
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more details, especially, in the deeper portion. In this example, the approximated
Hessian inverse matrix provides an amplitude-balancing effect when applied to the
computed gradient during the inversion.
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Figure 5: Relative objective function comparison between conjugate-gradient method

using an approximated Gauss-Newton Hessian inverse as preconditioner (red curve)

and without it (blue curve). [CR]

CONCLUSIONS AND FUTURE DIRECTIONS

We present a flexible out-of-core Python-based linear/non-linear solver library that
uses of system-called operators to compute applications of these to given vectors. This
feature provides the user a solver in which inverse-problem operators can be written
with any programming language. Because the solver runs storing only filenames it
has the potential of handling memory-demanding problems. We demonstrate its ca-
pabilities on different linear and non-linear inverse problems. In all these tests we
show the convergence of the solver to a reasonable optimal model.

Currently, the solver employs only linear and non-linear CG methods, and different
line-search algorithms are implemented within the non-linear optimization (i.e., sam-
pler, parabolic, and linear steppers). In the future, memory-limited BFGS method is
going to be added into the non-linear solver frame. Also, truncated Gauss-Newton
and Newton steppers are going to be fully deployed into the solver. Finally, to over-
come the limiting factor of applicability to SEP-formatted file we are going to use the
Generic 10 library proposed by Clapp (2017).
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ditioner. Right panel: inverted model using an approximated Hessian inverse as
preconditioner. [CR]
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