
Facilitating code distribution: Docker and Generic

IO

Robert G. Clapp

ABSTRACT

Disseminating research through computational software is of growing importance
in academia. The growth of cloud computing and object-oriented programming
has led to the development of new paradigms. We take advantage of two of these
paradigms, containers and generalized IO, as a new way to distribute. software
to SEP sponsors.

INTRODUCTION

For more than 25 years SEP has included the concept of reproducible research in its
mission. SEP’s initial approach was to use Cake (Claerbout, 1990; Claerbout and
Nichols, 1990). Later Schwab and Schroeder (1995) outlined our replacement of Cake
with the standard Unix tool make. Fomel and Hennenfent (2007) translated and
extended these reproducible concepts using Scons.

Reproducible research serves multiple purposes such as integrity of research results
and a way to distribute research ideas. All of the above approaches have significant
challenges. First, they require the installation of a significant software stack. Clapp
(2016) described initial efforts of overcoming this obstacle using containers. Contain-
ers can capture the entire software stack and guarantee reproducibility. The second
mission, making code simpler to use by others, is complicated by the fact that the
seismic community does not agree on a single software solution. Instead companies
and universities use one of a multitude of software packages.

In this paper we attempt to deal with the issue of producing reproducible and in-
terruptible software. To solve the first problem, we build on Clapp (2016), describing
how dockers can be used to encapsulate a research paper. We also introduce a library,
genericIO, a C++ and Fortran 2003 library which abstracts parameter handling and
IO. We include three concrete versions of the library using SEPlib, Madgascar, and
Java Script Object Notation (JSON). We also show several examples of applications
using the library.

SEP–168

Clapp 2 Generic IO

GENERIC-IO

Abstraction is a powerful concept in object-oriented programming. Software written
to function with a generic abstract object will work with all objects that inherit from
the abstract base class. An example of using abstraction is writing solvers. which sep-
arate the mathematics of inversion from the physics of operators. Parameter handling
and input/output (IO) can also be thought of as being separate from the mathemat-
ics/science that application is performing. If all of the IO/parameter handling in a
program is written in terms of an abstract base class, all that is required to change
to a new processing system is to write a concrete child class that inherits from the
abstract base class. The library genericIO attempts to create an abstract interface
for IO/parameter handling. The entire library is documented using Doxygen. In
the next portion we describe the basic building blocks of the library in C++ then
Fortran2008.

The paramObj abstract class reads parameters for the program. It has functions to
return bool, float, int, string, and vectors of each given the parameter name.
It allows the user specify a default if the parameter isn’t found.

The genericRegFile base class can read the same type of parameters from a file.
In addition it has the ability to write parameters to a file, and to read/write float,
complex, and byte data to/from a file. The reading and writing can be in terms of
stream (read the next X bytes), or a subcube of the data object.

The genericIO base class is able to return a genericRegFile object given a
filename or tag, and how the file is going to be used (in,out, in/out). It also has
the ability to return a genericIrregFile object which still in the design stage. In
addition, it keeps a list of all the files it has opened and when the object goes out of
scope closes all of its files.

The IOModes class knows about all of the base classes of genericIO along which
the default IO mode (can be selected at compile time). A programmer asks for either
the default or a specific IO mode.

Currently three concrete classes inherit from abstract base classes: rsfIO, sepIO,

and JSONIO. YOU ONLY LIST 3 CLASSES. The first two are simply wrap the cor-
responding RSF and SEPlib function. The JSONIO class uses JSON file that describe
command line and file parameters.

Rather than maintaining a parallel FOrtran2003 library for all potential IO types,
we used a singleton design pattern to allow us to create a single instance of the
ioModes object to be created. By writing C functions that all use the singleton
ioModes object we were able to support the same IO mechanisms in Fortran while
creating a single set of Fortran2003 classes.

An example of using the genericIO library to window a dataset can be found in
the first appendix.

SEP–168

Clapp 3 Generic IO

DOCKERS

Clapp (2016) discussed how containers, specifically dockers, were designed to stream-
line the development to application process. A docker can be thought of as a virtual
machine with minimal overhead. Once a developer has built a docker that runs on
their local machine, that same docker will run in a production environment. The lat-
est versions of the gcc compilers docker is conventionally built through a Dockerfile.
A Dockerfile starts with a From statement which is another docker to build from.
For example, we might start from a compact version of an operating system such as
a specific version of CentOS.

From centos:7

MAINTAINER Bob Clapp <bob@sep.stanford.edu>

We then line by line describe how to build our environmnet. Each line represents
a different layer in the docker filesytstem A delta of the filesytesm is calculated and
stored. The final docker is the summation of all of these deltas. The storing of deltas
means that we don’t want to create files in one layer that we are going to erase in
another layer. As a result we are careful to remove all temporary and unneeded files.
For example, every time we run yum it creates a temporary cache. So after we install
a list of packages with yum we clean up these cache files. As an example, imagine we
want to build the latest version of the gcc compilers. There are several prequisites
that we need to install.

RUN yum -y install gmp-devel mpfr-devel libmpc-devel;\\

yum -y clean all

RUN yum -y install make cpp wget gcc-c++ zlib-devel \\

curl wget; yum -y clean all

Once we’ve installed these packages we can download the latest versions of the com-
pilers. Then configure, compile, install, and finally clean up. We need to do all of
this on one line to minimize the delta size.

RUN mkdir /tmp/gcc-build

RUN cd /tmp; \\

wget ftp://208.118.235.20/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.gz; \\

tar xf gcc-6.2.0.tar.gz; cd /tmp/gcc-build; cd /tmp/gcc-build;\\

../gcc-6.2.0/configure --prefix=/usr/local --disable-multilib \\

-with-system-zlib --enable-languages=c,c++,fortran; \\

cd /tmp/gcc-build; \\

make -j 12; cd /tmp/gcc-build make install; rm -rf /tmp/gcc*

SEP–168

Clapp 4 Generic IO

Dockers for reproducibility

The docker concept of layers is analogous to the way we currently do reproducible
research. We start with our current environment, the base image in dockerspeak. We
then, through make dependencies, build the software we need, and run a series of
commands to build a result. There is a significant level of redundancy in a paper,
let alone a report. On the report level, each paper depends on the same basic envi-
ronment. At the paper level, results often depend on the same executables so those
layers will get reused. To convert to using dockers for reproducibility, and to enable
others to use our code more easily, we need to significantly improve the way we build
our environment.

For years SEP has used autoconf/automake for building SEPlib. The auto-
conf/automake combination also attempted to configure makefiles to ease the build-
ing process for SEP reports. This process worked somewhat successfully inside SEP
but proved challenging for outside users due to the incompleteness of the make-
file configuration process, the use of additional libraries (such as FFTW), and the
vagarities of autoconf. Levin and Clapp (2017) describes our reasoning for convert-
ing/methodology of converting from autoconf to cmake for building SEPlib. Simplify-
ing the SEPlib building process was the necessary first step in our complete overhaul
of how we define reproducible software. The same argument that supports the shift
to cmake for building SEPlib is true for the software in individual report articles. By
switching to cmake we make installation at outside locations much simpler.

REPRODUCIBILITY TEMPLATE

The key for internal and external reproducibility will be the combination of a gitlab
server and a docker repository. Each reproducible figure will be its own docker. All
report articles, stored as git repositories, will contain the Dockerfiles to build each
reproducible figure and make commands to build the dockers from these images.

While the bar described above seems high, it should, once internalized, make
doing reproducible research easier. We will begin by creating a docker containing the
entire SEP environment at report time. The student will then start from this base
image, clone from their git repository the source code for the paper and build it using
cmake, creating a report article image. The Dockerfile’s for each figure starts from
this report article image and runs the commands to the create an individual figure.

Their are several advantages of this approach. First, the student can switch be-
tween systems with minimal effort1 as long as docker is installed. Second, guaranteed
reproducibility over time. As long as docker exists the results are completely repro-
ducible. If docker does not exist the Dockerfile contains a complete description of how
it was created. Third, reprodcubility testing is simplified for both the author and the

1Different locations for data/scratch space, etc. will change the docker invocation.

SEP–168

Clapp 5 Generic IO

checker. Building a docker is not environment dependent. As long as it builds for the
author, it will build for the checker.

FUTURE WORK

One of the longer term goals of this project is for all SEP research papers to be written
in this form. To accomplish this goal the generic IO library will be extended to handle
irregular dataasts beyond its current capabilities. In addition, we would like to have
all of the labs for SEP classes to be done in this genericIO/docker format. An even
longer term goal is to replace all of the IO in SEPlib using this genericIO framework.
This would allow us to update the core of SEPLib to a more more modern design
without affecting any applications.

CONCLUSION

In this paper we described a new way to perform research that is guaranteed to be
easily reproducible while it the same time allowing someone to quickly incorporate
research ideas into their software environment. We accomplish this goal by writing
programs in terms of a generalized IO library, using git and cmake for code develop-
ment and installation, and dockers to guarantee reproduciblity.

REFERENCES

Claerbout, J. F., 1990, Active documents and reproducible results: SEP-Report, 67,
139–144.

Claerbout, J. F. and D. Nichols, 1990, Why active documents need cake: SEP-Report,
67, 145–148.

Clapp, R. G., 2016, Reproducibility through containers : SEP-Report, 165, 193–198.
Fomel, S. and G. Hennenfent, 2007, Reproducible computational experiments using

scons: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE Inter-
national Conference on, IV–1257.

Levin, S. A. and R. G. Clapp, 2017, make, schmake: CMake : SEP-Report, 168,
309–312.

Schwab, M. and J. Schroeder, 1995, Reproducible research documents using GNU-
make: SEP-Report, 89, 217–226.

A

#include<ioModes.h>

using namespace SEP;

std::shared_ptr<hypercube> calc_params(std::shared_ptr<paramObj> par,

std::shared_ptr<hypercube> hyperIn, const std::vector<int> ng,

SEP–168

Clapp 6 Generic IO

std::vector<int>&nw,std::vector<int>&fw,std::vector<int>&jw){

int ndim=(int)ng.size();

std::vector<axis> axes;

for(int idim=0,i=1; idim<ndim; idim++,i++){

axis ain=hyperIn->getAxis(i);

nw[idim]=par->getInt(std::string("n")+std::to_string(i),nw[idim]);

fw[idim]=par->getInt(std::string("f")+std::to_string(i),0);

jw[idim]=par->getInt(std::string("j")+std::to_string(i),1);

fprintf(stderr,"i=%d n=%d f=%d j=%d \n",idim,nw[idim],fw[idim],jw[idim]);

if(fw[idim] >= ng[idim]) par->error(std::string("Invalid f")+

std::to_string(i));

if(nw[idim] > ng[idim]) par->error(std::string("Invalid n")+

std::to_string(i));

if(jw[idim] ==-1) jw[idim]=1;

if(nw[idim] ==-1) {

if(fw[idim]==-1){

fw[idim]==0;

}

nw[idim]=(ng[idim]-1-fw[idim])/jw[idim]+1;

}

else if(fw[idim]==-1) fw[idim]=0;

if(ng[idim] < 1+ fw[idim] +jw[idim]*(nw[idim]-1)){

fprintf(stderr,"f=%d j=%d n=%d ng=%d \n",fw[idim],jw[idim],nw[idim],ng[idim]);

par->error(std::string("Invalid window parameters axis ")+std::to_string(i));

}

float o=fw[idim]*ain.d+ain.o;

float d=jw[idim]*ain.d;

axes.push_back(axis(nw[idim],o,d,ain.label));

}

for(int idim=ndim; idim<8; idim++){

nw[idim]=1; fw[idim]=0; jw[idim]=1;

}

std::shared_ptr<hypercube> h(new hypercube(axes));

return h;

}

int main(int argc, char **argv){

ioModes modes(argc,argv);

std::shared_ptr<genericIO> io=modes.getDefaultIO();

std::shared_ptr<paramObj> par=io->getParamObj();

std::string in=par->getString(std::string("in"));

SEP–168

Clapp 7 Generic IO

std::string out=par->getString(std::string("out"));

std::shared_ptr<genericRegFile> inp=io->getRegFile(in,usageIn);

std::shared_ptr<hypercube> hyperIn=inp->getHyper();

std::vector<int> ng=hyperIn->getNs();

int ndim=(int)ng.size();

if(ndim>8) par->error("Currently handle maximum of 8 dimensons");

std::vector<int> nw(8,-1),fw(8,-1),jw(8,-1);

std::shared_ptr<hypercube> hyperOut=calc_params(par,hyperIn,ng,nw,fw,jw);

std::shared_ptr<genericRegFile> outp=io->getRegFile(out,usageOut);

outp->setHyper(hyperOut);

outp->writeDescription();

int maxSize=par->getInt(std::string("maxsize"),8);

long long maxS=(long long) maxSize*1024*1024*1024;

std::vector<int> nloop(8,1);

std::vector<int> fsend=fw,jsend=jw,nsend=nw;

long long n123= hyperOut->getN123();

int iaxis=ndim-1;

while(n123 > maxS && iaxis>0){

n123=n123/(long long) ng[iaxis];

nloop[iaxis]=nw[iaxis];

iaxis--;

}

for(int i=iaxis+1; i<8; i++){

fsend[i]=0; jsend[i]=1; nsend[i]=1;

}

float *buf=new float[n123];

for(int i8=0; i8 < nloop[7]; i8++){

if(iaxis<7){fsend[7]=i8*jw[7]+fw[7]; nsend[7]=1;}

for(int i7=0; i7 < nloop[6]; i7++){

if(iaxis<6){fsend[6]=i7*jw[6]+fw[6]; nsend[6]=1;}

for(int i6=0; i6 < nloop[5]; i6++){

if(iaxis<5){fsend[5]=i6*jw[5]+fw[5]; nsend[5]=1;}

SEP–168

Clapp 8 Generic IO

for(int i5=0; i5 < nloop[4]; i5++){

if(iaxis<4){fsend[4]=i5*jw[4]+fw[4]; nsend[4]=1;}

for(int i4=0; i4 < nloop[3]; i4++){

if(iaxis<3){fsend[3]=i4*jw[3]+fw[3]; nsend[3]=1;}

for(int i3=0; i3 < nloop[2]; i3++){

if(iaxis<2){fsend[2]=i3*jw[2]+fw[2]; nsend[2]=1;}

for(int i2=0; i2 < nloop[1]; i2++){

if(iaxis<1){ fsend[1]=i2*jw[1]+fw[1]; nsend[1]=1;}

inp->readFloatWindow(nsend,fsend,jsend,buf);

outp->writeFloatStream(buf,n123);

}}}}}}}

delete [] buf;

}

SEP–168

