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Abstract

Rotations of the ground as a result of the propagation of seismic energy are one of

the least-studied phenomena in seismology. This is curious, since unlike other, more

complicated geophysical theories, rotations are an observable that we can measure on

the Earth’s surface. Furthermore, the concept of medium rotation is inherent to elastic

continuum theory, and has been known to exist for as long as seismic measurements

have been made. In many fields of technology (the aerospace and gaming industry, for

example), it is well-understood that to measure motion of a finite body it is necessary

to measure both 3D translations and 3D rotations.

However, the industry-standard measurements in exploration and in earthquake

seismology have always been of translations on land, pressure in water, or both trans-

lations and pressure on the seabed. There is currently no technological solution which

would enable the seismological community to record rotational data on a scale similar

to the recording of translations.

Part of the reasons for this are circumstantial: the instruments that were more

readily available at the time that basic seismological research was taking place mea-

sured translations, not rotations. These instruments were improved over the years,

leading to the development of the robust geophones and accelerometers common to-

day, with their high sensitivity and wide dynamic range. In marine seismic acquisition,

a sensor that measures pressure is the obvious choice, and indeed hydrophones are the

mainstay of marine seismic data acquisition. Furthermore, the design of an instru-

ment which would record only rotations and yet would be insensitive to translations

is not obvious.

The availability of a particular type of observable data inspired research to acquire

and process these data for imaging of the Earth’s subsurface (exploration seismology)

and for deriving earthquake source mechanisms (earthquake seismology). Geophysical
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research (and the resulting extraction of Earth’s mineral resources) has been very

successful using existing translational and pressure data. So successful, in fact, that

the mere idea that the data are incomplete appears either prepostorous or irrelevant

upon initial inspection.

The elastodynamic seismic wavefield contains more than just three components of

translations and one of pressure. However, until very recently the seismic industry has

not asked itself the very simple question: “what observables out of the elastodynamic

seismic wavefield would we ideally like to record ?”

My purpose in this dissertation is to show how to include rotational data in the

seismic acquisition and processing workflow. I use the term “6C data” to refer to

data comprising three components of translations and three components of rotation,

and “7C data” if hydrophone data are also included.

First, I cover some of the current rotational-acquisition methods, discussing their

benefits and shortcomings. I then propose using existing induction-coil magnetometer

technology to record rotations, and show a field data experiment where this possibility

is validated.

The combination of rotational motion records together with current translational

motion records can aid in the processing of seismic data by providing extra infor-

mation about the seismic wave modes being recorded. I show one application where

particular wave modes are selected and separated from a multicomponent field dataset

that has both translational and rotational components.

The use of machine learning algorithms in exploration seismology is not new,

and is currently seeing a resurgance due to the rapid increase in data volumes and

complexity. I show how to extract feature vectors from a multicomponent dataset

comprising both translational and rotational components, and use them as a training

set for a machine learning algorithm. This algorithm can then identify particular wave

modes based on this training. The possibility of using a machine learning algorithm

to identify and separate wave modes from large seismic data volumes is compelling,

as it has the potential for saving on time-consuming manual processing steps.
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Preface

The electronic version of this report1 makes the included programs and applications

available to the reader. The markings ER, CR, and NR are promises by the author

about the reproducibility of each figure result. Reproducibility is a way of organizing

computational research that allows both the author and the reader of a publication

to verify the reported results. Reproducibility facilitates the transfer of knowledge

within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the

paper. The author claims that you can reproduce such a figure from the pro-

grams, parameters, and makefiles included in the electronic document. The

data must either be included in the electronic distribution, be easily available

to all researchers (e.g., SEG-EAGE data sets), or be available in the SEP data

library2. We assume you have a UNIX workstation with Fortran, Fortran90,

C, X-Windows system and the software downloadable from our website (SEP

makerules, SEPScons, SEPlib, and the SEP latex package), or other free soft-

ware such as SU. Before the publication of the electronic document, someone

other than the author tests the author’s claim by destroying and rebuilding all

ER figures. Some ER figures may not be reproducible by outsiders because

they depend on data sets that are too large to distribute, or data that we do

not have permission to redistribute but are in the SEP data library, or that the

rules depend on commercial packages such as Matlab or Mathematica.

CR denotes Conditional Reproducibility. The author certifies that the commands

are in place to reproduce the figure if certain resources are available. The pri-

mary reasons for the CR designation is that the processing requires 20 minutes

1http://sepwww.stanford.edu/public/docs/sep165
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html/
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or more.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their

figures as NR except for figures that are used solely for motivation, comparison,

or illustration of the theory, such as: artist drawings, scannings, or figures taken

from SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.7 (using the Intel Fortran90 compiler)

and the SEPlib-7.0.5 distribution, but the code should be portable to other architec-

tures. Reader’s suggestions are welcome. For more information on reproducing SEP’s

electronic documents, please visit http://sepwww.stanford.edu/research/redoc/.
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2.18 Comparison of the recorded magnetometer data (black wiggles) to

forward-modeled magnetic projections (red wiggles) derived from the

magnetometer rotations. (a), (c) and (e) are the data comparison for

station 1 for the Bx, Bz and By components, respectively. AGC has

been applied for display. (b), (d) and (f) are the averaged phase dif-

ference between the two signals for all 3 receiver stations. Recall that

I could not remove the ambient magnetic noise from the ’Z’ magne-

tometer component, which is why it so much noisier than the other

two components. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 The scaled singular vectors (eq. 3.4) of the two-component input data

shown in table 3.1. a) data 1. b) data 2. c) data 3. ’S1’ and ’S2’

indicate the 1st and 2nd singular vectors. [NR] . . . . . . . . . . . . 67

3.2 a) The cube of data resulting from CWT applied to a single two-

component trace, comprising the time axis, the component axis and

the wavelet scale axis. b) Application of SVD to a window of wavelet

scales of one time slice of the data cube in (a) provides the polarization

of the data within that particular wavelet scale range. Since there are

two data components, there are two orthogonal polarization vectors

(eq. 3.4). The red arrow shows the first polarization vector. c) SVD

applied to the next wavelet scale window. d) SVD applied to the

last wavelet scale window. e) The wavelet-scale (frequency) dependent

polarization template. [NR] . . . . . . . . . . . . . . . . . . . . . . . 69
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3.3 Map view of the geometry of the Kettleman survey. Five accelerom-

eters (marked with ’A’) were positioned on the surface along the sur-

vey’s inline azimuth at the end of the shot line, with a 2 meter interval.

Five geophones (marked with ’G’) were buried near the center of the

shot line, also spaced at 2 meter intervals inline. ’R2’ rotation sensors

(marked with ’R’) were placed on the surface in between the accelerom-

eter positions and also in between the geophone positions. There were

241 accelerated weight drop shots, 60 vibroseis shots, 57 of the 25 m

depth dynamite shots and 54 of the 50 m depth dynamite shots. [NR] 72

3.4 6C receiver gather of the accelerated weight-drop source, clipped at

the 93rd percentile. Shot spacing was 6.25 m. Components are: (a)

vertical, (b) radial, (c) transverse, (d) yaw, (e) roll, (f) pitch. Six

shots were executed at each station, and then diversity stacking was

applied to increase the signal to noise ratio. The data observable in

these sections at this clip level consist entirely of various Rayleigh wave

modes, which are not aliased due to the very close shot spacing. [ER] 74

3.5 6C receiver gather of the vibroseis source, clipped at the 93rd per-

centile. Components are: (a) vertical, (b) radial, (c) transverse, (d)

yaw, (e) roll, (f) pitch. Shot spacing was 25 m, and so the various

Rayleigh wave modes are aliased. Some P-wave reflections are visible

at early times on the vertical component. [ER] . . . . . . . . . . . . 75

3.6 6C receiver gather of the 25 m depth dynamite source, clipped at the

93rd percentile. Shot spacing was 25 m. Components are: (a) vertical,

(b) radial, (c) transverse, (d) yaw, (e) roll, (f) pitch. Compared to the

accelerated weight drop and vibroseis surface sources, the amount of

ground roll in these data is much lower, though aliasing is still very

significant. Some reflections are visible at early times from offset 200

m and on. Note how the signal to noise ratio of the rotation-sensor

data is low in (d), (e) and (f). [ER] . . . . . . . . . . . . . . . . . . . 76
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3.7 6C receiver gather of the 50 m depth dynamite source, clipped at the

93rd percentile. Shot spacing was 25 m. Components are: (a) vertical,

(b) radial, (c) transverse, (d) yaw, (e) roll, (f) pitch. Reflection data

are more visible in these sections vs the 25 m depth dynamite source.

Note the low-frequency arrival starting from t = 0.35 s at offset=200

m, which appears to be shear-induced energy. Again, note the low

signal to noise ratio for the rotational data in (d), (e) and (f). [ER] . 77

3.8 Comparison of pitch component acquired by rotation sensor and pitch

calculated by differencing adjacent geophones. (a) Rotation sensor

pitch for vibroseis source. (b) Geophone-differencing pitch for vibroseis

source. (c) Rotation sensor pitch for 50 m depth dynamite source. (d)

Geophone-differencing pitch for 50 m depth dynamite source. Note

that for both source types, the signal to noise ratio of the pitch derived

from geophone differencing is much higher at larger offsets than the

pitch measured by the rotation sensor. AGC with a window size of

t = 0.2 s has been applied to the data for display. [ER] . . . . . . . . 78

3.9 Accelerated weight drop source receiver gather at station 335. Mute

has been applied to remove the body waves, and circular spreading to

gain the later arrival energy. (a) Vertical accelerometer. (b) Vertical

accelerometer in Radon domain. (c) Radial accelerometer. (d) Radial

accelerometer in Radon domain. (e) Pitch rotation sensor. (f) Pitch

rotation sensor in Radon domain. Two distinct wave modes appear on

each receiver component: a slower, lower frequency mode, and a faster,

higher frequency mode. Note that on the radial and pitch components,

the slower surface wave mode is dominant. [ER] . . . . . . . . . . . . 83

3.10 Accelerated weight drop source receiver gather at station 335. Mute

has been applied to remove the body waves, and circular spreading

to gain the later arrival energy. (a) Transverse accelerometer. (b)

Transverse accelerometer in Radon domain. (c) Yaw rotation sensor.

(d) Yaw rotation sensor in Radon domain. The dispersion image of

the transverse component is noisy, but two surface wave modes can

still be identified, with the faster mode being dominant. On the yaw

component the faster surface wave mode is clearly dominant. [ER] . 84
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3.11 Comparison of receiver gather data components after linear moveout

and AGC (left column), their correlation (center column) and their av-

erage phase difference (right column) for the slower surface wave mode.

(a)-(c): Vertical (black) vs Radial (red). (d)-(f): Vertical (black) vs

Pitch (blue). (g)-(i): Radial (red) vs Pitch (blue). (j)-(l): Transverse

(purple) vs Yaw (green). The radial and pitch components are in phase.

The vertical component lags behind the radial and pitch by 90o. The

transverse component lags behind the yaw by 90o-180o. [ER] . . . . . 85

3.12 Comparison of receiver gather data components after linear moveout

and AGC (left column), their correlation (center column) and their av-

erage phase difference (right column) for the faster surface wave mode.

(a)-(c): Vertical (black) vs Radial (red). (d)-(f): Vertical (black) vs

Pitch (blue). (g)-(i): Radial (red) vs Pitch (blue). (j)-(l): Trans-

verse (purple) vs Yaw (green). The vertical and radial components

are mostly in phase, and both lag behind the pitch by about 45o. The

transverse and yaw components are almost in phase for frequency range

21 - 26 Hz. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Data components for the slow ground roll wave mode for the trace at

offset 210 m and their hodograms. (a),(e) Vertical vs Radial. (b),(f)

Vertical vs Pitch. (c),(g) Radial vs Pitch. (d),(h) Transverse vs Yaw.

The hodograms start from the dashed red line and progress to the solid

black line. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.14 Data components for the fast ground roll wave mode for the trace at

offset 210 m and their hodograms. (a),(e) Vertical vs Radial. (b),(f)

Vertical vs Pitch. (c),(g) Radial vs Pitch. (d),(h) Transverse vs Yaw.

The hodograms start from the dashed red line and progress to the solid

black line. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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3.15 Receiver gathers of the vertical geophone component of the 4 source

types in the Kettleman survey, after NMO with velocity v = 1700m/s.

(a) Accelerated weight drop. (b) Vibroseis source. (c) Dynamite charge

at 25 m depth. (d) Dynamite charge at 50 m depth. Source (a) was

acquired with 6.25 m shot spacing, while (b), (c) and (d) were done

with 25 m shot spacing. Observe the generally higher quality reflections

acquired with the dynamite sources. The two surface sources (a) and

(b) generate much more ground roll. AGC with a window size of t = 0.2

s has been applied to the data for display. [ER] . . . . . . . . . . . . 89

3.16 (g) Vertical geophone component of 50 m depth dynamite data after

NMO. (a) Trace of the vertical component at offset=280 m. (b) Abso-

lute values of the continuous wavelet transform coefficients for vertical

component. (c) Trace of the radial component at offset=280 m. (d)

Absolute values of the continuous wavelet transform coefficients for ra-

dial component. (e) Trace of the pitch component at offset=280 m.

(f) Absolute values of the continuous wavelet transform coefficients for

pitch component. AGC has been applied to (b), (d) and (f) to enable

a more equalized view of the wavelet coefficients over the time and

scale axes (without AGC, the units are |mm/s| /scale). The wavelet

scale is dyadic, beginning from a frequency of 128 Hz at wavelet scale

0 down to 0.5 Hz at wavelet scale 8. Up until t = 0.32 s, the data

contain P reflections, while between t = 0.32 s and t = 0.52 s there is

a shear-wave arrival. The lower frequency of the shear arrival can be

discerned at t = 0.4 s, for wavelet scale=3.8. [ER] . . . . . . . . . . . 92

3.17 A 3C time slice of the continuous wavelet transform of the trace at

offset 280 m at t = 0.22 s where a P-wave reflection is visible, and the

corresponding absolute values of the CWT polarization vector-set for

this time slice, scaled by their respective singular values (eq. 3.4). (a)

Continuous wavelet time slice. (b) 1st, (c) 2nd, and (d) 3rd polarization

vectors. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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3.18 A 3C time slice of the continuous wavelet transform of the trace at

offset 280 m at t = 0.42 s where shear-wave energy dominates, and

the corresponding absolute values of the CWT polarization vector-

set for this time slice, scaled by their respective singular values (eq.

3.4). (a) Continuous wavelet time slice. (b) 1st, (c) 2nd, and (d) 3rd

polarization vectors. Note that the 2nd polarization vectors at (c) have

a wider frequency band than the 1st polarization vectors at (b), and are

more similar to the 1st polarization vectors at 3.17(b), indicating that

the dominant shear-wave energy in (b) is overlaying weaker P-wave

reflection energy. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.19 The set of scalar w1 weights (eq. 3.8) applied to the first polarization

vector of the data in the wavelet domain to attenuate the shear wave

mode appearing at (x = 280m, t = 0.4s) in Figure 3.16(a). [ER] . . . 94

3.20 Receiver gather of 50 m depth dynamite source before (top row) and

after (bottom row) polarization filter to attenuate the shear arrival

at (t,x) = (0.4 s, 300 m). (a) Vertical component. (b) Radial com-

ponent. (c) Pitch component. (d) Vertical component. (e) Radial

component. (f) Pitch component. Data are shown after NMO with

velocity v = 1700 m/s to flatten the P-wave reflections. AGC with a

window size of t = 0.2 s has been applied for display purposes. Observe

that the circled shear-induced event has been attenuated, and that the

underlying P-wave reflections are visible after filtering. The filter has

killed the noise and the P-wave data have survived. [ER] . . . . . . . 95

xxx



3.21 A comparison of the filtering results using continuous wavelet polariza-

tion filter versus a low-cut filter on the 50 m depth dynamite receiver

gather at station 335. (a) Vertical component. (b) Vertical component

after application of continuous wavelet polarization filter. (c) Vertical

component after application of a low-cut filter, where the pass band was

25 Hz - 60 Hz. (d) Vertical component (a) in frequency-wavenumber

domain. (e) Vertical component (b) in the frequency-wavenumber do-

main. (f) Vertical component (c) in the frequency-wavenumber do-

main. AGC was applied to the data prior to FK transform. Observe

how in (b) and (e), the polarization filtering does not impartially re-

move low frequencies, unlike the low-cut filter in (c) and (f), and there-

fore there is no reduction in the spectral resolution of the data. [ER] 96

3.22 Receiver gather of 25 m depth dynamite source before (top row) and

after (bottom row) polarization filter to attenuate shear and ground

roll energy. (a) Vertical component. (b) Radial component. (c) Pitch

component. (d) Vertical component. (e) Radial component. (f) Pitch

component. Data are shown after NMO with velocity v = 1700 m/s

to flatten the P-wave reflections. AGC with a window size of t = 0.2 s

has been applied for display purposes. The shear-induced energy and

the spatially-aliased ground roll have been mostly attenuated, and the

underlying P-wave reflections in the top circle are visible after filtering.

In the top circle, we can see that the filter has killed the noise and the

P-wave data have survived. [ER] . . . . . . . . . . . . . . . . . . . . 98

3.23 Receiver gather of vibroseis source before (top row) and after (bot-

tom row) polarization filter to remove ground-roll energy. (a) Vertical

component. (b) Radial component. (c) Pitch component. (d) Vertical

component. (e) Radial component. (f) Pitch component. Data are

shown after NMO with velocity v = 1620 m/s to flatten the P-wave

reflections. AGC with a window size of t = 0.2 s has been applied

for display purposes. The spatially aliased ground-roll energy in the

bottom circle has been attenuated, though no coherent P-wave energy

is visible underneath the noise. In the top circle, flat P-wave reflections

are visible after filtering. [ER] . . . . . . . . . . . . . . . . . . . . . . 99
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3.24 Comparison of the vertical component receiver gather before and af-

ter polarization filtering to remove ground-roll energy in the frequency

wavenumber domain. (a) Vertical component before filtering. (b) Ver-

tical component after filtering. (c) Vertical component in the F-K

domain before filtering. (d) Vertical component in the F-K domain af-

ter filtering. AGC was applied prior to FK transform. Note the circled

aliased energy that is removed in (d) vs (c). This energy corresponds

to the ground roll indicated in the bottom circle in (a) and (b) The

broadband, low-wavenumber P reflection energy is more dominant in

(b). A standard frequency-wavenumber filter would have had difficulty

in separating signal from noise because of the aliasing. [ER] . . . . . 100

3.25 Illustration of the differences between designing the damping weights

(eq. 3.7) in the SVD polarization space for 3 components versus 2 com-

ponents. The axes represent the polarization unit vectors, while the

blue arrow indicates the template polarization vector in the 3D space.

The red arrow indicates the projection of the template polarization

onto one of the 2D planes. (a) The conical shape of the volume in the

3D SVD space that would be damped using the angle-based similarity

measure (eq. 3.6) if 3 data components were used. (b) The slice of the

2D SVD space that would be damped using the angle-based similarity

measure if only 2 data components were used. (c) The projection of the

damped 2D SVD space to the 3D SVD space, which is a wedge-shaped

volume rather than a conical one as for 3D damping. The angular

difference between two vectors in 3D is more restrictive than for 2D

and will affect the similarity measure and the corresponding damping

weights. To compare the polarization template matching for different

data components, it is therefore necessary to always compare using the

same number of components. [NR] . . . . . . . . . . . . . . . . . . . 102
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3.26 Comparison of polarization filtering of the shear-induced and ground

roll energy in the 25 m depth dynamite receiver gathers, when using

the vertical (Vz), radial (Vx) and pitch (Ry) components as inputs vs

when using the vertical (Vz), radial (Vx) and transverse (Vy) compo-

nents as inputs. (a) The input vertical (Vz) component. (b) The input

radial (Vx) component. (c) The input transverse (Vy) component. (d)

The input pitch (Ry) component. (e) Vertical component after filter-

ing using Vz, Vx, Ry components. (f) Vertical component after filter-

ing using Vz, Vx, Vy components. (g) Radial component after filtering

using Vz, Vx, Ry components. (h) Radial component after filtering us-

ing Vz, Vx, Vy components. Data are shown after NMO with velocity

v = 1700 m/s to flatten the P-wave reflections. AGC with a window

size of t = 0.2 s has been applied for display purposes. Comparing

(e) to (f) and (g) to (h), I observe that the shear-induced energy and

particularly the spatially-aliased ground roll at t = 0.6 s are better

attenuated when using the pitch rotational component, which contains

more coherent energy of these wave modes than does the transverse

component. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.27 Comparison of polarization filtering of the slow (250 m/s) ground roll in

the vibroseis receiver gathers, when using the vertical (Vz), radial (Vx)

and pitch (Ry) components as inputs vs. when using the vertical (Vz),

radial (Vx) and tranverse (Vy) components as inputs. (a) The input ver-

tical (Vz) component. (b) The input radial (Vx) component. (c) The

input transverse (Vy) component. (d) The input pitch (Ry) component.

(e) Vertical component after filtering using Vz, Vx, Ry components. (f)

Vertical component after filtering using Vz, Vx, Vy components. (g)

Radial component after filtering using Vz, Vx, Ry components. (h) Ra-

dial component after filtering using Vz, Vx, Vy components. Data are

shown after NMO with velocity v = 1700 m/s to flatten the P-wave

reflections. AGC with a window size of t = 0.2 s has been applied for

display purposes. Comparing (e) to (f) and (g) to (h), I observe that

the spatially-aliased ground roll (circled) is better attenuated when

using the pitch rotational component, which contains more coherent

energy of the ground roll than does the transverse component. [ER] . 106
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3.28 Comparison of polarization filtering of the shear-induced wave mode

in the 50 m depth dynamite receiver gathers, when using the verti-

cal (Vz), radial (Vx) and pitch (Ry) components as inputs vs when

using the vertical (Vz), radial (Vx) and pitch (Vy) components as in-

puts. (a) The input vertical (Vz) component. (b) The input radial

(Vx) component. (c) The input transverse (Vy) component. (d) The

input pitch (Ry) component. (e) Vertical component after filtering

using Vz, Vx, Ry components. (f) Vertical component after filtering

using Vz, Vx, Vy components. (g) Radial component after filtering us-

ing Vz, Vx, Ry components. (h) Radial component after filtering us-

ing Vz, Vx, Vy components. Data are shown after NMO with velocity

v = 1700 m/s to flatten the P-wave reflections. AGC with a window

size of t = 0.2 s has been applied for display purposes. Comparing to

(e) to (f) and (g) to (h), I observe that there are no significant dif-

ferences between the filtering results with the pitch component vs the

results using the transverse component, since the shear-induced wave

mode is similarly apparent on both of these input receiver components.

[ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Receiver gathers at station 335 for the vibroseis source. a) Vertical ac-

celerometer component. b) Radial accelerometer component. c) Trans-

verse accelerometer component. d) Yaw rotation-sensor component e)

Roll rotation-sensor component f) Pitch component derived from dif-

ferencing two adjacent inline vertical accelerometers. AGC has been

applied for display. Note the various types of surface wave modes

present, as annotated on (a), but are recorded on all components. The

yaw and the roll rotation-sensor components have very low SNR at

increasing offsets, and therefore I did not use them in the analysis

presented here. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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4.2 The training data at receiver station 335 for the SVM. a) Feature

vectors for each time sample for the multicomponent trace at offset

180m. b) The same feature vectors color coded by their respective

classification, ’Class 1’ being the slow ground roll mode and ’Class 0’

representing everything else. Note the differences between the feature

vectors of each class. These feature vectors and their respective labels

indicating the wave mode are the input to the SVM training. [ER] . 119

4.3 SVM training data at station 335, and testing results on the same

training data, for the vibroseis source. Only the vertical component

is shown, although the training data comprised the vertical, radial

and pitch components. a) Slow ground roll mode training data. b)

Fast ground roll mode training data. c) Slow+fast ground roll modes

training data. d) Testing classification of slow ground roll mode on

training data. e) Testing classification of fast ground roll mode on

training data. f) Testing classification of slow+fast ground roll modes

on training data. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 SVM classification of surface wave modes on test data at station 336,

for the vibroseis source. Only the vertical component receiver gather

is shown, although the training and test data comprised the vertical,

radial and pitch components. g): Input vertical component at station

336. a): classification of slow ground roll mode. b): Complementary

data to (a) (i.e., (g) - (a)). c): classification of fast ground roll mode.

d): Complementary data to (c) (i.e., (g) - (c)). e): classification of

slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)).

[ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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4.5 SVM classification of surface wave modes on test data at station 337,

for the vibroseis source. Only the vertical component receiver gather

is shown, although the training and test data comprised the vertical,

radial and pitch components. g): Input vertical component at station

337. a): classification of slow ground roll mode. b): Complementary

data to (a) (i.e., (g) - (a)). c): classification of fast ground roll mode.

d): Complementary data to (c) (i.e., (g) - (c)). e): classification of

slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)).

[ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 SVM classification of surface wave modes on test data at station 191,

for the vibroseis source. Only the vertical component receiver gather

is shown, although the training and test data comprised the vertical,

radial and pitch components. g): Input vertical component at station

191. a): classification of slow ground roll mode. b): Complementary

data to (a) (i.e., (g) - (a)). c): classification of fast ground roll mode.

d): Complementary data to (c) (i.e., (g) - (c)). e): classification of

slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)).

[ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 SVM classification of surface wave modes at station 335, for different

seismic source types. Only the vertical is shown, although the training

and test data comprised the vertical, radial and pitch. a) Vertical of

vibroseis source. b) The portion slow+fast ground roll mode labeled

as class 1 from the vibroseis source data used to train the SVM. c) The

complementary data containing body waves labeled as class 0 from the

vibroseis source data used to train the SVM. d) Vertical of accelerated

weight-drop source. e) classification of slow+fast ground roll mode

for the accelerated weight-drop source using the SVM trained on the

vibroseis data. f) classification of the complementary data for the

accelerated weight-drop source using the SVM trained on the vibroseis

data. g) Vertical of dynamite source. h) classification of slow+fast

ground roll mode for the dynamite source using the SVM trained on

the vibroseis data. i) classification of the complementary data for the

dynamite source using the SVM trained on the vibroseis data. [ER] . 126
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4.8 The input training feature vectors at training station 335 for trace at

offset 180m, for a varying number of components used in the train-

ing. The classification is color-coded. The slow ground roll mode is

’Class 1’ (red) and everything else is ’Class 0’ (blue). a) Vertical and

radial components. b) Vertical, radial and transverse components. c)

Vertical, radial, transverse and pitch components. The more compo-

nents used, the longer is the feature vector, and more differences can

be discerned between the feature vectors of the two wave modes. [ER] 128

4.9 SVM classification of surface wave modes at testing station 191, for a

varying number of receiver components used in training the SVM at

station 335. a) Classification of slow+fast ground roll using vertical,

radial, transverse and pitch components; b) using vertical, radial and

transverse components; c) using only vertical and radial components.

d,e,f) The complementary data to (a), (b) and (c), which are classified

as body waves. For this receiver gather, adding more components in

the SVM training improves the classification of the surface waves vs

the P waves. [ER] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.10 SVM classification of slow vs fast ground roll modes at testing station

336, for different components used in training the SVM at station 335.

a) Classification of slow ground roll using vertical, radial and pitch

components; b) using vertical, radial and transverse components. c)

Classification of fast ground roll using vertical, radial and pitch com-

ponents; d) using only vertical and radial and transverse components.

For this receiver gather, the SVM does a better job differentiating be-

tween the slow and fast ground roll modes when using the transverse

component rather than the pitch. [ER] . . . . . . . . . . . . . . . . . 131
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4.11 SVM classification of slow vs fast ground roll modes at testing station

191, for different components used in training the SVM at station 335.

a) Classification of slow ground roll using vertical, radial and pitch

components; b) using vertical, radial and transverse components. c)

Classification of fast ground roll using vertical, radial and pitch com-

ponents; d) using only vertical and radial and transverse components.

For this receiver gather, the SVM does a better job differentiating be-

tween the slow and fast ground roll modes when using the transverse

component rather than the pitch. [ER] . . . . . . . . . . . . . . . . . 132
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Chapter 1

Introduction

Rotational motions in seismology are not a familiar subject to most readers from the

seismological research community, therefore I will first introduce the concepts and the

nomenclatures I intend to use throughout the dissertation. I discuss the acquisition

of rotations and translations in fields other than seismology. I provide a review of

continuum mechanics concepts, and show how rotational motion is related to the

seismic wavefield. I then review some existing applications for data comprising both

translational and rotational seismic motion.

SEISMIC ROTATIONAL DATA

Rigid bodies in a three dimensional world have six degrees of freedom: three com-

ponents of translation and three components of rotation. In seismic acquisition, the

time derivatives of translations, i.e. the particle velocities, are commonly recorded

by three-component geophones. The rotations, which are not recorded in current in-

dustrial seismic acquisition, are termed pitch, roll and yaw, as shown in the following

table:

Axis Particle velocity Rotation rate
Z Vertical vz Yaw rz
X Radial vx Roll rx
Y Transverse vy Pitch ry

where vi are particle velocities along the i axis, and ri are rotation rates around the

i axis.

1
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Two examples that show a recording six degrees of freedom of motion come from

avionics and from biology. On an aircraft (Figure 1.1), an onboard inertial naviga-

tion system measures both linear motion using accelerometers, and rotations by a

gyroscope. These measurements are calibrated with ground based telemetry such as

GPS or radar stations to account for instrument drift. A pilot would find it difficult

to control a plane without the six-component data these instruments provide.

Figure 1.1: Sketch of the six de-
grees of freedom of a rigid body in
a 3D world. To know what an air-
craft is doing, it is not sufficient to
know its linear velocity but also its
rotations. There are three compo-
nents to the velocity, and in addi-
tion there are three components to
the rotation: roll, pitch, and yaw.
[NR] chap1/. jetrotations

In the human body, linear motions and rotations are measured in the inner ear.

Figure 1.2 shows the structure of a human ear. Two elements in the ear called the

saccule and utricle detect linear acceleration. The three semicircular ducts labels

“Anterior”, “Lateral” and “Posterior” in the figure record rotations. They contain a

fluid, and under the inertia caused by rotational motion, this fluid moves in relation

to the solid structure of the ducts. The relative motion of the fluid is felt by hair

cells lining the canal, which convert the motion to small electrical signals that are

transmitted via the nervous system to the brain. Additionally, the cochlea records

pressure changes, which is how we hear. The human ear is in effect a seven-component

sensor, and we would find it tricky to orient ourselves in a 3D world without the

component inputs from this sensor.

To show where rotations enter into the field of seismology, the next section will

review some concepts of continuum mechanics.

Elastic continuum theory review

The analysis presented here follows standard fundamental concepts in continuum

mechanics.
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Figure 1.2: The inner ear, the
human multicomponent recorder.
Utricle and saccule detect lin-
ear acceleration, while the semi-
circular canals detect rotations.
Cochlea detects pressure changes.
(Blausen, 2014). [NR]

chap1/. human-ear

Figure 1.3: Two points, P and Q,
are separated by δx = (δx, δy, δz).
P is displaced by u, and Q is
displaced by u + δu. [NR]

chap1/. displacement-gradient

P

Q

δx,δy,δz( )

u

u+δu
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A single point in space has no orientation. The cartesian coordinates x, y, z are

sufficient to specify its position and motion. Consider that we have two nearby points

in space P and Q, separated by (δx, δy, δz), as shown in Figure 1.3. The displacement

of point P is given by the vector u. P and Q are considered close enough that the

relative displacement δu between these two points can be given to a first order by the

displacement-gradient tensor L:


δux

δuy

δuz

 = L


δx

δy

δz

 =


∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x

∂uy

∂y

∂uy

∂z

∂uz

∂x
∂uz

∂y
∂uz

∂z



δx

δy

δz

 . (1.1)

The rank 2 tensor L is represented by a square matrix. Any square matrix can

be decomposed into a symmetric and an anti-symmetric part as:

L =
1

2

(
L + LT

)
+

1

2

(
L− LT

)
. (1.2)

For the displacement-gradient tensor L, the symmetric part is the Cauchy infinitesi-

mal strain tensor ε

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 =


∂ux

∂x
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
1
2

(
∂ux

∂z
+ ∂uz

∂x

)
1
2

(
∂uy

∂x
+ ∂ux

∂y

)
∂uy

∂y
1
2

(
∂uy

∂z
+ ∂uz

∂y

)
1
2

(
∂uz

∂x
+ ∂ux

∂z

) (
∂uz

∂y
+ ∂uy

∂z

)
∂uz

∂z

 , (1.3)

while the anti-symmetric part is the infinitesimal rotation tensor Ω

Ω =


0 −1

2

(
∂uy

∂x
− ∂ux

∂y

)
1
2

(
∂ux

∂z
− ∂uz

∂x

)
1
2

(
∂uy

∂x
− ∂ux

∂y

)
0 −1

2

(
∂uz

∂y
− ∂uy

∂z

)
−1

2

(
∂ux

∂z
− ∂uz

∂x

)
1
2

(
∂uz

∂y
− ∂uy

∂z

)
0

 . (1.4)

We can also define an infinitesimal rotation vector R, which is 1/2 of the curl of
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the displacement vector u:

R =


Rx

Ry

Rz

 =
1

2
∇× u =


0 −∂z ∂y

∂z 0 −∂x
−∂y ∂x 0



ux

uy

uz

 =


1
2

(
∂uz

∂y
− ∂uy

∂z

)
1
2

(
∂ux

∂z
− ∂uz

∂x

)
1
2

(
∂uy

∂x
− ∂ux

∂y

)
 . (1.5)

While the displacement vector u represents linear motion of a point, the rotation

vector represents the rotation of a volume element. The components of the rotation

vector R are measureable in the field, and contain the elements of the anti-symmetric

strain tensor Ω.

Examples of strains

To relate measurements of rotation to seismic data, let us look at several simple

variants of medium strain, as shown in Pujol (2003). In the following notation, α is

the amount of (infinitesimal) deformation, Xi are the dimensions of the element and

êi are unit vectors.

Dilatational strain

Figure 1.4: Dilatational strain
field, which generates a fractional
volume change but no rotation.
[NR] chap1/. strain0

u

X1	
  

X2	
   u2 

u1 

Dilational strain is shown in Figure 1.4. The displacement vector for this strain is

u = (1− α)X1ê1 + (1− α)X2ê2 + (1− α)X3ê3. (1.6)

Applying the rotation tensor (1.4) to this displacement, we see that dilatational strain

has no rotation:

ωij =
1

2
(ui,j − uj,i) = 0. (1.7)
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The symmetric strain tensor is

εij =
1

2
(ui,j + uj,i) =

(1− α)

2
(Xi,j +Xj,i) =

(1− α)

2
(δi,j + δj,i) = (1− α)δi,j, (1.8)

or more explicily,

ε =


1− α 0 0

0 1− α 0

0 0 1− α

 . (1.9)

The dilatational strain results in a fractional volume change (isotropic compression),

given by the divergence of displacements:

∇ · u = ui,i = 3(1− α). (1.10)

Simple shear strain

Figure 1.5: Simple shear strain
field, which generates rotation
but no volume change. Figure
from Pujol (2003). [NR]

chap1/. strain1

As opposed to dilatational strains, shear strains result in no net change of volume,

but rather in the shape of an element. Simple shear strain is shown in Figure 1.5.

The displacement vector for simple shear strain is

u = αX2ê1, (1.11)

and the symmetric strain and rotational tensors are
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ε =


0 α/2 0

α/2 0 0

0 0 0

 ; Ω =


0 α/2 0

−α/2 0 0

0 0 0

 . (1.12)

Simple shear generates rotations, but no change in volume.

Pure shear strain I

Figure 1.6: Pure shear type I
strain field, which generates no ro-
tation and no volume change. Fig-
ure from Pujol (2003). [NR]

chap1/. strain2

Pure shear strain type I is shown in Figure 1.6. The displacement vector for this

shear strain is

u = α(X1ê1 −X2ê2), (1.13)

and the symmetric strain and rotational tensors are

ε =


α 0 0

0 −α 0

0 0 0

 ; ωij = 0. (1.14)

Pure shear strain II

Figure 1.7: Pure shear type II
strain field, which generates no ro-
tation and no volume change. Fig-
ure from Pujol (2003). [NR]

chap1/. strain3



8 CHAPTER 1. INTRODUCTION

Pure shear strain type II is shown in Figure 1.7. The displacement vector for this

shear strain is

u = α(X2ê1 +X1ê2), (1.15)

and the symmetric strain and rotational tensors are

ε =


0 α 0

α 0 0

0 0 0

 ; ωij = 0. (1.16)

Unlike simple shear strains that generate rotations, both types of pure shear strains

do not generate rotations nor changes in volume.

Pure rotational strain

Figure 1.8: Pure rotation strain
field, which generates no volume
change. Figure from Pujol (2003).

[NR] chap1/. strain4

A pure rotational strain does not change the shape or the volume of an element,

only its orientation. Pure rotational strain is shown in Figure 1.8. The displacement

vector for this shear strain is

u = α(X2ê1 −X1ê2). (1.17)

and the symmetric strain and rotational tensors are

εij = 0; Ω =


0 α 0

−α 0 0

0 0 0

 . (1.18)
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Recording of strains vs recording of translations

Hooke’s law of linear elasticity states that the stress σij and symmetric strain εij

tensors are related by the fourth-order stiffness tensor Cijkl as

σij = −Cijklεkl, (1.19)

where, as in the Einstein notation, the repeating indices indicate an implicit summa-

tion over the spatial dimensions. In land and in ocean-bottom seismic acquisition,

the particle velocities ~v (the time derivatives of translations/displacements) resulting

from seismic energy propagating in the Earth are recorded by three-component geo-

phones coupled to the ground. Additionally, in both ocean-bottom node (OBN) and

marine streamer acquisition, a hydrophone coupled to the water records deviations

in pressure resulting from seismic energy propagating in the water column.

According to Hooke’s law, in an isotropic elastic medium, normal stress is propor-

tional to the divergence of particle translations, i.e., the dilatational medium strain:

σii =

(
κ+

4

3
µ

)
∂iui, (1.20)

where κ and µ are the bulk and shear moduli of the medium.

In an acoustic medium such as water the shear modulus is zero, and the summation

of normal stresses is termed pressure, which equals the trace of the stress tensor:

P = κ∂iui = κ∇ · ~u. (1.21)

A hydrophone effectively measures the pressure variations in equation 1.21 caused

by the passage of a P-wave in water. If we knew the particle translations everywhere

within a given volume, then we could calculate the pressure value by applying the

spatial derivatives shown in equation 1.21 to the recorded translational data. How-

ever, receiver stations are usually too sparse in relation to the acquired wavelengths to

calculate the spatial divergence of translations, and in any case are commonly spread

along a single surface (the sea bottom, or land surface).
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The value of the divergence is not redundant even if we measure the three compo-

nents of translation, since it can be used to ascertain the vertical propagation direction

of the waves incident on the sea bottom (Barr and Sanders, 1989). The pressure that

the hydrophone records is proportional to the divergence of the particle translations,

and is therefore used in upgoing/downgoing wavefield separation of OBN data.

Furthermore, we must remember that the definitions of seismic waves come not

from their translations, but from the medium strains they generate. Figure 1.9(a)

shows the strains generated by a P-wave propagating through an unbounded, homo-

geneous medium. Note the dilatational strain (eq. 1.9) it applies to the medium. The

particle translations themselves are parallel to the propagation direction.

The propagating shear wave in Figure 1.9(b) generates simple shear strains. The

particle translations are perpendicular to the propagation direction of the shear wave.

However, because the P-wave and the shear wave are propagating in perpendicular

directions, the particle translations are identical, even though the strains are different.

A three-component geophone would record the same signal for both of these waves.

A rotation sensor would measure the rotation vector R, i.e. the curl of the trans-

lational wavefield (1.5), which contains the elements of the anti-symmetric rotation

tensor (1.4). Since a simple shear strain comprises rotational strains (1.12), a rotation

sensor in a homogeneous medium would record the passage of the shear wave, but

not of the rotation-free P wave.

Similarly, a pressure sensor (i.e., a hydrophone) would record the passage only of

the P wave, because, unlike the shear wave, it generates dilatational strains.

The situation is more complicated on a medium interface, where surface waves

may occur. For example, the strains generated by the passage of a Rayleigh wave in

Figure 1.10(a) are some combination of both horizontal-rotational and dilatational

strains. Love waves (Figure 1.10(b)) generate shear and vertical rotational strains.

Additionally, at a medium interface mode conversions from P to S may occur. The

converted shear mode, combined with the incident and reflected P wave, can combine

to form both dilatational and rotational strains at the interface. This is particularly

relevant in seismic acquisition, since seismic data are always, invariably, recorded on

a medium interface, i.e. the free surface, either on land or on the ocean bottom.
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Since strains are spatial derivatives of translations, we may conclude that geo-

phones do not record strains, as they measure medium translations and not the spa-

tial derivatives of those translations. This is the fundamental difference between what

geophones measure as compared to what hydrophones and rotation sensors measure.

In other words, just as we may not expect to record the dilatational medium strain

(1.9) with a three-component geophone, we similarly cannot expect to record the

rotational medium strains (1.18,1.12) using a three-component geophone.

Theoretically, if all three components the particle translation wavefield were well

sampled in all directions, then we would be able to calculate all medium strains explic-

itly by summing or differencing the translational components. In practice, however,

this would severely increase the expense of seismic acquisition, especially considering

vertical sampling which would entail the digging of boreholes at each receiver position.

Additionally, the differences in coupling between sensors would need to be taken into

account. Therefore, in order to fully capture the complexity of the elastodynamic

seismic wavefield at the point of measurement, in addition to geophones we require

sensors that can, by design, record medium strains.

(a) (b)

Figure 1.9: The medium strains generated by the passage of seismic body waves
in an unbounded homogeneous medium. (a) A plane P wave, which generates
a dilatational strain. (b) A plane shear wave, which generates a simple shear
strain. As a result of their perpendicular propagation directions, the translations
of these two waves are identical, even though the strains are different. [NR]

chap1/. P-wave-deform,S-wave-deform
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(a) (b)

Figure 1.10: The medium strains generated by the passage of seis-
mic surface waves in a laterally homogeneous medium. (a) A Rayleigh
wave, which generates a combination of dilatational and rotational
strains. (b) A Love wave, which generates shear and rotational strains.
(http://web.ics.purdue.edu/braile/edumod/waves/WaveDemo.htm) [NR]

chap1/. Rayleigh-wave-deform,Love-wave-deform

Visualization of six components of motion

The standard method of observing seismic trace gathers is to look at either wiggle

plots or color plots (usually greyscale) where the axes are time and some spatial axis

such as offset. For multicomponent data, it is customary to observe each component

in a separate gather. I found that this method is not useful for instructing the viewer

in the actual motion that is occuring as a result of the passage of seismic waves,

especially if I want to show rotations together with translations.

Robert Brune had the idea of using the BMW corporation symbol to represent the

two translational and one rotational degrees of freedom for 2D data. I extended this

idea to 3D using a visualization tool called a “seisball”. An example of the seisball

display is shown in Figure 1.11. The seisball represents the motion of the ground at

the receiver position, over time. In Figure 1.11, each ball is a time sample of a trace

from the Kettleman six-component dataset (described in chapter 3). The left and

right displacement of the ball represents the radial geophone component, while the

change in size represents the transverse geophone component. The vertical motion of

the ball is represented by vertical displacement, which in this display is also coincident

with the vertical temporal axis. The 3D rotations are represented by the seisball’s

rotations.

Both of the traces shown in Figure 1.11 are from the same receiver position. How-

ever, the left trace shows only the translational data as measured by the geophones,
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while the right trace shows both the translations and rotations as measured by ro-

tation sensors. What is striking in this display is the amount of ground motion not

being recorded by current seismic acquisition.

Figure 1.11: Comparison of the seisball visualization for a three-component data trace
representing only translational components (left) vs the same data trace but with six-
components representing both translational and rotational components (right). The
data are from the Kettleman six-component survey (described in chapter 3), where
both translations and rotations were recorded. Note how much richer in ground
motion information the 6C data are. Current seismic acquisition only records 3C
data like the trace on the left. [ER] chap1/. VibNomad65-st335-sb-tr

Current applications for seismic rotational data

Most of the research that has been done on seismic rotations was by the earthquake

seismology and earthquake engineering communities. There is interest even in the field

of gravity-wave measurements, where seismic rotations are effectively noise (Lantz

et al., 2009).

Lee et al. (2009) provide some historical background for the study of rotational

seismology, and introduce some of the fields of study to which seismic rotations are



14 CHAPTER 1. INTRODUCTION

relevant. Theoretical seismologists like Aki and Richards (2002) have argued that

rotations should be recorded in addition to translations in order to completely describe

ground motion. Huang (2003) reports observations of significant ground rotations

induced by the 1999 Chi-Chi earthquake in Taiwan.

Of particular importance for the earthquake seismology community is the fact

that the seismometers themselves are sensitive to rotations, which is why integration

of earthquake accelerometer records may result in an apparent total translation. Tri-

funac and Todorovska (2001), Grazier (2005) and Pillet and Virieux (2007) discuss

the effect of seismic rotations on linear accelerometer recordings for the case of strong

motion in the near field of earthquakes. They conclude that a direct recording of

rotations is required in order to correct accelerometer measurements for tilt-induced

gravitational effects and centrifugal acceleration generated by the seismic rotations,

which effectively cause the accelerometer components to lose their vector fidelity.

Lin et al. (2010) carried out a lab experiment, where a six-degree-of-freedom

robotic arm generated controlled strong motion on a plate to which both accelerom-

eters and rotation sensors were attached. They show how to dynamically correct the

accelerometer records for the rotation-induced effects. The claim is that similar cor-

rections may be required for accelerometers measuring the near-field of earthquakes.

Another interesting application for rotational data is direct shear-wave speed de-

termination. Let u (xr, t) denote a displacement field recorded at receiver position

x = xr. If the wave being recorded is a plane shear wave in a homogeneous, isotropic

medium, then we have:
1

2

|u̇ (xr)|
|R (xr)|

= Vs, (1.22)

where R (xr) is the rotation at the same receiver position x = xr and Vs is shear-

wave velocity. This relation implies that information on subsurface velocity structure

(otherwise only accessible through seismic array measurements and combined anal-

yses) is contained in a single point measurement. Igel et al. (a) and Igel et al. (b)

report on this very useful application for directly measuring shear-wave velocity and

also the back-azimuth of shear arrivals using just one six-component point sensor.

Aldridge and Abbott (2009) also demonstrate this concept, calling it “the point seis-

mic array”, which offers the intriguing possibility of dispensing with conventional

spatially-extended receiver arrays designed to record similar observables. Fichtner
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and Igel (2009) derive sensitivity densities for the shear-wave velocity calculated by

dividing the particle velocity by the rotations, and show that the shear-wave velocity

so derived is relevant only to the near surface in the vicinity of the receiver. A direct

measurement of shear phase velocity may therefore be used as a constraint for elastic

near-surface tomography.

In earthquake engineering, the traditional approach to testing structure respones

is to represent simplified strong earthquake motions, usually only the horizontal trans-

lational components of acceleration. Rotational excitation of the torsional (vertical

rotation) and rocking components (horizontal rotations) are never considered, due

to a lack of such data. Trifunac (2006) discusses structural responses to ground ro-

tations. Using synthetic seismic modeling, he compares the response of structures

to translational-only vs translational and rotational ground motions. Analysis of

building responses to strong ground rotations may have considerable implications for

current building codes.

In the field of exploration seismology, very few studies have been done on seismic

rotations, owing mostly to the lack of field data. However, more than 30 years ago

Cowles (1984) registered a patent that describes a “Rotational geophone” designed

to record seismic rotations.

Aldridge et al. (2007) compare the AVO of rotational data resulting from modeling

with a full poroelastic equations vs an “equivalent elastic medium”. They note that

for the rotational components, which in their simulation contains the shear-wave

arrival, there is a discernable difference in the AVO behavior of the full poroelastic

medium as compared to the equivalent poroelastic approximation.

Brune et al. (2012) discuss the various uses of translational and rotational data

for exploration seismology, including shear-wave selectivity for microseismic appli-

cations, and the doubling of the spatial Nyquist frequency for the vertical geophone

component. On a free surface, the horizontal rotational component effectively records

the spatial gradient of the vertical particle displacement field. The spatial Nyquist

frequency can be increased by combining the vertical displacement gradient measured

by rotation sensors with the vertical displacement measured by geophones.

Muyzert et al. (2012) demonstrated how the gradient of vertical displacement

measured by rotational components can be used to interpolate vertical geophone field
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data, and thus mitigated the effect of spatial aliasing of high-wavenumber arrivals in

their land data. This is similar to the concept shown in Vassallo et al. (2012), where

hydrophone and accelerometer data were combined in marine streamer acquisition to

interpolate the pressure wavefield in the crossline direction between streamer cables.

Along similar lines, Yuanyuan and Holt (2015) use the gradient of vertical displace-

ment calculated by differencing geophone pairs to carry out wavefield gradiometry on

U.S. array data. The gradiometry enables an estimation of phase velocity in the

medium and the back-azimuth of arrivals.

Edme et al. (2014) treat rotational data as a noise model for ground-roll, and use

adaptive subtraction in order to remove ground roll from the vertical component of

geophone land data. Li and van der Baan (2015) show how to enhance microseismic

event localization derived from picked P- and S-wave arrivals in borehole data using

both the translational and rotational wavefield.

THESIS OVERVIEW

The goal of this thesis is to describe how rotational seismic field data may be acquired,

and how the addition of rotational data components to the current set of acquired

components in the exploration seismology industry will aid in the processing of seismic

data. The remainder of this thesis is organized as follows:

Rotational data acquisition methods

In Chapter 2, I describe the various technologies currently available for measuring ro-

tations. I show a new method for acquiring rotational data using induction-coil mag-

netometers. Induction-coil magnetometers generate current when they are rotated

within the Earth’s magnetic field, and the current is proportional to the amount of

rotation. I show how to obtain seismic rotations from the small magnetic deviations

recorded by these magnetometers. To validate the method, we performed a seismic

survey where both magnetometers and inertial rotation sensors were used to record

waves generated by an active source. The results indicate that seismic rotations can

be derived from induction-coil magnetometers if the ambient magnetic noise level is

low and if the rotation axis is not coincident with the Earth’s ambient magnetic field’s
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direction.

Field data application I: wave mode separation

In Chapter 3, I show how to combine translational data from geophones and rotational

data from rotation sensors to identify and separate particular wave modes in a 6C field

dataset. I develop a polarization filter in the continuous wavelet domain in order to

identify and subsequently attenuate shear and surface wave modes. Since the method

operates on a trace by trace basis, it is not sensitive to spatial aliasing issues.

Field data application II: machine learning for wave mode

identification

In Chapter 4, I use a machine learning algorithm to identify wave modes on combined

translational and rotational field data. I derive feature vectors for the data, and train

a Support Vector Machine to identify features of a particular wave mode. Just like

the previous chapter, the method is immune to spatial aliasing.
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Chapter 2

Seismic rotations from

induction-coil magnetometers

Most of the current rotational sensing technology is not targeted toward recording

seismic rotations. There is a limited number of instruments that were designed for

rotational seismology, and the technology for building them is yet in an immature

state. There is no industrial producer of rotation sensors. In this chapter I will

review some of the rotational acquisition technologies, and propose a new method

of recording rotations using an existing technology that has been employed in large

exploration surveys: induction-coil magnetometers.

INSTRUMENTS CAPABLE OF RECORDING SEISMIC

ROTATIONS

If we consider the type of sensors required by the exploration seismology industry for

recording any observable related to seismic waves, there are several characteristics

that are necessary:

1. Durability: The sensor must operate in a variety of temperatures, pressures,

and moisture environments.

2. Reliability: The sensor response must be consistent over time, and not be af-

fected by the environment.

19
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3. Sensitivity: The noise floor of the sensor must be lower than the signal amplitude

we are attempting to record.

4. Dynamic range: The sensor should be able to record the range of amplitudes

that may be present in the signal.

5. Power consumption: Ideally, we would like the sensor to use as little power as

possible, particularly in the ocean-bottom node scenario, where the sensor relies

on a finite battery for its power.

6. Availability/economy: Current seismic acquisition utilizes thousands of receivers.

A desirable sensor will have the characteristics listed above, and yet be cheap

enough to manufacture in large quantities so as to make it a viable solution for

large surveys.

Admittedly, this is probably only a partial list of requirements.

The existing rotational acquisition technology comprises a range of instruments,

each with its particular operating principle, sensitivity, and power requirements. By

and large, current rotational acquisition technology was never intended by design to

record seismic rotations. Rather, it is the recent interest in seismic rotations as a

new field of research that is spurring adaptations in the design of existing sensors to

record these (very weak) rotations.

However, there is a principal problem related to recording of rotations: The larger

the sensor is, the higher its sensitivity, but the lower is its applicability for exploration

seismic acquisition.

In the Kettleman six-component land dataset which will be presented in Chapter

3, the strongest rotational signals observed in the near-field of a vibroseis source were

on the order of 100 rad/sec. At rotation-rate values of 10−4 rad/sec, the signal was

no longer visible above the noise. This was not a result of the lack of signal, since the

translational geophones were recording signal where the rotation sensors were not,

but rather a limitation of the rotation-sensing instruments being used in the survey.

Judging by the experience I’ve had with recording rotational data, I would say

that a rotation sensor would need to record from a few rad/sec down to 10−6 rad/sec

to be relevant for exploration seismology. Therefore, a useful rotational sensor must

have a dynamic range of 120 dB.
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Ring-laser Gyroscope

Ring laser gyroscopes operate by measuring the Sagnac effect: a slight change in

phase and beat frequencies of two beams of light traveling in an enclosed loop in

opposite directions. In a ring-laser gyroscope, as shown in Figure 2.1(b), two counter-

propagating light beams are shot in opposite directions. The ring laser is coupled to

the ground. When a ground rotation perpendicular to the plane of the ring laser

occurs (i.e., around the vertical axis), The path length each light beam traverses

changes, and the Sagnac effect is measured by the ring-laser instrument.

Ring lasers were originally designed for measuring physical quantities relevant to

field of geodesy, such as minute rotations resulting from variations in the rotation rate

of the Earth. They can record rotations down to 10−13 rad/sec. Rotations resulting

from ambient seismic waves are considered to be noise by the researchers that use

ring lasers. However, it was recording of earthquakes by the ring-laser gyroscope in

Wettzell, Germany (Schreiber et al., 2006), that sparked recent interest in recording

of seismic rotations.

Ring lasers are very large, a few meters on a side as show in Figure 2.1(a). They

require constant temperature and pressure conditions, and need to be balanced. Con-

sequently, they aren’t applicable for active seismic field surveys.

(a) (b)

Figure 2.1: a) The ring laser gyroscope in Wettzell, Germany (Source:
http://www.fs.wettzell.de). b) Schematic of the ring laser’s operation principle
(Source: https://en.wikipedia.org/wiki/Sagnac effect). Two beams of laser light are
shot in opposite directions. If the structure rotates around the axis perpendicular to
the plane of the light beams, a frequency interference proportional to the rotation
will occur as a result of the change of the length of the path the light beams traverse.
[NR] chap2/. wetzel-ring-laser,ring-laser-schematic
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Fiber-optic Gyroscope

Fiber-optic gyroscopes (FOGs) operate on the same principle as ring lasers, a record-

ing of the Sagnac effect. However, instead of having a large instrument, the FOG

economizes on size by having a coiled optical fiber. Two counter propagating, polar-

ized light beams are shot into both ends of the coiled loop (Figure 2.2(b)). When

rotation occurs, a phase shift proportional to the rotation is measured. The sensitiv-

ity of the instrument can be controlled by the number of coiled loops. Furthermore,

they are small enough so that three perpendicular instruments may be assembled into

one casing, as shown in Figure 2.2(a). FOGs are used in a variety of platforms that

require attitude control such as planes, missiles and submarines.

Current FOGs have reasonable sensitivity at low frequencies, approximately 10−8

rad/sec at frequencies below 10 Hz. New models are being developed that would

deliver the same sensitivity at higher frequencies that are within the seismic band

of interest. However, a possible hindrance to adoption of FOGs in industrial seismic

acquisition is their relatively high power usage.

(a) (b)

Figure 2.2: a) a Fiber-optic ring laser gyroscope schematic (Source:
http://web.ixblue.com/cn/aw6ym/fiberoptic-gyroscope). b) Schematic of
the operating principle of a fiber-optic ring laser gyroscope (Source:
https://en.wikipedia.org/wiki/Fibre optic gyroscope). Light is shot into both
ends of the coiled fiber. The light beams’ interference will change in proportion to
the rotation rate of the instrument. [NR] chap2/. iXblue-FOG,FOG-schematic
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Magnetohydrodynamic sensor

A magnetohydrodynamic sensor comprises a locally generated static magnetic field

with a conductive fluid as a proof mass to measure rotations. A constant magnetic

flux is generated through the central axis of the instrument (Figure 2.3(b)). when the

instrument rotates, the inertia of the conductive fluid keeps it in place, resulting in a

relative motion between the conductive fluid and the magnetic field. This results in

an induced radial electric field, the strength and direction of which are proportional

to the amount of rotation.

These types of instruments are physically very small, a few centimeters on a

side (Figure 2.3(a)), and have low power consumption. They can record frequencies

relevant to seismic exploration, and are currently being used in boreholes to record

microseismic energy. Current sensors have a noise floor on the order of 10−6 rad/sec

and a dynamic range of 100 dB, which may be sufficient for industrial exploration

seismology purposes. However, I have not had personal experience with these sensors,

so I would be reluctant to make claims about their usefulness.

Electrokinetic sensor

Electrokinetic rotation sensors operate on a principle similar to a magnetohydrody-

namic rotation sensor, however for these sensors there is no induced magnetic field

involved. There is a a conductive fluid within ring structures, shown in Figure 2.4(b),

which acts as the inertial mass. When rotation occurs around the axis perpendicular

to the ring structure, the relative motion between the fluid and electrodes embedded

within the ring structure generates a current proportional to the rotation rate.

According to manufacturer specifications, the “R2” sensor shown in Figure 2.4(a)

has a noise floor of 5.7×10−7 rad/sec, and has a flat requency response in the frequency

range of 0.05 to 20 Hz.
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(a)

(b)

Figure 2.3: a) A Magnetohydrodynamic sensor. b) Schematic of a magnetohydrody-
namic sensor capable of recording rotational signals down to 10−6 rad/sec. A magnet
fixed to the sensor casing generates a magnetic flux through the center of the instru-
ment. A conducting fluid acts as an inertial proof mass, when the sensor rotates,
the relative velocity between the fluid and the magnetic flux generates a radial elec-
tric field, proportional to the rotation rate. (Source: http://www.aptec.com/) [NR]

chap2/. ARS-15-MHD,MHD-schematic
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(a) (b)

Figure 2.4: a) An R2 electrokinetic inertial rotation sensor in its casing, approximately
12 cm on each side (The model name given by the original company that built them
is “METR03”). b) The internals of the sensor, showing the ring structures. The ring
structures are filled with an electrolytic fluid, which generates a current when the
sensor rotates around the axis perpendicular to the ring. The amount of current is
proportional to the rotation rate. Each sensor has three perpendicular rings, and can
therefore record 3-component ground rotations (Figure courtesy of Robert Brune).

[NR] chap2/. METR03,R2-sensor-internal

Estimating rotations by geophone differencing

Rotations can be estimated by differencing closely-spaced geophones, a method some-

times termed “array-derived rotations” in literature. In Hooke’s law, the stress-

displacement relation for tangential stresses reads:

σij = µ (∂jui + ∂iuj) , (2.1)

where σij are the tangential stresses, ui are particle displacements and µ is the shear

modulus.

At a free surface, or when going from a medium with shear strength to one without

shear strength (such as the ocean-bottom interface), the tangential stresses σxz and

σyz are zero. Therefore, assuming we have receivers laid out on a flat free surface, we

have

∂zuy = −∂yuz,

∂zux = −∂xuz, (2.2)
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meaning that the vertical derivative of the horizontal displacement component is equal

to the horizontal derivative of the vertical displacement component.

Rotations are defined as the curl of the wavefield as shown in eq. 1.5. Since

geophones record the time-derivative of displacement (particle velocity), I use the

time-derivative of rotation, or rotation rate:

~r =
1

2
(∇× ~v) =

1

2

(
X̂ (∂yvz − ∂zvy) + Ŷ (∂zvx − ∂xvz) + Ẑ (∂xvy − ∂yvx)

)
. (2.3)

Substituting equation 2.2 into 2.3, we see that on a free surface

(roll) rx = ∂yvz,

(pitch) ry = −∂xvz,

(yaw) rz =
1

2
(∂xvy − ∂yvx) , (2.4)

i.e., the horizontal rotation-rate components can be derived by differencing vertical

geophones, and the vertical rotation-rate components can be derived by differencing

horizontal geophones.

The challenge with estimating rotations from geophone differencing is determining

the distance required between the adjacent geophones. The upper bound for the

distance between the geophones is half the horizontal spatial wavelength, in order to

avoid aliasing. The lower bound, however, depends on the level of ambient noise.

Differencing the signal of two adjacent geophones necessarily decreases the signal to

noise ratio, as we are subtracting most of the actual signal that was recorded on the

two geophones. Furthermore, the two geophones may have different coupling to the

ground, and the inherent instrument response of the geophones may not be perfectly

identical.

To determine the upper bound for the desired spacing between the geophone pairs

being differenced, we must make assumptions regarding the frequency and wavenum-

ber of the expected arrivals. To determine the lower bound, we must know the

difference in instrument response and coupling for each pair of geophones, and the

ambient noise characteristics at each receiver station. Therefore, in practice, acquir-

ing rotations for broadband data by geophone differencing alone may not be reliable.



27

We would ideally prefer to not rely on geophone differencing for rotational-data ac-

quisition. The exception is the Rotaphone instrument.

Rotaphone

The Rotaphone (Brokesova and Malek, 2015) is an instrument that effectively cal-

culates equations 2.4 on data acquired by pairs of closely-spaced geophones placed

on a free surface. Figure 2.5(a) is a photo of the instrument, and 2.5(b) shows the

instrument design. The reliable operation of the Rotaphone depends on an in-situ

callibration procedure, where the differences in instrument response and coupling for

each pair of geophones are explicitly measured, and are later accounted for during field

recording. The reliance on multiple pairs of geophones to record the rotations further

reduces any errors that result from the differencing of the closely-spaced geophones.

Since the Rotaphone has multiple geophones, it effectively records all six components

of motion. As of October 2016, two prototype Rotaphone instruments are being

tested for microseismic recordings at The Geysers geothermal plant in California.

(a) (b)

Figure 2.5: a) A Rotaphone instrument. The diameter of the disc is 44.5 cm. b)
Schematic of the Rotaphone. The sensor system consists of vertical and horizon-
tal geophones mounted in parallel pairs to a rigid frame anchored to the ground.
Separation distance between each geophone pair along the circumference of the disc
is 40 cm, much smaller than the seismic wavelength the instrument is designed to
record. According to its designers, the dynamic range of the rotaphone is 120 dB,
and it can record rotations down to 4 nrad/s. (Source: http://rotaphone.eu) [NR]

chap2/. rotaphone,rotaphone-schematic
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MAGNETOMETERS AS ROTATION SENSORS

The objective of this chapter is to show how rotation data can be derived from

Induction-Coil Magnetometer (ICM) recordings. This concept was explored previ-

ously in Kappler et al. (2006) using earthquake data recorded by USGS permanent

electromagnetic (EM) land stations in California. The attempt was to explain the

coseismic signal appearing on the EM components as a product of ground rotations. I

expand on this concept and conduct a seismic field survey using both rotations sensors

and ICMs, to validate if and how ICMs may be used as seismic rotation sensors.

ICMs are currently being used in large-scale magnetotelluric and controlled-source

electromagnetic surveys, are field deployable in a variety of land and marine environ-

ments, and also have a low power consumption. Therefore, the possibility of deriving

seismic rotations from magnetometers is compelling, as this acquisition technology is

robust and has already seen academic and commercial use. The seismic exploration

industry is experienced in deploying these instruments.

ICMs (Figure 2.6) operate according to Faraday’s law. Copper wire is wound

around a magnetically permeable core. When a change in the magnetic flux perpen-

dicular to the coil’s cross-section occurs, a current is induced in the wires.

I explain the connection between magnetic flux changes and seismic rotations as

follows: Assume three orthogonal ICMs coupled to the ground, and rotating with

the ground as a result of a seismic wave generating a rotational deformation of the

medium. The Earth’s magnetic field, however, does not rotate and is effectively

constant in direction and in amplitude for the period of the seismic wave. The ground

rotation therefore manifests itself as a change in the projection of the Earth’s magnetic

field on the orthogonal ICM components. An illustration of this is shown in Figure

2.7.

The change in projection of the Earth’s magnetic field on the ICM components

results in a change of flux through the coils, and generates a current. After des-

ignature of the ICM, and taking into account the local magnetic field at the point

of measurement, we can translate the ICM recording of magnetic flux deviations in

Teslas to rotations in radians.

It must be noted that other explanations exist for coseismic EM signals, such as

the electrokinetic effect. However, the model that explains coseismic EM data using
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Figure 2.6: Induction-Coil Mag-
netometers, built by the Scripps
Institute of Oceanography. Coils
of aluminium wire are wound
around a magnetically perme-
able core. A current is induced
in the wire when the magnetic
flux perpendicular to the coil’s
cross section changes. [NR]

chap2/. ICMs

(b)	
  (a)	
  

Figure 2.7: Illustration of how ground rotation is recorded on the magnetic field
sensor as represented by the compass, which is coupled to the ground. (a) Before
ground rotation, the magnetic field (red) is recorded only by the North component
(yellow). (b) During ground rotation, the magnetic field (red) does not change, but
its projection on the North and East components (yellow) changes. We can calculate
the amount of rotation from the change in projection. Note that translations of the
ground will not result in a change of the projection of the magnetic field on the
magnetic components. [NR] chap2/. compass-rotation
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the electrokinetic theory has many unconstrained parameters (Pride, 1994). I do not

discount the electrokinetic theory as a model for coseismic EM data, since a seismo-

electric effect has been experimentally shown to exist by Haines (2004). However,

even though the correct combination of the electrokinetic model parameters may ex-

plain some of the coseismic EM signal appearing on induction-coil magnetometers,

ground rotations are a more parsimonious model that explains these data, and by

Occams razor are therefore preferable. Additionally, in the particular field survey

we conducted, it is unlikely that the coseismic signal was caused by electrokinetic

effects. The presence of water is crucial for generation of a coseismic electrokinetic

signal. However, our survey site is extremely arid, and the depth of investigation was

shallow, well above the water table.

CONVERSION FROM INDUCTION-COIL

MAGNETOMETER RECORDINGS TO ROTATION

RATES

Designature of magnetometer data

Faraday’s law states that the voltage V generated within a loop of wire is proportional

to the rate of change of the magnetic flux Φ passing through the loop

V = −dΦ

dt
. (2.5)

In an ICM, there are N loops of wire wound around a cylinder of area A. The flux

can be written as Φ = NAB, where B is the magnetic induction normal to the area

of the wire loop

V = −NAdB
dt
. (2.6)

The magnetic induction B is related to the magnetic field H as B = µ0µrH, where µ0

is the magnetic permeability of free space and µr is the relative magnetic permeability

of the material that the loop of wire is wound around. The expression for an ICM

which includes a permeable core is then
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V = −NAµ0µr
dH(t)

dt
. (2.7)

Equation 2.7 shows that the output voltage is linearly related to the number of turns

of the wire N , the area of the loops A and the relative permeability of the core

material in the loop µr. The sensitiviy of the ICM can be controlled by varying these

parameters.

Assuming a harmonic time function for the magnetic field H(t) = H0e
iωt, the

frequency response of an air core ICM is

|V | = ωNAµ0H0. (2.8)

The air core magnetometer has a voltage sensitivity that is proportional to the fre-

quency. For an ICM with a permeable core, additional boundary conditions of the

induced magnetic field in the core are required to derive an accurate instrument

response. These conditions have been derived by Key (2003), and are used when

designaturing the instrument response of the ICM.

The magnetic data after designature are the small deviations of the magnetic field

strength on the 3 orthogonal magnetic components over time:

~Hdev(t) = [Hdev

x (t), Hdev

y (t), Hdev

z (t)]. (2.9)

In order to have the total projection of the Earth’s ambient magnetic field on each

ICM components, I add the ambient field value using data from the World Magnetic

Model ( ~Hwmm) (British Geological Survey, 2014) for the location and date when the

data were gathered:

~H(t) = [Hdev

x (t) +Hwmm

x (t), Hdev

y (t) +Hwmm

y (t), Hdev

z (t) +Hwmm

z (t)]. (2.10)

The Earth’s predominant magnetic field is not constant, but it changes at time

scales much larger than the period it takes to execute a small seismic survey (9 hours,

in our case).
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The forward modeling process: Conversion from rotation sen-

sor data to magnetic vector projections

I consider the ground rotations to be the “model” of rotations m. The forward

modeling operator F converts the rotations model to magnetic vector projection data,

i.e., d = Fm. The forward modeling operator itself is an Euler rotation matrix. The

rotation matrix applies 3D rotations to the projections of the ambient magnetic field,

as specified by the World Magnetic Model, on each magnetometer component:

 Hx

Hy

Hz

 =

 c(Ry)c(Rz) −c(Ry)s(Rz) s(Ry)

c(Rx)s(Rz) + c(Rz)s(Rx)s(Ry) c(Rx)c(Rz)− s(Rx)s(Ry)s(Rz) −c(Ry)s(Rx)

s(Rx)s(Rz)− c(Rx)c(Rz)s(Ry) c(Rz)s(Rx) + c(Rx)s(Ry)s(Rz) c(Rx)c(Ry)


 Hwmm

x

Hwmm
y

Hwmm
z

 , (2.11)

where c and s are cosine and sine, respectively, and R(xyz) are the components of the

rotation vector. I subtract the ambient field in order calculate the magnetic deviations

we would expect the magnetometers to record given the ground rotations:

~Hdev(t) = [Hx(t)−Hwmm

x (t), Hy(t)−Hwmm

y (t), Hz(t)−Hwmm

z (t)]. (2.12)

The reverse mapping process: rotations from magnetic vector

projections

Application of equations 2.5 to 2.10 provides the values of the projections of a constant

vector on our 3 orthogonal components. Our components are rotating in space over

time, and therefore the vector’s projection on the 3 orthogonal components changes

according to the rotations.

I consider the magnetic vector projections to be our data d. The reverse mapping

operator L converts the magnetic vector projection data to a model of rotations, i.e.,

m̂ = Ld. In order to calculate the rotations from the projections, I first convert

the projection data to the axis-angle representation. The angle of rotation between
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consecutive time steps is calculated by

θ(t) = cos−1

 ~H(t+ ∆t) · ~H(t)∣∣∣ ~H(t+ ∆t)
∣∣∣ ∣∣∣ ~H(t)

∣∣∣
 , (2.13)

while the unit vector describing the axis of rotation is

û(t) =
~H(t)× ~H(t+ ∆t)∣∣∣ ~H(t)× ~H(t+ ∆t)

∣∣∣ . (2.14)

Equations 2.13 and 2.14 provide the total amount of rotation and the axis of

rotation. However, in order to have meaningful rotation data, i.e., comparable to

the measurements we would expect from a three-component rotation sensor, we need

to convert from the axis-angle representation to the rotation rate around the three

orthogonal axes. For that, we must first convert to a quaternion representation of

the rotation angle and axis. The interested reader may refer to Hanson (2005) for a

comprehensive explanation of the concept of quaternions, as put forth by Hamilton

(1844).

Our quaternion four-vector system state q begins with no rotation, i.e.

q(t = 0) =


qw

qx

qy

qz

 =


1

0

0

0

 . (2.15)

I use equations 2.13 and 2.14 to get the rotation angle θ and the rotation axis ~u, and

then convert to a quaternion representation of the rotation p with

p(t) =


cos θ(t)

2

ux(t) · sin θ(t)2

uy(t) · sin θ(t)2

uz(t) · sin θ(t)2

 . (2.16)

In order to rotate our system from its state at time t to its new state at time t+ ∆t,

we need to apply quaternion multiplication (?) of the quaternion q by p:
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q(t+ ∆t) = p(t+ ∆t) ? q(t) =


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx

pwqz + pxqy − pyqx + pzqw

 . (2.17)

We can now retrieve the rotations in terms of Euler angles around each axis using

the formulation in Diebel (2006):

~R(t) =


arctan

(
2qyqz+2qwqx

(q2z−q2y−q2x+q2w)

)
-arcsin (2 (qxqz − qwqy))
arctan

(
2qxqy+2qwqz
q2x+q2w−q2z−q2w

)
 , (2.18)

In order to get the rotation rate, I apply a first derivative on the time axis:

~r(t) =
d~R(t)

dt
. (2.19)

Equations 2.13-2.19 constitute the reverse-mapping operator L which, it is impor-

tant to note, is not the adjoint nor the inverse of the forward operator F.

The null space of magnetic projections: rotations around the

ambient magnetic-field axis

To derive rotations, I rely on the changes of projection of the magnetic field on

the three orthogonal ICMs. However, if any part of the rigid-body rotation occurs

directly around the magnetic field’s axis, no change in projection will occur, and we

will effectively be blind to these rotations.

A synthetic example demonstrates this for a scenario where an ICM has sensor

antennas in the X, Y and Z directions, and where the ambient magnetic field is

constant along the Z axis with a value of 1 Tesla ~H = (0, 0, 1). The solid lines in

Figures 2.8(b), 2.8(d) and 2.8(f) are the true rotations applied to the ICM. I use

equation 2.11 to forward model the change in magnetic projections recorded by the
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three components of the ICM as a result of the rotations. The forward-modeled

magnetic projections are shown in Figures 2.8(a), 2.8(c) and 2.8(e). The dashed lines

in Figures 2.8(b), 2.8(d) and 2.8(f) are the result of applying the reverse mapping

operation in equations 2.13 to 2.19 to the forward-modeled magnetic projections.

In Figure 2.8(a) we see the change in magnetic projections resulting from a rotation

around the X axis ~u = (1, 0, 0). Since the Y antenna is maximally coupled to the

field (as sin(θ), since it is pointing 90 degrees away from the field), we see a strong

response of the Y projection to a rotation around the X axis. There is also a weak

change in the Z projection, since the Z antenna is weakly coupled to the ambient field

(as cos(θ)).

In Figure 2.8(b) I show the rotation rates that were applied to the system in solid

lines (the true model m), and the rotation rates derived from the magnetic projections

in dashed lines (the estimated model m̂ = Ld). The only rotation that occured in

this case is around the X axis, and it is recovered correctly.

In Figure 2.8(c) the rotations are around both the X and Y axes ~u =
(√

2
2
,
√

2
2
, 0
)

.

We see a strong response of the Y projection to a rotation around the X axis, and a

strong response of the X projection to the rotation around the Y axis. Again, there is

also a weak change in the Z projection. Observing Figure 2.8(d), we see that both of

the rotations around X and around Y were recovered. Note that some rotation occurs

around the Z axis as well. This is a result of the coupling between components of 3D

rotations: it is not possible to rotate around two axes without causing the third axis

to change its attitude in relation to the external frame.

In Figure 2.8(e) the rotations are the X, Y and Z axes ~u =
(√

3
3
,
√

3
3
,
√

3
3

)
. Observe

that there is no difference in phase between Figures 2.8(e) and 2.8(c). The rotation

around the Z axis does not generate a change in projection of the magnetic field on

the ICM components. Consequently, observing the bottom panel of Figure 2.8(f), we

see that the rotations around the Z axis were not recovered, as the amplitude is much

lower and the phase is wrong.

Both the amplitude reduction and phase difference effects in the modeled rotations

are the result of the null space of the magnetic projections. We cannot recover the

amplitude correctly for the rotations occuring around the ambient magnetic field’s

direction. Additionally, and rather surprisingly, the fact that all other rotations can
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be recovered correctly is what generates the phase difference between the induced

rotations and the recovered rotations seen on the bottom of Figure 2.8(f). What

we observe are the rotations around Z that are the result of the combined rotations

around both X and Y.

The conclusion from Figures 2.8(a)-2.8(f) is that if we rely on the Earth’s constant

ambient magnetic field to record rotations on a three-component ICM, we will likely

not recover all rotations accurately in a seismic survey. Whether this effect is relevant

depends on the application for which we intend to use the derived rotational data. It

also depends on where the seismic survey is conducted.

For example, in mid-latitudes the inclination of the magnetic field is between 30

and 60 degrees, dipping towards the North or the South. Therefore, we may not lose

much of the rotational energy around the vertical or horizontal axes. Conversely, on

the North pole where the magnetic inclination is 90 degrees, we would be unable to

record the yaw component.

SILVER LAKE SURVEY

The test survey was conducted at Silver Lake, near the town of Baker, California.

Dr. Shuki Ronen and I did the survey in conjunction with a field-methods course

taught by Prof. Steven Constable and Dr. Kerry Key from the Scripps Institute

of Oceanography, with the active participation of their students. Silver Lake is a

dry lake bed in the Mojave Desert, where both seismic and magnetic noise are weak

enough for our purposes.

Rotations were measured using three methods:

1. Three-component “R2” electrokinetic rotation sensor (Figure 2.4(a)): direct

measurement of rotations

2. Three-component ICM (Figure 2.6): measurement of rotations derived from

changes in magnetic projections (Equations 2.5-2.19)

3. Geophone differencing of adjacent vertical geophones (Equation 2.4) (Muyzert

et al., 2012; Barak et al., 2014).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: (a), (c) and (e): Changes in magnetic projections on three orthogonal
components as a result of rotations of the components within a constant magnetic
field ~H = (0, 0, 1) (a vertical magnetic field, as is the case in the Earth’s North pole).
(b), (d) and (f): The rigid-body rotations (solid lines) that caused the change in
magnetic projections, and the rotations derived from the changes in magnetic pro-
jections (dashed lines). In (a) and (b), the rotation axis is ~u = (1, 0, 0) (only around
the X axis), and the rotation is recovered correctly. In (c) and (d), the rotation

axis is ~u =
(√

2
2
,
√

2
2
, 0.
)

and the rotations are recovered correctly. In (e) and (f),

the rotation axis is ~u =
(√

3
3
,
√

3
3
,
√

3
3

)
The rotation around the Z axis (the direction

of the magnetic field) is not recovered correctly. Rotations around the magnetic
field axis cannot be derived since they do not cause a change in the projections. [ER]

chap2/. testcomp2-b,testcomp2-rall,testcomp3-b,testcomp3-rall,testcomp4-b,testcomp4-rall
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To acquire these data, we deployed three composite stations comprising the three

types of sensors, as shown in Figure 2.9(a). The ’X’ (roll) components of both the

ICMs and the rotations sensors were oriented in the inline survey direction, which

was toward magnetic azimuth 120o as measured by a compass. The ’Y’ (pitch) com-

ponents were oriented in the crossline direction, toward magnetic azimuth 30o. The

’Z’ (yaw) was positive downward. Since the magnetic inclination at Silver Lake was

60o at the time of the survey, all the magnetometer components were coupled to the

magnetic field, i.e., the ambient magnetic field had a significant projection on each

magnetometer component.

I further estimated the pitch component by differencing the two adjacent vertical

geophones in the inline direction. The roll component was estimated by differencing

the two adjacent vertical geophones in the crossline direction. I could not, however,

obtain an estimate for the yaw rotational component by geophone differencing, since

we did not have any horizontal geophones.

We had three composite stations, deployed using the pattern shown in Figure

2.9(b). The spacing between receiver stations was 3 meters, and the shot interval was

5 meters. As a seismic source, we used a Betsy gun. An example of the ignition of one

Betsy gun shot is shown in Figure 2.10(a). The station deployment is shown in Figure

2.10(b). We used a builder’s level to ensure orthogonality between components, and

a compass to measure the orientations.

Aside from the three composite stations we used to acquire the active seismic data,

we also deployed a remote ICM station (Figure 2.10(c)), far from the shot locations.

The purpose if this receiver was to measure the ambient magnetotelluric noise for

later removal from the active-seismic ICM data.

Sensitivity of magnetometers to ground rotations

Consider a very simple rotation of the magnetometer axes about the z axis by an

angle θ. The magnetic field H along the sensor axes is then


H
′
x

H
′
y

H
′
z

 =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 =


Hx

Hy

Hz

 (2.20)
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(a) (b)

Figure 2.9: (a) The arrangement of a single composite station in the Silver Lake
survey. Each station had 3 orthogonal ICMs, and a 3C inertial rotations sensor. Two
geophones were placed in close proximity in the inline and in the crossline directions.
(b) 20 shots were executed off-end, at 5-meter intervals, for a total of 100m of offset.
The ’X’ (roll) components of the rotation sensors and the ICMs were along the inline
direction toward magnetic heading 30o. The ’Y’ (pitch) components of the rotation
sensors and the ICMs were along the crossline direction toward magnetic heading
120o. The ’Z’ (yaw) components are downward, while magnetic inclination was 60o.
Note that the figure is not to scale. The distance between the composite stations was
3 meters. [NR] chap2/. silverlake-station,silverlake-shots

For a magnetic field ~H = (H0, 0, 0), the field in the rotated coordinates will be

H
′

x = cos(θ)Hx, (2.21)

H
′

y = −sin(θ)Hy, (2.22)

H
′

z = 0. (2.23)

The change in the magnetic field measured by the magnetometers is

∆Hx = H
′

x −Hx = (1− cos(θ))Hx, (2.24)

∆Hy = H
′

y −Hy = −sin(θ)Hy, (2.25)

∆Hz = 0. (2.26)

The table below shows the magnetic field changes for various amounts of rotations

assuming a nominal 50,000 nT (Earth) magnetic field along x. This shows that a

microradian rotation would produce a pico-Tesla level signal on Hy, the maximally

coupled orientation direction. Since the magneto-telluric (MT) field in Silver Lake in
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(a) (b)

(c)

Figure 2.10: (a) Execution of one of the 20 shots using the Betsy gun. (b) One
of the 3 composite stations. The rotation sensor is housed in the grey box, while
the ICMs are the white rods arranged orthogonally. (c) We placed one remote
3-component ICM station far from where we were shooting the seismic data, to
record the ambient magnetotelluric noise for later removal in processing. [NR]

chap2/. silverlake-betsy,silverlake-magandrot,silverlake-remote
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the seismic frequency band (1 Hz - 100 Hz) is about 10−12T/
√

Hz, we can expect to

be able to detect rotations down to 1 microradian.

θ (rad) |1− cos(θ)| |sin(θ)| 5 * 10−5 |sin(θ)|Tesla
1e-09 0 1e-09 5e-14
1e-08 0 1e-08 5e-13
1e-07 5e-15 1e-07 5e-12
1e-06 5e-13 1e-06 5e-11
1e-05 5e-11 1e-05 5e-10
1e-04 5e-09 1e-04 5e-09
1e-03 5e-07 1e-03 5e-08
1e-02 5e-05 1e-02 5e-07
1e-01 5e-03 0.0998 4.99e-06

1 0.46 0.841 4.21-05

Since the MT field is expected to be laterally uniform over regional spatial scales,

we planned to use the remote station to reduce the MT signal from the local mea-

surement, with the possibility of obtaining MT-free data with a spectrum close to the

noise floor of the magnetometer antenna we were using (Zonge model ANT/6), which

is 10−14 to 10−13 Tesla, as shown in Figure 2.11. This would give us an equivalent

rotational noise floor of about 10−9 to 10−8 radians.

Amplitude spectra during survey

Figure 2.12(a) shows the spectra of the three magnetometer components at the active-

seismic stations while active shooting was being done, while 2.12(b) shows the spectra

at the remote station at the same time period. Observe that at low frequencies the

ambient magnetic noise is very strong. However, within the typical range of seismic

frequencies the ambient magnetic field is between 10−1 to 10−2 nanoTeslas.

The purpose behind deploying the remote station was to record the ambient mag-

netic noise without seismic interference, and then remove this noise from the active-

seismic magnetometer stations.

From Figure 2.12(b) I could see that the vertical magnetometer antenna at the

remote station was recording much higher levels of noise than the horizontal mag-

netometer components. Further inquiry showed that there was a problem with the

vertical antenna’s electronics at the remote station. Consequently, I could not use



42CHAPTER 2. SEISMIC ROTATIONS FROM INDUCTION-COIL MAGNETOMETERS

Figure 2.11: Magnetotelluric magnetic and electric fields observed at Silver Lake,
Mojave Desert in March 2015, two months before we performed the Silver Lake survey.
Also shown is the public-domain noise floor of the Zonge model ANT/6 magnetometer.
Spikes are from 60 Hz power line noise and 0.2 Hz cathodic protection system on a
nearby gas pipeline. [NR] chap2/. silverlake-EM-noise
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the vertical magnetometer component at the remote station as a basis for denoising

the vertical magnetometer component at the active seismic stations.

Figure 2.12(c) shows the spectra of the three magnetometer components at the

active seismic stations after subtraction of the horizontal magnetometer components

of the remote station. We see that the majority of the ambient magnetic noise which

was removed was in the higher frequency ranges, although there is some reduction of

the By component’s noise between 10 and 30 Hz.

Figure 2.12(d) is the spectrum of the vertical geophone component. It shows that

the Betsy gun generated strong seismic energy between 5 and 50 Hz. The microseism

band is also apparent in this figure. It seems, however, that the rotation sensors’

response rolls off from around 10 Hz and down, and they are not as sensitive as the

geophone to the microseism energy. Additionally, from 30 Hz and up some resonances

appear on the rotational components. Consequently, and also to reduce some of the

magnetic noise, all the following analyses have a bandpass filter between 5 Hz and 30

Hz applied to them.

Designature of rotation sensor

The rotation sensors used in the Silver Lake survey were the “R2” electrokinetic ro-

tation sensors, as shown in Figure 2.4(a). According to manufacturer specifications,

these sensors have a noise floor of 5.7 × 10−7 rad/sec, which I assumed to be suffi-

cient for recording rotational data in the Silver Lake experiment. Additionally, some

benchtop tests done by Patrycjusz Bachelda from Geokinetics company, who provided

us with the sensors, showed that the R2 could reliably record rotational data up to

20 Hz.

The instrument specifications also state that the R2 sensors have a flat phase

response in the frequency range of 0.05 to 20 Hz. However, I was unsure whether

this was the case for the specific sensors we were using, since the production of

these sensors is still very manual. I knew the instrument response of the geophones

however, and used it to designature the vertical geophones. I then used vertical-

geophone differencing (Eq. 2.4) to get an estimate of the designatured rotational

pitch signal. I calculated the phase difference between the rotations measured by the

rotation sensors and the rotations estimated by geophone differencing. I then used
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(a) (b) (c)

(d) (e)

Figure 2.12: Log amplitude spectra of raw data during active shooting, after instru-
ment designature for the various data components was applied. a) Magnetometers
before removal of ambient noise. b) Ambient magnetic noise at remote station. c)
Magnetometers after removal of ambient noise. d) Vertical geophone. e) Rotation
sensors. The Bz component at the remote station recording the vertical ambient
magnetic field had problems with its electronics, and therefore recorded much higher
levels of noise than were actually in the field. Note the reduction in noise for the
Bx and By magnetometer components after removal of the ambient field recording.
Note that the vertical geophone was recording very low frequencies in the microseism
band (below 2 Hz), while the rotation sensors were not, indicating that the rotation
sensors we used do not have sufficient sensitivity at the very low end of spectrum.
[ER] chap2/. mag-spec,remote-mag-spec,clean-mag-spec,vz-spec,rot-spec
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this phase difference as the rotation-sensors’ instrument response.

Figure 2.13(a) shows a receiver gather of the vertical geophone component at

station 1 of the Silver Lake data. The direct P-wave, propagating at a velocity of

1420 m/s, is much weaker than the ground roll, and is therefore not visible in this

section. Two surface wave arrivals are clearly visible, propagating at velocities of

135 m/s and 250 m/s. I interpret these as two modes of a Rayleigh wave generated

by the Betsy gun source.

Figure 2.13(c) is an estimate of the pitch component resulting from differencing

the two adjacent vertical geophones in the inline direction (Eq. 2.4) at station 1

(refer to Figure 2.9(a)). I compare the data in this figure to the rotation-sensors’

pitch component shown in Figure 2.13(d). Observe that both sections show the same

arrivals with similar maximum amplitudes of up to 0.2 mrad/s. However, the weaker

Rayleigh-wave arrival appears to have been better acquired by geophone differencing.

For the larger offsets, the rotational amplitudes from geophone differencing are about

twice as great as the ones recorded by the rotation sensors. This indicates that the

geophones have a greater dynamic range than the rotation sensors. However, all I

needed the geophones for was to validate the phase response of the rotation sensors,

therefore their amplitude response was of secondary importance.

I expect the pitch rotational component to be dominant for the Rayleigh wave

propagating in the inline direction in this 2D survey, since the rotational deformation

that a Rayleigh wave generates is perpendicular to its propagation direction, i.e.,

rotation around the crossline ’Y’ axis.

The phase comparison between the pitch calculated by geophone differencing and

the pitch measured by the rotation sensor is shown in Figure 2.14(a). There seems

to be no drastic phase difference between the signals at all 3 stations for the pitch

component.

Figure 2.13(e) is the roll component estimated by differencing the two adjacent

vertical geophones in the crossline direction (Eq. 2.4) at station 1. This figure

should be compared the rotation-sensor roll component in Figure 2.13(f). Note again

the similarity in amplitudes. The roll estimated from geophone differencing appears

slightly more coherent than the roll from the rotation sensor.

Compared to the pitch component, the roll component is weaker, and appears
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less coherent. This is again in accordance with the rotational deformation we would

expect the Rayleigh wave to generate in this survey, i.e., very little rotation around

the inline axis.

Figure 2.14(b) shows that we are unable to obtain a consistent phase difference

between the roll from geophone differencing and the roll from the rotation sensors for

the 3 receiver stations. I attribute this to the fact that the roll signal is indeed very

weak, and therefore SNR is low. Consequenctly, discerning the phase difference for

the ground roll between these two different measurements of the roll component is

difficult.

Figure 2.13(b) is the yaw component of the rotation sensor at station 1. Note

that it exhibits an arrival with the same moveout as the Rayleigh wave arrival on the

pitch component. Like the roll component, the yaw is much weaker than the pitch

signal.

Principally speaking, the yaw component should record Love wave modes. How-

ever, both Rayleigh and Love wave modes can be excited by surface sources, and these

data have very short offsets making it difficult to identify different modes of surface

waves by their respective moveout. Therefore, the surface wave arrivals seen in these

data may be a mixture of Love and Rayleigh wave modes. I cannot compare the

rotation-sensor’s yaw component to the yaw estimated from geophone differencing,

since that would require differencing horizontal geophones which we did not deploy

in this survey.

The only reliable phase difference we have is for the pitch component (Figure

2.14(a)), which does indeed show a flat response for the rotation sensors over the

3-30 Hz frequency range. Though the phase difference is very small, we used it for

designature of all rotational components.

Denoising of magnetometer data

In order to reduce the ambient magnetotelluric noise from our magnetometer mea-

surements, we deployed a remote 3C magnetometer station at a distance of about

1 km from our shooting location. The ambient magnetotelluric field varies very lit-

tle within such a distance, and I had intended to use the seismic-free measurements

from the remote station in order to subtract the ambient magnetic noise from the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Silver Lake receiver gathers at station 1, in the 5 - 30 Hz frequency
band. (a) Vertical geophone. (b) Yaw rotation sensor. (c) Inline vertical geophone
difference, which estimates the pitch component. (d) Pitch rotation sensor. (e)
Crossline vertical geophone difference, which estimates the roll component. (f) Roll
rotation sensor. Clipped values are indicated in red. The direct wave propagating
at V=1420 m/sec is very weak and cannot be seen at this clip level. There are
two strong Rayleigh wave modes propagating at V=135 m/sec and V=250 m/sec.
These are present as rotations measured by geophone-differencing and by the ro-
tations sensors themselves. The amplitudes of the rotations calculated by geo-
phone differencing are greater than those measured by the rotation sensors. [ER]

chap2/. vz-1-ann,rsn-1rz,geodiff-1ry,rsn-1ry,geodiff-1rx,rsn-1rx
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(a) (b)

Figure 2.14: The phase difference between the rotations estimated from vertical geo-
phone differencing and the rotations from the rotation sensors, within the passband.
(a) Phase difference for the pitch component. (b) Phase difference for the roll com-
ponent. Observe that for the roll we do not get a consistent phase difference for the
3 composite stations. There is not much energy on the roll component, therefore
the signal to noise ratio is low and it is difficult to estimate the phase difference
reliably for all stations. Also, I could not get an estimation of the yaw component
from geophone differencing. Therefore, I designatured the rotation-sensors’ pitch, roll
and yaw components using the pitch phase difference, which appeared to be reliable
across stations. [ER] chap2/. ry-phasediffs,rx-phasediffs
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active-seismic magnetometers.

Figures 2.15(a), 2.15(d) and 2.15(g) are the magnetometer receiver gather data

recorded at station 1. The data are designatured, and therefore are in terms of

nanoTeslas of deviation of the projection of the ambient magnetic field on the mag-

netometer components.

Note that the signal is stronger on the X (inline) and Z (vertical) components,

while the Y (crossline) component is the weakest. This is as we would expect given

that the Rayleigh wave’s rotation is mostly around the Y axis. As a result of a rotation

around the Y axis, the X and Z antennas should record a change in projection of the

Earth’s constant magnetic field.

Figures 2.15(b), 2.15(e) and 2.15(h) are the X, Y and Z magnetometer data

recorded at the remote station. These data do not contain any of the magnetic

rotation signal generated by the seismic wave, as they are too far away from the

shooting location, but they do contain the same magnetotelluric noise as the active

seismic magnetometers. Note the similarity between the remote station’s and active

station’s X and Y components before the arrival of the ground-roll.

Note, however, that the vertical magnetometer antenna at this remote station

(Figure 2.15(h)) had an electronic fault, and therefore recorded much more noise than

was actually in the field. Consequently, subtracting this noise results in even noisier

data, as shown in 2.15(i). I therefore decided to use the original noisy Z magnetometer

data in Figure 2.15(g). This had a deleterious effect on the pitch and roll rotational

components derived from the magnetometer data, which is discussed in the following

section. There was no effect on the yaw component, however, since yaw rotations do

not affect the vertical projection of the magnetic field on the magnetometers.

Figures 2.15(c) and 2.15(f) are the X and Y magnetometer data at station 1 after

subtracting the noise recorded by the remote stations’ X and Y magnetometers, and

I used these data for the rest of the analysis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.15: Magnetometer receiver gather at station 1 after designature of the ICMs,
before and after removal of the MT field acquired by the remote station. (a) X
component. (b) X component of remote station. (c) X component after subtraction
of MT field acquired by remote station. (d) Y component. (e) Y component of remote
station. (f) Y component after subtraction of MT field acquired by remote station. (g)
Z component. (h) Z component of remote station. (i) Z component after subtraction
of MT field acquired by remote station. Note that we had instrument problems with
the Z component of the remote station (h), and therefore subtracting the MT noise
from the Z component produced noisier data than the original. Consequently, for
further analysis I used the data shown in (g) rather than the data shown in (i). Note
that these data are after application of a bandpass filter between 5 Hz and 30 Hz.
[ER] chap2/. 215a,215b,215c,215d,215e,215f,215g,215h,215i
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Reverse mapping: Conversion from magnetometer deviations

to rotations

The pitch rotation is effectively recorded as deviations of the projections of the Earth’s

magnetic field on the X and Z magnetometers, the roll on the Y and Z magnetometers,

and the yaw on the X and Y magnetometers. The changes in projections are on the

order of microTeslas. In order to derive rotations from these changes in projections

I use equations 2.5 to 2.19. These equations represent the reverse mapping operator

L, which maps magnetic projection deviations to an estimated model of rotations:

m̂ = Ld. I then compare the magnetometer-derived rotations to the rotation-sensor

data, which I treat as the “true” model of seismic rotations.

Figure 2.16(a) is the receiver gather of the pitch rotations derived from the mag-

netometer data at station 1. Compare this with Figure 2.16(b), which shows the

rotations measured by the pitch rotation sensor at the same station. In both figures

we observe the two strong Rayleigh-wave arrivals. However, the rotations derived

from the magnetometers are slightly weaker, and the phase is different. Also, note

the higher level of noise in Figure 2.16(a). This noise is the result of the unattenuated

ambient MT noise on the vertical magnetometer, which leaks into the derived pitch

rotations.

The most significant difference between the pitch component recorded by the rota-

tion sensors and the pitch derived from the magnetometers is the phase of the arrivals.

This is more obvious in Figure 2.17(a), which shows a wiggle-trace comparison of the

magnetometer-derived pitch component vs the pitch measured by the rotation sen-

sors. Figure 2.17(b) is the average phase difference between the magnetometer-derived

pitch and the rotation-sensor’s pitch. It shows that within the frequency band of 5

Hz - 30 Hz there is a phase difference between 150o and 90o.

The comparison between the magnetometer-derived roll and the rotation-sensor’s

roll is shown in Figures 2.16(c) and 2.16(d). As previously mentioned, we expect the

roll component to have the least energy in this survey, and indeed the magnetometer-

derived roll is just discernable above the noise. Just as is the case for the magnetometer-

derived pitch component, the noise on the magnetometer-derived roll is the result of

the ambient MT noise on the vertical magnetometer.

Figure 2.17(c) shows a wiggle-trace comparison of the roll component at station 1.
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The noise is more obvious here than in the pitch component section. Figure 2.17(d)

is the average phase difference between the magnetometer-derived roll and rotation-

sensor roll. Unlike the pitch component, the phase difference is inconsistent between

stations and shows great variability between 90o and −90o. Since the roll signal is

weak, the noise is relatively stronger making it more difficult to draw conclusions

from the phase differences for this component.

Ideally, we would have crossline shots in the survey which would have generated

a strong rotational signal on the roll components. However, time constraints in the

field did not enable us to include crossline shots in this survey.

Figures 2.16(e) and 2.16(f) compare the magnetometer-derived yaw to the rotation-

sensor yaw. Since I was able to remove the ambient MT noise from the X and Y

magnetometer antennas, the magnetometer-derived yaw has the least noise of the

magnetometer rotations. The earlier, weaker Rayleigh-wave arrival is actually clearer

on the magnetometer-derived yaw section than on the rotation-sensor section.

In terms of phase, the difference between the yaw rotations of the magnetometers

and that of the rotation sensors is the smallest. Figure 2.17(f) shows that there is a

consistent phase difference of between 90o and 45o between the stations.

Converting estimated rotations to magnetic projections

By forward-modeling with the estimated model of rotations from the magnetic pro-

jection data, we can indirectly observe the effect of the null space, i.e., the rotations

around the ambient magnetic field that do not generate a change in the projection of

the magnetic field on the ICM components, and are therefore not recorded.

I apply the forward-modeling operator in equations 2.11 and 2.12 to the rotation

estimated by the reverse mapping operator: dest = Fm̂ = FLd. As I mentioned

before, please note that the operators F and L are not an adjoint pair. I com-

pare the forward-modeled magnetometer deviations to the recorded magnetometer

data. In a noise-free environment, the magnetic-deviation data estimated from the

magnetometer-derived rotations will be identical to the recorded magnetometer data.

Figure 2.18(a) is the comparison of the forward-modeled ’X’ magnetometer com-

ponent vs the recorded one. We see that the signals are very similar in phase. The
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Comparison of rotations derived from ICMs to rotations measured by
rotation sensors. (a) Pitch derived from ICM. (b) Pitch measured by rotation sensor.
(c) Roll derived from ICM. (d) Roll measured by rotation sensor. (e) Yaw derived
from ICM. (f) Yaw measured by rotation sensor. Note the similarity in amplitudes
of the Rayleigh-wave arrivals between the magnetometer-derived rotations and those
measured by the rotation sensor. Also, note the large phase difference of the pitch
component. [ER] chap2/. 216a,216b,216c,216d,216e,216f
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(a) (b)

(c) (d)

(e) (f)

Figure 2.17: Comparison of the rotations measured by rotation sensors (red wiggles)
and rotations derived from ICM components (black wiggles). (a), (c) and (e) are
the data comparison for station 1 for the pitch, roll and yaw components, respec-
tively. AGC has been applied for display. (b), (d) and (f) are the averaged phase
difference between the two signals for all 3 receiver stations. The roll rotational sig-
nal is very weak (see Figure 2.16(d)), and the low signal to noise ratio causes the
phase difference to be inconsistent across stations for the roll component. [ER]

chap2/. 217a,217b,217c,217d,217e,217f
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magnetic projection deviations on the ’X’ component are the result of the pitch (’Y’)

and yaw (’Z’) rotations. The pitch rotation is the dominant one in the data. Addi-

tionally, the ’X’ magnetometer component is well-coupled to the field for rotations

around the ’Y’ axis, as it is nearly orthogonal to the magnetic field. Therefore, the

SNR on this component is good, and we see a nearly no phase difference between the

recorded and the estimated data.

Figure 2.18(c) shows the comparison between the forward-modeled and the recorded

’Y’ magnetometer component. We observe an inconsistent phase shift between the

signals. The magnetic projection deviations on the ’Y’ component are the result of

the roll (’X’) and yaw (’Z’) rotations, which are weak in this dataset and therefore

have low SNR. Another contribution to the low SNR is the noisy magnetometer ’Z’

component. Additionally, the magnetometer ’Y’ component is not well coupled (i.e.,

not orthogonal) to the magnetic field for rotations around the ’X’ axis.

The same reasoning applies to the inconsistent phase difference we observe for

the ’Z’ magnetometer component in Figure 2.18(e). The magnetic projection devia-

tions on the ’Z’ component are the result of the roll (’X’) and pitch (’Y’) rotations.

Though the pitch rotational component is strong, recall that the magnetometer ’Z’

component is contaminated with ambient EM noise. This means that the noise from

the magnetometer ’Z’ component goes into the estimated rotational models of the

roll and pitch components. Mapping this noise back to the magnetic-deviation data

domain is the reason for the jittery phase differences seen in Figure 2.18(f).

Interpretation of results

Though the results clearly show that both the magnetometers and the rotation sen-

sors are indeed recording seismic energy, the amplitudes and phases of the rotations

recorded by the rotation sensors and those derived from the magnetometers are not

identical.

The rotational energy of the magnetometer-derived rotations is approximately

25% lower than that of the rotation sensors. I attribute this difference to the rotations

around the Earth’s ambient magnetic field’s axis; the projection null-space effect

shown in Figure 2.8(f). The rotation does not need to be perfectly parallel to the

magnetic field’s axis in order for the projection’s null space to affect the measurements.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.18: Comparison of the recorded magnetometer data (black wiggles) to
forward-modeled magnetic projections (red wiggles) derived from the magnetome-
ter rotations. (a), (c) and (e) are the data comparison for station 1 for the Bx, Bz

and By components, respectively. AGC has been applied for display. (b), (d) and (f)
are the averaged phase difference between the two signals for all 3 receiver stations.
Recall that I could not remove the ambient magnetic noise from the ’Z’ magnetometer
component, which is why it so much noisier than the other two components. [ER]

chap2/. 218a,218b,218c,218d,218e,218f
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If the axis of rotation has a projection on the axis of the magnetic field, then invariably

some of the resulting magnetic projections will be insensitive to the rotations. The

effect of the null space is evident when I apply the forward-modeling operator F to

the rotational model derived from the reverse-mapping operator L applied to the

magnetic deviations.

In the case of the Silver Lake survey, we had aligned the shot line and magnetome-

ter receiver components so that the expected axis of the strongest rotation generated

by the Rayleigh wave (pitch) would not coincide with the axis of the magnetic field.

As shown in Figure 2.9(b), the horizontal ’Y’ and ’X’ magnetometers were aligned in

along magnetic azimuths 30o and 120o, respectively, while the vertical magnetometer

pointed down. The inclination of the ambient magnetic field at Silver Lake was 60o

at the time of the survey. The shot line was also done along magnetic azimuth 120o.

Therefore, neither pitch, roll or yaw components were directly around the ambient

magnetic field. However, we observe rotations on all components of the seismic rota-

tion sensors, indicating that at least some of the rotations did indeed occur around

the magnetic field’s axis, leading to a loss of amplitude in the magnetometer-derived

rotations.

I attribute the large differences in phase of the pitch component to the null-space

issue, since the phase differences appear consistent between receiver stations and along

the offset axis. However, the (non-seismic) noise from the vertical magnetometer com-

ponent necessarily contributed to the rotational signal derived for the perpendicular

pitch and the roll components. The case is worse for the roll component, since it has

a very low signal to noise ratio to begin with.

We see the smallest phase difference between the two types of rotational measure-

ments for the yaw component. This is partly due to the yaw rotations being well

coupled to the magnetic field. It is also due to the yaw component being mostly

derived from the magnetic deviations on the X and Y magnetometer components,

which I was able to denoise using the remote station’s data.
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DISCUSSION AND CONCLUSIONS

There are currently very few field-deployable seismic rotation sensors, and none de-

signed for use on the ocean-bottom. Therefore, I presented a methodology for de-

riving seismic rotations from changes in projection of the Earth’s ambient magnetic

field on 3-component induction-coil magnetometers (ICMs). These magnetometers

are currently being used for magnetotelluric (MT) and controlled-source electromag-

netic (CSEM) surveys. The most significant advantage they have over other, existing

rotation-sensing technology is that they are an existing solution, currently available,

familiar to the applied geophysics community and are field-deployable in both land

and marine environments.

The Silver Lake survey shows that, in principle, it is possible to derive rotations

from magnetometer data. However, there are limitations to the methodology.

The first challenge is to remove the magnetotelluric ambient noise from the ICM

data in order to acquire only the magnetic deviations resulting from the seismic

energy. In the Silver Lake survey, we used a remote station to record and remove the

ambient MT noise from the active-seismic data.

It follows then that the scenario best suited for recording seismic rotations with

magnetometers is the ocean bottom, where the ambient EM noise is much lower than

on land. Additionally, considering the cost of deployment of an ocean-bottom node,

it is economically desirable to derive as much independent information as possible

from the seismic wavefield per receiver deployment.

The most critical challenge, however, is the null space of projections: since the

method relies on changes in projection of the Earth’s ambient magnetic field on the

ICM components, any rotation that occurs around the magnetic field’s axis will not

be recorded. This will cause the derived rotational amplitudes to be lower than the

true seismic rotations.

We cannot predict a priori the axis of rotation of seismic waves, therefore the

solution to this problem would not involve a particular orientation of the 3C ICM.

Instead, I have considered addressing this issue with an inversion.



59

Inverting for rotations in the null space of magnetic projec-

tions

The forward operator maps rotations to magnetic projections. The reverse-mapping

operator maps magnetic projections to rotations. It is possible, therefore, to invert

for the rotations that are in the null space.

The inversion would attempt to recover the missing rotational energy by using

the collocated 3C geophone data. For example, we expect Rayleigh waves to generate

strong rotations. Therefore, if we observe strong Rayleigh waves on the geophone

components, but weak Rayleigh waves on the magnetometer-derived rotational com-

ponents, we may deduce that the axis of rotation is close to that of the ambient

magnetic field.

What is required then is a model that provides an expectation of the total rad/sec

of rotation for a certain total of m/sec of particle velocity, for the different types of

seismic waves (P, S, surface). We may also use the phase of the transverse geophone

as a model for the phase to expect on the yaw component (Igel et al., b).

The objective function would try to find the model of rotations that match the

recorded magnetometer data, and would also have a regularization term that attempts

to maximize the rotational amplitudes. The regularization term would be constrained

by the amplitudes of the geophone data. The inversion would effectively attempt to

recreate the rotations missing from the ICM recording.
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Chapter 3

Wave-mode separation with

translations and rotations

The previous chapter discussed various ways to record rotational data. In this chap-

ter, I show how to use combined multicomponent translational and rotational data

to identify and separate particular wave modes, including P, S, Rayleigh and Love

waves. I develop a polarization filter in the continuous wavelet domain in order to

identify and subsequently separate shear and surface wave modes from P wave modes.

The method does not rely on spatial continuity of events, and can therefore be ap-

plied to spatially aliased data. I apply the method to a 2D 6C dataset acquired by

Chevron near Kettleman in California, which included collocated 3C geophones and

3C electrokinetic “R2” rotation sensors.

INTRODUCTION

The simplest model available for representing the Earth is the acoustic model, and this

representation has served the seismic industry for most of its existence. In the acoustic

model, the data are P-wave reflections from interfaces in the Earth where P impedance

varies. Surface waves are an elastic phenomena that occurs on interfaces between

media, and are not supported by the acoustic wave-propagation model. Neither are

shear waves. Furthermore, surface waves do not contain information about the deep

subsurface where resources are to be found. There are existing processing flows for

converted shear waves (i.e., P waves that were converted to S waves at the reflectors)

61
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and for shear sources, but these methods assume that the shear reflections can be

separated from the rest of the data. Therefore, in conventional seismic processing,

surface waves and shear waves appearing on the vertical component are considered to

be noise, and must be removed from the data prior to the standard seismic processing

steps that consider only P waves. P waves also provide information on Vp/Vs ratio,

and this is done in practice via AVO analysis (Ostrander, 1984). AVO, however, still

treats surface waves as noise.

Seismic land data is a case in point, where the suppression of surface waves (i.e.,

ground roll in industry parlance) generated by the seismic source and recovery of

broadband P-wave reflections are critical to the subsurface image derived from these

data.

One of the original approaches to ground roll suppression was the stack-array

method (Anstey, 1986; Morse and Hildebrandt, 1989), which used a summation of

source and receiver arrays to preferentially damp surface waves. While robust, the

method is more practical for 2D acquisition than for large 3D surveys. Furthermore,

large receiver arrays can compromise resolution, both horizontal and also vertical as

a result of statics.

With single sensors, industry-standard methods are filtering in the f − k or τ − p
domains, where the combination of moveout and frequency of various waves can

be identified. These methods, however, rely on adequate spatial sampling, and are

unlikely to work well where this requirement is not met. Since surface waves are

inherently slower to propagate than P waves,surveys would need to be designed with

shorter receiver intervals to satisfy the spatial sampling requirements not of the data,

but of the source-generated noise. While dense spatial sampling may be feasible in

the survey inline direction, it is not generally practical in the crossline direction.

Another example of data containing more wave modes than expected is the case of

Vz noise in ocean-bottom seismic (OBS) acquisition. In OBS, a hydrophone coupled

to the water records the P waves at the water bottom, while a 3C geophone coupled to

the ground records both P waves and all other wave modes. The expectation is that

only P waves will appear on the vertical geophone, and thus the vertical geophone and

the hydrophone data can be combined to separate the upgoing from the downgoing

wavefield (Barr and Sanders, 1989; Schalkwijk et al., 2003). The separated upgoing

and downgoing data can then be used to generate a subsurface image based on joint
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linearized waveform inversion of these two wavefields with minimal crosstalk (Wong

et al., 2015).

However, in some receiver stations in OBS surveys, events with a moveout slower

than P waves appear on the vertical geophone component. These events have the

same moveout as shear waves on the horizontal geophone components. The direct

explanation is that the vertical geophone is recording some shear-induced vertical

motion. Whatever the cause for the shear energy is, it appears as coherent noise

on the vertical geophone component. The so-called “Vz noise” may contaminate the

combined hydrophone and geophone data. In addition to degrading the image, this

can lead to errors in estimation of the source wavelet, and consequently to inaccurate

estimations of medium velocity.

One method of removing the coherent Vz noise is match filtering (Zhou et al., 2011;

Craft and Paffenholz, 2007). A τ − p transform is applied to the vertical geophone

and hydrophone receiver gathers, followed by a continuous wavelet transform. The

hydrophone represents the true model of P-wave arrivals, Therefore a matching filter

is then applied to the transformed vertical geophone gather to match the events in

the transformed hydrophone gather.

Edme et al. (2014) use a match filtering methodology for removal of ground roll in

multicomponent land data. The radial geophone and rotational pitch components are

taken as a model for the ground roll noise, which is then removed from the vertical

geophone using match filtering.

The advantage of match filtering vs traditional methods is that they do not, in

principle, rely on spatial sampling for their success. However, they do rely on having

a model of the coherent noise recorded on a particular data component.

Another class of methods to suppress surface waves is polarization filtering of 3C

geophone data, where the relative phases of arrivals on each component are taken

into account to identify wave modes. In general, the basic premise of these methods

is that different wave modes have distinct polarization patterns. For example, body

waves tend to have a linear polarization, while the fundamental mode of surface waves

have elliptical polarization. These polarizations can be seen by crossplotting vertical

and horizontal data traces.

An advantage of polarization filtering is that it operates solely along the time axis
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on a trace by trace basis, and therefore has no dependence on spatial sampling. Since

polarization filtering does not rely on spatial continuity, it is unnecessary to apply

statics corrections to the data before applying polarization filtering. These attributes

make polarization filtering more applicable in 3D surveys, where the crossline direc-

tion is usually badly sampled. This filtering method enables the survey design to

focus on sampling the signal rather than the noise.

Vidale (1986) applied a Hilbert transform to a 3C geophone trace to calculate

the analytic signal. An eigenvalue decomposition (EVD) is applied to the covari-

ance matrix of the analytic signal of each 3C time sample. The eigenvectors are

then used to determine the type of polarization present at each time sample. Kendall

et al. (2005) applied a similar process, but used Singular Value Decomposition (SVD).

They combine neighbouring traces when calculating the instantaneous polarization

to increase the signal to (ambient) noise ratio. de Meersman et al. (2006) improve on

the identification of polarizations in data with strong isotropic noise, by introducing

a noise-weighted multistation approach. Diallo et al. (2006) first apply a Continuous

Wavelet Transform (CWT) to the data, and observe the analytic signal in the trans-

formed domain to identify and attenuate frequency-dependent polarizations. Donno

et al. (2008) exploit velocity, frequency and polarization characteristics to extend the

dimensionality of the data, and thus improve the ability to separate between seismic

wave modes based on these characteristics.

SVD and CWT are mathematical tools that can be applied to any data series. In

particular, they can be applied to 6C data comprising 3C geophone and 3C rotation

sensor data. The resulting polarization vectors indicate not only linear polarization,

but also rotational polarization.

I posit that rotational motion is a better indicator of wave modes than are ellip-

tical/linear particle motions, since rotations are medium strains (eq. 1.4), whereas

particle displacements are not. Particularly, when considering the different nature

of the rotational strains induced by P waves versus shear or surface waves, I would

expect to see significant differences in the ratio of translations vs rotations generated

by each wave mode. For example, I would expect that for the fundamental mode of

a Rayleigh wave, which generates elliptical ground motion and therefore rotational

strains, we would see a higher amplitude of rotations per the same total translations

than for a P wave which generates mostly linear particle motion and less rotational
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strains.

Wave modes may also be differentiated by their frequency bands. One mechanism

that can account for this effect is intrinsic attenuation resulting from rock properties.

This affects shear waves and surface waves more than it does P waves as a result of

the shorter wavelengths that shear and surface waves have. Also, Bale and Stewart

(2002) have shown that shear-wave attenuation is stronger than P-wave attenuation.

Additionally, scattering caused by the strong heterogeneities typical in the near sur-

face cause an effective attenuation, which will also have a greater effect on the slower

shear and surface waves.

Using the singular value decomposition of the continuous wavelet transform of

multicomponent translational and rotational data, I combine multiple polarization

attributes by which wave modes may be separated. My method differs from the

existing polarization analysis methods in that I do not assume an a priori model for

the polarization of a particular wave mode. Instead, I learn the polarization of a wave

mode from the data themselves.

I apply the method to a field dataset that has both rotational and translational

components, and show that it is effective at separating ground-roll and shear waves

from the data.

Continuous wavelet transform

The continuous wavelet transform is defined as (Daubechies, 1990):

G (a, b; g(t), ψ(t)) =

∫ ∞
−∞

g(t)
1√
a
ψ∗
(
t− b
a

)
dt, (3.1)

where g(t) is the input signal of a particular data component, ψ(t) is a mother wavelet,

ψ∗ is a daughter wavelet, which is the complex conjugate of the mother wavelet

stretched by scale a and time-shifted by b. I use the Morlet wavelet as a mother

wavelet,

ψ(t) = eiω0te−t
2/2, (3.2)

where ω0 is frequency.

The continuous wavelet transform effectively shows how correlated a time series
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is with a particular daughter wavelet. Since the correlations are done in running

time windows (shifted by b), the transform retains the time axis of the data and yet

decomposes it to wavelet scales, which are in essence similar to frequency. The result

is similar to a Fourier transform. I use the time-frequency decomposition to identify

wave modes of particular frequencies that appear at particular times in the data.

Singular value decomposition in the continuous wavelet do-

main

Singular Value Decomposition (SVD) is based on a linear-algebra theory which states

that a rectangular m × m matrix D can be decomposed into the product of three

matrices - an orthogonal m × m matrix U, a diagonal m × n matrix Σ, and the

transpose of an orthogonal n× n matrix V:

D = UΣVT . (3.3)

The columns of U are the orthonormal eigenvectors of DDT, the columns of V are

the orthonormal eigenvectors of DTD, and Σ is a diagonal matrix containing the

square roots of eigenvalues from U or V in descending order.

SVD identifies and orders the dimensions along which the data exhibit the most

variation. Since I am dealing with multicomponent time-series data, I refer to these

dimensions as polarizations inherent to the input signal. The orthogonal matrix V

effectively contains the polarization vectors of the signal that is present in the data

D. The diagonal matrix Σ contains the singular values, which act as a scaling of the

polarization vectors. I transpose and multiply the matrix V by the singular value

matrix Σ, to obtain the scaled polarization vectors:

S = ΣVT . (3.4)

To clarify to concept of polarizations in a multicomponent signal, I present the

following simple example: Table 3.1 shows three simple datasets, each containing a

(very short) time series of two-component data. For dataset 1, the scaled singular

vectors (eq. 3.4) are shown in Figure 3.1(a). In this dataset, all the energy is present

on the first component, therefore there is only one singular vector aligned along the



67

first components’ axis. The signal is “polarized” along component 1. In dataset 2, all

the energy is on the second component, therefore in Figure 3.1(b) we see that signal

is polarized only along component 2.

In dataset 3, most of the energy is on component 1, but some energy is present

on component 2. Consequently, in Figure 3.1(c), we see that the first singular vector

(’S1’) indicates that the bulk of the signal is polarized mostly along component 1. The

second, smaller polarization vector (’S2’) shows that the weaker, orthogonal energy in

the signal is polarized mostly along component 2. The signals on the two components

in dataset 3 are not orthogonal, but the two polarization vectors are, and both have

some projection on each data component axis.

DATA1 Component 1 Component 2
sample 1 1 0
sample 2 -0.2 0

DATA2
sample 1 0 0.2
sample 2 0 0.6

DATA3
sample 1 1 0.2
sample 2 -0.2 0.6

Table 3.1: Example two-component input data for SVD.

Polarization template matching

As mentioned before, many existing polarization filtering methods rely on some model

of the expected polarization of wave modes on the data components. My approach is

to derive the polarization directly from the data. This requires manual picking of an

event containing what is obviously an undesired wave mode (In chapter 4 I discuss

automation of this selection process).

I either select one multicomponent trace containing the undesired wave mode

event, or I move out and stack several traces containing the event to increase SNR. I

select the time window from the multicomponent trace that contains a representative

sample of the undesired wave mode. I apply CWT (eq. 3.1) to this time window,

generating an Nt×Na×Nc cube as shown in Figure 3.2(a), where Nt is the number of
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Figure 3.1: The scaled singular vectors (eq. 3.4) of the two-component input data
shown in table 3.1. a) data 1. b) data 2. c) data 3. ’S1’ and ’S2’ indicate the 1st and

2nd singular vectors. [NR] chap3/. svec-data1,svec-data2,svec-data3

samples in the time window, Na is the number of wavelet scales and Nc is the number

of data components,

For each time-slice we have a Na×Nc matrix. I further subdivide this matrix along

the wavelet-scale axis using a sliding window. The data matrix D to which I apply

SVD (eq. 3.3) is then a Naw×Nc matrix. I then calculate the polarization vectors for

each wavelet-scale window using eq. 3.4, and select only the first polarization vector,

as shown in Figures 3.2(b), 3.2(c) and 3.2(d). I then stack the polarization vectors

along the time-window Nt to increase SNR, and arrive at the template polarization,

as shown in Figure 3.2(e). Since the wavelet scales of the CWT are related to fre-

quency, this polarization template represents the frequency-dependent polarization of

the undesired wave mode:

Stemp(~a) = Σ(~a)VT (~a). (3.5)

After determining the polarization template, I now search for similar polarizations

in the entire dataset. I run a CWT on the entire multicomponent dataset, generating

a data cube D(~x, t,~c,~a), where ~x is trace offset, t is time, ~c is the data component

and ~a is the wavelet scale. For each trace offset, each time and each wavelet-scale
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(a) (b)

(c) (d)

(e)

Figure 3.2: a) The cube of data resulting from CWT applied to a single two-
component trace, comprising the time axis, the component axis and the wavelet scale
axis. b) Application of SVD to a window of wavelet scales of one time slice of the
data cube in (a) provides the polarization of the data within that particular wavelet
scale range. Since there are two data components, there are two orthogonal polar-
ization vectors (eq. 3.4). The red arrow shows the first polarization vector. c) SVD
applied to the next wavelet scale window. d) SVD applied to the last wavelet scale
window. e) The wavelet-scale (frequency) dependent polarization template. [NR]

chap3/. CWT-data-cube,svd-win1,svd-win2,svd-win3,svd-temp
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window, I apply an SVD transform to the matrix D(~x = ~x‘, t = t‘,~c,~a = ~a
′
), in which

the columns are the data components ~c, and the rows are the wavelet scales within

~a
′
. I then scan the transformed data cube along the offset, time and wavelet-scale

axes, searching for where the first polarization vector is similar to the undesired wave

mode’s polarization template (eq. 3.5). Where I find energy in the offset-time-wavelet

scale space for which the first polarization vector is similar to the first polarization

vector of the template in eq. 3.5, I attenuate that first polarization vector. I then

transform the attenuated data back to the time domain by pre-multiplying by the

matrix U, and performing an inverse CWT.

The reasoning for attenuating just the first polarization vector is that it con-

tains most of the energy in D(~x = ~x‘, t = t‘,~c,~a = ~a
′
). Therefore, attenuating the

first polarization vector where it is similar to a template of a dominant, undesired

wave-mode’s polarization should remove most of the energy attributed to that same

wave mode at the current offset/time/wavelet-scale in the data. The identification

of where and when the data are dominated by undesired wave modes is by human

interpretation.

The similarity measure I use is based on the angular difference between the first

polarization vector at the current position and wavelet scale in the data Scurr
1 (~x =

~x‘, t = t‘,~a = ~a
′
) and the first polarization vector of the template Stemp

1 (~a):

α = cos−1

(
Stemp

1 · Scurr
1

|Stemp

1 | |Scurr
1 |

)
. (3.6)

Attenuation is done by applying a weighting function only to the first singular

value of Σ in equation 3.3. The weighting is a function of the similarity of the first

polarization vector at (~x = ~x‘, t = t‘,~a = ~a
′
) to the template polarization vector. It

is equal to 1 minus the cosine of the angular difference between the template and

current polarization vectors in equation 3.6:

w1 = 1− cos2

(
α

αmax

π

2

)
, (3.7)

where αmax is a user-defined parameter which determines the largest angular difference

for which the current and the template polarizations are considered to be sufficiently

similar. If the angular difference is greater than αmax, the weight is set to 1 and the
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data are not attenuated. I do not have an a priori method of defining the best αmax

parameter for a given dataset, except to say that if it is too big then we may attenuate

the data we are interested in retaining, and if it is too small then we will not remove

the undesired wave modes. I arrived at the results presented in the following sections

by testing several values for αmax.

Formally, the weighting is a diagonal matrix W of the same dimensions as the Σ

matrix (i.e., Naw × Nc). Since I wish to attenuate just the first polarization vector,

all the values of the diagonal are 1 except for the first element, which will be in the

range [0, 1]:

W =


w1 0 . 0

0 w2 = 1 . 0

. . . 0

0 0 0 wNc = 1

 (3.8)

The greater the similarity between the first polarization vector of any sample in the

data to the first polarization vector of the template, the lower the value of the first

element w1 on the diagonal of W. Conceivably, the other weights could also be less

than 1 if we wish to attenuate the other polarization vectors.

The data are reconstructed with the weighting applied to the first singular vector

as:

D(~x = ~x‘, t = t‘,~c,~a = ~a
′
) = UWΣVT . (3.9)

An inverse CWT is then applied to the reconstructed data. Since the method operates

independently on each trace and does not rely on any additional spatial considera-

tions, it is effectively insensitive to spatial aliasing in the data.

THE KETTLEMAN SIX-COMPONENT SURVEY

The 2D Kettleman survey was performed by Chevron in December of 2012, and

comprised four types of sources:

1. Accelerated weight-drop

2. Vibroseis
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3. Dynamite charge at 25 m depth (1
2

kg)

4. Dynamite charge at 50 m depth (1
2

kg)

There were also multiple types of receivers:

1. 3C GS-One 10 Hz geophones buried at 1 m depth

2. 3C GS-32 10 Hz geophones buried at 3 m depth

3. 3C MEMS Accelerometers on the surface (DSU)

4. 3C Rotation sensors on the surface
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)	
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25	m	dynamite	

50	m	dynamite	

Figure 3.3: Map view of the geometry of the Kettleman survey. Five accelerometers
(marked with ’A’) were positioned on the surface along the survey’s inline azimuth
at the end of the shot line, with a 2 meter interval. Five geophones (marked with
’G’) were buried near the center of the shot line, also spaced at 2 meter intervals
inline. ’R2’ rotation sensors (marked with ’R’) were placed on the surface in between
the accelerometer positions and also in between the geophone positions. There were
241 accelerated weight drop shots, 60 vibroseis shots, 57 of the 25 m depth dynamite
shots and 54 of the 50 m depth dynamite shots. [NR] chap3/. kettleman-geom-nr

The acquisition geometry is shown in Figure 3.3. The shot line length was 1.6

km long. At one end of the shot line there were five 3C linear accelerometers, which

were closely spaced at a 2.1 m interval inline. In between the accelerometers in the

inline direction there were four 3C elecrokinetic rotation sensors. The rotational
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components were aligned to coincide with the direction of the linear components, so

that the positive sense of rotations around the vertical, radial and transverse axes

was according to the right-hand rule.

The following figures show the 6C receiver gather for the four source types at

one receiver station. Figures 3.4(a)-3.4(f) are accelerated weight-drop data. The

weight-drop shots were repeated 6 times at each station, and diversity stacking was

applied to the repeated gathers to increase SNR (Gimlin and Smith, 1980). Figures

3.5(a)-3.5(f) are the correlated vibroseis data, Figures 3.6(a)-3.6(f) are 25 m depth

dynamite data, and Figures 3.7(a)-3.7(f) are 50 m depth dynamite data. All data are

clipped at 93% (i.e., 93rd percentile of absolute amplitude) to enable a comparison

between components while still representing the dominance of the surface wave energy

compared to the body-wave reflections.

The strong ground roll in the accelerated weight-drop data is not aliased due

to a very small shot interval of 6.25 m. All other sources were shot with a 25 m

shot interval, and therefore exhibit significant aliasing of the ground roll. The best

reflection signal appears on the dynamite data, as it excites less ground roll than

surface sources.

However, note how the rotation-sensor data for the dynamite sources in Figures

3.6(d)-3.6(f) and Figures 3.7(d)-3.7(f) have a very low signal to noise ratio as com-

pared to the rotation data generated by the surface sources in Figures 3.4(d)-3.4(f)

and Figures 3.5(d)-3.5(f). The reason for this is that most of the strong, rotational

signal is generated by surface waves. The buried dynamite sources generate weaker

surface waves than surface sources, and as a result of the noise floor level of the elec-

trokinetic rotation sensors, the rotational signal dives into the noise level at shorter

offsets. This low SNR would make any multicomponent analysis involving rotational

data difficult.

Figures 3.8(a) and 3.8(c) are the pitch component acquired by the rotation sensor

for the vibroseis and dynamite sources, respectively. Figures 3.8(b) and 3.8(d) are the

pitch component calculated by differencing the two vertical accelerometers adjacent to

the rotation sensor (in the inline direction). Note how the pitch component derived

from the differencing has a better signal to noise ratio than the rotation-sensor at

larger offsets. I therefore opted to use vertical geophone-differencing (eq. 2.4) rather

than rely on the pitch rotation sensor data in order to have higher quality rotational
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: 6C receiver gather of the accelerated weight-drop source, clipped at the
93rd percentile. Shot spacing was 6.25 m. Components are: (a) vertical, (b) ra-
dial, (c) transverse, (d) yaw, (e) roll, (f) pitch. Six shots were executed at each
station, and then diversity stacking was applied to increase the signal to noise ra-
tio. The data observable in these sections at this clip level consist entirely of various
Rayleigh wave modes, which are not aliased due to the very close shot spacing. [ER]

chap3/. 302a,302b,302c,302d,302e,302f
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: 6C receiver gather of the vibroseis source, clipped at the 93rd percentile.
Components are: (a) vertical, (b) radial, (c) transverse, (d) yaw, (e) roll, (f) pitch.
Shot spacing was 25 m, and so the various Rayleigh wave modes are aliased. Some
P-wave reflections are visible at early times on the vertical component. [ER]

chap3/. 303a,303b,303c,303d,303e,303f
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: 6C receiver gather of the 25 m depth dynamite source, clipped at the
93rd percentile. Shot spacing was 25 m. Components are: (a) vertical, (b) radial,
(c) transverse, (d) yaw, (e) roll, (f) pitch. Compared to the accelerated weight drop
and vibroseis surface sources, the amount of ground roll in these data is much lower,
though aliasing is still very significant. Some reflections are visible at early times
from offset 200 m and on. Note how the signal to noise ratio of the rotation-sensor
data is low in (d), (e) and (f). [ER] chap3/. 304a,304b,304c,304d,304e,304f
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: 6C receiver gather of the 50 m depth dynamite source, clipped at the
93rd percentile. Shot spacing was 25 m. Components are: (a) vertical, (b) radial,
(c) transverse, (d) yaw, (e) roll, (f) pitch. Reflection data are more visible in these
sections vs the 25 m depth dynamite source. Note the low-frequency arrival starting
from t = 0.35 s at offset=200 m, which appears to be shear-induced energy. Again,
note the low signal to noise ratio for the rotational data in (d), (e) and (f). [ER]

chap3/. 305a,305b,305c,305d,305e,305f
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pitch data.

Unfortunately, there were no accelerometers placed in the crossline direction,

therefore I was not able to similarly calculate the roll or the yaw rotational com-

ponents by geophone differencing as in equation 2.4.

DISPERSIVE SURFACE WAVE MODES IN KETTLEMAN

DATA

In order to gain a better insight into the observed data, I perform a Radon transform

on the accelerated weight-drop source data, which is helpful in identifying frequency

dispersion of surface waves. The receiver gathers of these data are well sampled

spatially (source spacing was 6.25 m) and therefore are not aliased, facilitating the

Radon transform.

The data for the vertical, radial and pitch receiver components are shown in

Figures 3.9(a), 3.9(c) and 3.9(e). Note that I have muted out the body wave arrivals,

and the remaining data comprise surface waves with a maximum velocity of 600 m/s.

I have also applied a circular spreading correction to gain the surface wave data at

later arrival times.

The corresponding data in the Radon (ω - p) domain for each of the receiver

components are shown in Figures 3.9(b), 3.9(d) and 3.9(f). In the vertical component

dispersion image in Figure 3.9(b), a separation of two surface wave modes modes is

clearly visible:

1. a slower, low frequency mode, propagating at 220 - 350 m/s and having fre-

quencies between 5 - 15 Hz.

2. a faster, high frequency mode, propagating at 350 - 500 m/s and having fre-

quencies between 16 - 26 Hz.

These surface wave modes are sometimes termed the“fundamental” and the 1st higher

mode. For the radial and pitch components in Figures 3.9(d) and 3.9(f) the same two

modes are visible, but the slower mode is stronger than the faster mode.

The transverse and yaw receiver components are shown in Figures 3.10(a) and

3.10(c). Their respective Radon-domain dispersion images are in Figures 3.10(b)
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(a) (b)

(c) (d)

Figure 3.8: Comparison of pitch component acquired by rotation sensor and pitch
calculated by differencing adjacent geophones. (a) Rotation sensor pitch for vibroseis
source. (b) Geophone-differencing pitch for vibroseis source. (c) Rotation sensor
pitch for 50 m depth dynamite source. (d) Geophone-differencing pitch for 50 m
depth dynamite source. Note that for both source types, the signal to noise ratio of
the pitch derived from geophone differencing is much higher at larger offsets than the
pitch measured by the rotation sensor. AGC with a window size of t = 0.2 s has been
applied to the data for display. [ER] chap3/. 306a,306b,306c,306d
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and 3.10(d). The transverse component’s dispersion image is rather noisy, however

I discern the same slower and faster wave modes as for the other data components,

with the faster mode being dominant. For the yaw component, the faster wave mode

is clearly dominant, and very little of the slower mode is recorded.

Particle motion analysis

Slow surface wave mode

Since the slow surface wave mode appears at frequencies of 5 - 15 Hz, I applied a

frequency filter within this range to the data before generating the following figures

in this section. Figure 3.11(a) is a wiggle plot of the slow surface wave mode after ap-

plication of linear moveout (LMO) and AGC for display purposes. The black wiggles

are the vertical component, while the red are the radial. The vertical component is

delayed compared to the radial. Figure 3.11(b) shows the cross-correlation near zero

time-lag for the vertical and radial components, and a consistent 90o phase shift can

be observed for all traces. Figure 3.11(c) shows the phase delay between the vertical

and radial components over frequency for the slow ground roll wave mode. Observe

that the 90o phase shift is constant for the frequencies of this slow ground roll.

Figures 3.13(a) and 3.13(e) show the vertical and radial components of one trace

of the slow surface wave, and the corresponding hodogram. The red part of the line

is the trailing end of the hodogram. Note that the hodogram indicates retrograde

particle motion, which is in agreement with the standard model for the fundamental

mode of Rayleigh waves where velocity increases with depth in the near surface.

Figures 3.11(d), 3.11(e) and 3.11(f) are the wiggles, correlation lags and phase

delays for the vertical and pitch components of the slow surface wave, where the

black wiggles are the vertical and the blue are pitch. The phase delay seems to be

consistently between 90o and 45o degrees. However, in figures 3.11(g), 3.11(h) and

3.11(i), we see that the radial and pitch components are almost completely in phase.

For the transverse (purple) vs the yaw (green) components in Figures 3.11(j),

3.11(k) and 3.11(l), the phase delay appears to be inconsistent between traces and

along the frequency axis, going between 90o and 180o.

The additional hodograms in Figures 3.13(f), 3.13(g) and 3.13(h) plot rotational vs

translational motion, and so, unlike Figure 3.13(e), it is difficult to achieve an intuitive
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understanding of the particle motion from them and label them into known categories

(e.g., “fundamental mode”). These figures effectively show the same information

as in Figures 3.12(f), 3.12(i) and 3.12(l) with respect to the phase delay between

components.

Fast surface wave mode

Since the fast surface wave mode appears at frequencies of 16 - 26 Hz, I applied a

frequency filter within this range to the data before generating the following figures in

this section. Figures 3.12(a), 3.12(b) and 3.12(c) are the wiggle plot, correlation lags

and phase delays for the vertical vs the radial component, where the black wiggles

are the vertical, and the red are radial. In contrast to the phase delays of these two

components for slow surface wave mode, for the fast mode the delay is at most 45o,

and is not as consistent along frequencies.

The particle motion for the fast surface wave mode is retrograde, as can be seen in

Figure 3.14(e). Boue et al. (2016) provide a discussion of the theoretical connection

between the particle motion sense of the vertical and horizontal components and the

velocity model. For some velocity profiles, the 1st higher surface wave mode may have

prograde particle motion, however that is not the case here, indicating that the shear

velocity structure in Kettleman is a relatively smooth, simple increase with depth.

The phase delays of the vertical vs the pitch component and of the radial vs the

pitch component are consistently at 45o. However, the most significant difference

between the slow and the fast surface wave modes can be seen from the comparison

of the transverse vs the yaw components. Figures 3.12(k) and 3.12(l) show that the

phase delay is close to zero, although not consistently for all traces and frequencies.

The same in-phase behaviour of the transverse and yaw can be seen from the trace

in Figure 3.14(d) and the hodogram in Figure 3.14(h).

Igel et al. (b) observe a similar direct correlation between the transverse and the

yaw components of the Love wave arrivals on a record of the magnitude 8.1 Tokachi-

Oki earthquake which occured on September 25th, 2003. The seismic energy from

the earthquake was recorded by a large ring laser in Wetzel, Germany, which could

only record vertical rotations (yaw), and by a nearby three-component accelerometer.

If we consider that Love waves generate horizontal partical motions, we may deduce

from the rotation vector in equation 1.5 that a corresponding vertical rotational strain

should be observed as well. Assuming the receiver components are oriented so that
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the Love wave appears only on the transverse uy component, we have:
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Therefore, the fact that we see the transverse and yaw components having the

same phase is an indication that at least some of the energy of the faster surface wave

mode in these data is the result of a Love wave. The extra information from the

rotational yaw component enables a seismic wave-mode determination.

POLARIZATION IN THE CONTINUOUS WAVELET

DOMAIN

The objective is to separate wave modes in the data using all components. There are

desirable wave modes which we term “signal”, and undesirable ones which we call

“shot-generated noise”. Most commonly in seismic data, the wave modes of interest

are the P-wave reflections, as these provide information about the subsurface at depth.

Surface waves and shear induced energy appearing on the vertical component are

considered to be noise, as they obscure the P-wave reflections.

Figures 3.15(a)-3.15(d) are vertical component receiver gathers for the four source

types, after application of NMO to flatten the P-wave reflections. In this display,

events that are not close to being flat are considered to be noise, and they prevent us

from observing the flattened P waves.

Note the strong ground roll in Figures 3.15(a) and 3.15(b), which prevents us from

observing the near-offset reflections (a common issue in seismic land data). It would

not be possible to use filters that rely on spatial sampling to remove the ground roll

from the vibroseis data because they are aliased. A low-pass filter or an inner mute

could be applied to remove all the aliased energy. However, that would result in a

significant attenuation of the reflection signal as well as of the noise.

The 50 m depth dynamite source data in Figure 3.15(d) has the best reflection

signal. However, observe the non-flat lower frequency arrival starting at t = 0.3 s
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Accelerated weight drop source receiver gather at station 335. Mute has
been applied to remove the body waves, and circular spreading to gain the later arrival
energy. (a) Vertical accelerometer. (b) Vertical accelerometer in Radon domain. (c)
Radial accelerometer. (d) Radial accelerometer in Radon domain. (e) Pitch rotation
sensor. (f) Pitch rotation sensor in Radon domain. Two distinct wave modes appear
on each receiver component: a slower, lower frequency mode, and a faster, higher
frequency mode. Note that on the radial and pitch components, the slower surface
wave mode is dominant. [ER] chap3/. 320a,320b,320c,320d,320e,320f
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(a) (b)

(c) (d)

Figure 3.10: Accelerated weight drop source receiver gather at station 335. Mute has
been applied to remove the body waves, and circular spreading to gain the later arrival
energy. (a) Transverse accelerometer. (b) Transverse accelerometer in Radon domain.
(c) Yaw rotation sensor. (d) Yaw rotation sensor in Radon domain. The dispersion
image of the transverse component is noisy, but two surface wave modes can still be
identified, with the faster mode being dominant. On the yaw component the faster
surface wave mode is clearly dominant. [ER] chap3/. 321a,321b,321c,321d
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.11: Comparison of receiver gather data components after linear move-
out and AGC (left column), their correlation (center column) and their average
phase difference (right column) for the slower surface wave mode. (a)-(c): Verti-
cal (black) vs Radial (red). (d)-(f): Vertical (black) vs Pitch (blue). (g)-(i): Radial
(red) vs Pitch (blue). (j)-(l): Transverse (purple) vs Yaw (green). The radial and
pitch components are in phase. The vertical component lags behind the radial and
pitch by 90o. The transverse component lags behind the yaw by 90o-180o. [ER]

chap3/. 322a,322b,322c,322d,322e,322f,322g,322h,322i,322j,322k,322l
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.12: Comparison of receiver gather data components after linear moveout
and AGC (left column), their correlation (center column) and their average phase
difference (right column) for the faster surface wave mode. (a)-(c): Vertical (black)
vs Radial (red). (d)-(f): Vertical (black) vs Pitch (blue). (g)-(i): Radial (red) vs
Pitch (blue). (j)-(l): Transverse (purple) vs Yaw (green). The vertical and radial
components are mostly in phase, and both lag behind the pitch by about 45o. The
transverse and yaw components are almost in phase for frequency range 21 - 26 Hz.
[ER] chap3/. 323a,323b,323c,323d,323e,323f,323g,323h,323i,323j,323k,323l
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.13: Data components for the slow ground roll wave mode for the trace
at offset 210 m and their hodograms. (a),(e) Vertical vs Radial. (b),(f) Vertical
vs Pitch. (c),(g) Radial vs Pitch. (d),(h) Transverse vs Yaw. The hodograms
start from the dashed red line and progress to the solid black line. [ER]

chap3/. 324a,324b,324c,324d,324e,324f,324g,324h

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Data components for the fast ground roll wave mode for the trace
at offset 210 m and their hodograms. (a),(e) Vertical vs Radial. (b),(f) Vertical
vs Pitch. (c),(g) Radial vs Pitch. (d),(h) Transverse vs Yaw. The hodograms
start from the dashed red line and progress to the solid black line. [ER]

chap3/. 325a,325b,325c,325d,325e,325f,325g,325h
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at offset=200 m and ending at t = 0.5 s at offset=400 m. Judging by the frequency

content and moveout of this event in the receiver gather, I think it is a result of shear-

wave energy scattering off an anomaly in the near surface and generating surface

waves. Regardless of the mechanism by which this shear-like event is generated, it

is visible on all components in Figures 3.7(a)-3.7(f) and, like the ground roll for the

surface sources, it obscures the P-wave reflections. I therefore target this particular

shear arrival for removal from the 50 m depth dynamite data.

Filtering of a shear wave from the 50 m depth dynamite data

Figure 3.16(g) is the vertical geophone receiver gather for the 50 m depth dynamite

source at receiver station 335. The shear-induced surface wave arrival that appears

to have slower moveout than the moved-out P waves is circled.

My intent was to remove the surface wave using all six available data components

(vertical, radial, transverse, yaw, roll and pitch). I do not, however, have reliable

rotation-sensor data for the yaw and roll components. Therefore, for the analysis

that follows I used only three components out of the available six: the vertical, radial

and pitch. Since the survey was 2D, with the shot line running parallel and very close

to the receiver line (Figure 3.3), most of the coherent seismic energy should appear

on these components.

Figures 3.16(a), 3.16(c) and 3.16(d) are the vertical, radial and pitch component

traces from the 50 m depth dynamite source at offset 280 m. The pitch component

was derived by vertical-geophone differencing, which produced data with a better

SNR than the pitch rotation sensor. Figures 3.16(b), 3.16(d) and 3.16(e) are the

absolute values of CWT coefficients (eq. 3.1) of the respective three components of

the trace. AGC has been applied to Figures 3.16(b), 3.16(d) and 3.16(e) to balance the

amplitudes in the display and enable the viewer to see the weaker P-wave contribution.

The frequency decreases by powers of two for every scale, starting from scale 0. For

wavelet scale 0 the corresponding frequency is 128 Hz, and at wavelet scale 8 the

corresponding frequency is 0.5 Hz. Observe that between t = 0.2 s and t = 0.3 s

there are P wave reflections, and that these reflections correspond to lower wavelet

scales (higher frequencies) in the continuous wavelet domain of all the components.

At t = 0.4 s there is a shear-induced arrival, which appears in the wavelet domain as
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(a) (b)

(c) (d)

Figure 3.15: Receiver gathers of the vertical geophone component of the 4 source
types in the Kettleman survey, after NMO with velocity v = 1700m/s. (a) Accelerated
weight drop. (b) Vibroseis source. (c) Dynamite charge at 25 m depth. (d) Dynamite
charge at 50 m depth. Source (a) was acquired with 6.25 m shot spacing, while (b),
(c) and (d) were done with 25 m shot spacing. Observe the generally higher quality
reflections acquired with the dynamite sources. The two surface sources (a) and (b)
generate much more ground roll. AGC with a window size of t = 0.2 s has been
applied to the data for display. [ER] chap3/. 307a,307b,307c,307d
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a higher scale feature (lower frequency). However, this feature is more significant on

the vertical and radial components than on the pitch component, where it is barely

visible.

These two distinguishing attributes of the shear arrival: lower frequency and dif-

ferent appearance in the wavelet domain of the various data components, are what I

use to identify and attenuate it.

Figure 3.17(a) shows the time slice of the CWT of the three data components

of the same trace, at time t = 0.22 s where there are P-wave reflections. I apply

SVD to this time slice as described in equation 3.3, and display the 1st, 2nd and 3rd

scaled polarization vectors as in equation 3.4 in Figures 3.17(b), 3.17(c) and 3.17(d),

respectively. Each row in these figures represents one polarization vector. Note the

pattern visible for the first polarization vectors, which indicates that the energy at

this time has both high frequency and lower frequency polarization.

Figure 3.18(a) shows the time slice of the CWT of the three data components at

time t = 0.42 s, which is the shear-arrival time. The 1st, 2nd and 3rd scaled polariza-

tion vectors are shown in Figures 3.18(b), 3.18(c) and 3.18(d), respectively. For this

arrival, the first polarization vectors in Figure 3.18(b) show a very different pattern

compared to Figure 3.17(b), and indicate that at this arrival’s time the polarization

is largely on the lower frequencies and on the vertical and radial components.

The shear arrival’s 2nd polarization vectors in Figure 3.18(c), however, have a

wider frequency band than the 1st polarization vector in Figure 3.18(b), and it re-

sembles more the 1st polarization vectors of the P-wave reflections in Figure 3.17(b).

This indicates what can already be seen from the data in Figure 3.15(d): the shear

arrival is obscuring the P reflections. The 2nd polarization vector reveals the under-

lying energy. I set the template polarization Stemp(a) to be Figure 3.18(b), and it is

this polarization that I search for in the data on a trace by trace basis.

Figure 3.19 shows the set of scalar weights which are applied to the first polar-

ization vectors of the CWT of the multicomponent trace (the w1 element in eq. 3.8).

Note how the higher scales (lower frequencies) are preferentially damped. However,

note that this is not simply a weighting down of low frequencies. The weighting

function depends on the similarity of the first polarization vectors at each time and

at each frequency to the template polarization in Figure 3.18(b). Where there is a
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similarity, the lower frequencies are preferentially weighted down.

Figures 3.20(a), 3.20(b) and 3.20(c) are the vertical, radial and pitch components

before application of the polarization filtering, while Figures 3.20(d), 3.20(e) and

3.20(f) are the same components after application of the polarization filtering. Note

that the shear-induced arrival that I targeted for removal has indeed been attenuated,

and the P-wave reflection signal which was hidden below it has been enhanced. The

P-wave reflections appear continuous.

Note also that I used only one time window of one trace to determine the polar-

ization template of this shear energy, and yet after applying the filtering based on

that polarization template to the entire dataset the shear energy has been attenuated

everywhere and for all components.

Figure 3.21(a) is again the input vertical component of the 50 m depth dynamite

receiver gather at station 335, while Figure 3.21(d) is the same gather in frequency-

wavenumber domain. Figure 3.21(b) shows the vertical component after the polariza-

tion filtering, while Figure 3.21(e) shows the frequency-wavenumber spectra of these

data. Compare this to a low-cut filter, where the pass band was 25 Hz - 60 Hz, shown

in Figure 3.21(c). There is a an improvement in continuity of the P-wave reflections,

but the shear energy is still apparent. The resolution of the P reflections, however,

has been degraded because of the simple frequency filter. Comparing Figures 3.21(e)

and 3.21(f), we see that unlike standard frequency filtering, the polarization filtering

has not performed a wholesale removal of the low frequencies.

Filtering of a shear wave from the 25 m depth dynamite data

The data from the 25 m depth dynamite shots in Figure 3.22(a) is similar to the 50

m depth shots in Figure 3.20(a), except that there is strong, coherent, low-frequency

ground roll visible, propagating at approximately air-speed velocity. There is an

arrival similar to the shear-induced surface wave arrival on the 50 m depth shot data,

which for the 25 m depth shots is more prominent and has a linear moveout.

I used a time window from one trace of each of these arrivals to calculate the

polarization templates of these wave modes. I then applied the polarization filtering

method to target and attenuate these wave modes. The results can be seen when

comparing Figures 3.22(a), 3.22(b) and 3.22(c) to Figures 3.22(d), 3.22(e) and 3.22(f).
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.16: (g) Vertical geophone component of 50 m depth dynamite data after
NMO. (a) Trace of the vertical component at offset=280 m. (b) Absolute values of
the continuous wavelet transform coefficients for vertical component. (c) Trace of the
radial component at offset=280 m. (d) Absolute values of the continuous wavelet
transform coefficients for radial component. (e) Trace of the pitch component at
offset=280 m. (f) Absolute values of the continuous wavelet transform coefficients
for pitch component. AGC has been applied to (b), (d) and (f) to enable a more
equalized view of the wavelet coefficients over the time and scale axes (without AGC,
the units are |mm/s| /scale). The wavelet scale is dyadic, beginning from a frequency
of 128 Hz at wavelet scale 0 down to 0.5 Hz at wavelet scale 8. Up until t = 0.32
s, the data contain P reflections, while between t = 0.32 s and t = 0.52 s there is
a shear-wave arrival. The lower frequency of the shear arrival can be discerned at
t = 0.4 s, for wavelet scale=3.8. [ER] chap3/. 308b,308c,308d,308e,308f,308g,308a
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(a) (b)

(c) (d)

Figure 3.17: A 3C time slice of the continuous wavelet transform of the trace at
offset 280 m at t = 0.22 s where a P-wave reflection is visible, and the corresponding
absolute values of the CWT polarization vector-set for this time slice, scaled by their
respective singular values (eq. 3.4). (a) Continuous wavelet time slice. (b) 1st, (c)

2nd, and (d) 3rd polarization vectors. [ER] chap3/. 309a,309b,309c,309d
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(a) (b)

(c) (d)

Figure 3.18: A 3C time slice of the continuous wavelet transform of the trace at
offset 280 m at t = 0.42 s where shear-wave energy dominates, and the correspond-
ing absolute values of the CWT polarization vector-set for this time slice, scaled by
their respective singular values (eq. 3.4). (a) Continuous wavelet time slice. (b) 1st,
(c) 2nd, and (d) 3rd polarization vectors. Note that the 2nd polarization vectors at
(c) have a wider frequency band than the 1st polarization vectors at (b), and are
more similar to the 1st polarization vectors at 3.17(b), indicating that the domi-
nant shear-wave energy in (b) is overlaying weaker P-wave reflection energy. [ER]

chap3/. 310a,310b,310c,310d

Figure 3.19: The set of scalar
w1 weights (eq. 3.8) applied to
the first polarization vector of the
data in the wavelet domain to
attenuate the shear wave mode
appearing at (x = 280m, t =
0.4s) in Figure 3.16(a). [ER]

chap3/. 311
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Receiver gather of 50 m depth dynamite source before (top row) and
after (bottom row) polarization filter to attenuate the shear arrival at (t,x) = (0.4 s,
300 m). (a) Vertical component. (b) Radial component. (c) Pitch component. (d)
Vertical component. (e) Radial component. (f) Pitch component. Data are shown
after NMO with velocity v = 1700 m/s to flatten the P-wave reflections. AGC with
a window size of t = 0.2 s has been applied for display purposes. Observe that the
circled shear-induced event has been attenuated, and that the underlying P-wave
reflections are visible after filtering. The filter has killed the noise and the P-wave
data have survived. [ER] chap3/. 312a,312b,312c,312d,312e,312f
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(a) (b) (c)

(d) (e) (f)

Figure 3.21: A comparison of the filtering results using continuous wavelet polariza-
tion filter versus a low-cut filter on the 50 m depth dynamite receiver gather at station
335. (a) Vertical component. (b) Vertical component after application of continuous
wavelet polarization filter. (c) Vertical component after application of a low-cut filter,
where the pass band was 25 Hz - 60 Hz. (d) Vertical component (a) in frequency-
wavenumber domain. (e) Vertical component (b) in the frequency-wavenumber do-
main. (f) Vertical component (c) in the frequency-wavenumber domain. AGC was
applied to the data prior to FK transform. Observe how in (b) and (e), the polariza-
tion filtering does not impartially remove low frequencies, unlike the low-cut filter in
(c) and (f), and therefore there is no reduction in the spectral resolution of the data.

[ER] chap3/. 313a,313b,313c,313d,313e,313f
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Note how both of the targeted wave modes have been mostly removed, although the

shear-induced wave is still obscuring some of the P-wave reflections. The slow ground

roll has been removed despite being spatially aliased.

Filtering of aliased ground roll from the vibroseis data

The vibroseis data contain strong, aliased ground roll, which are much stronger than

the P reflections at near offsets. Figures 3.23(a), 3.23(b) and 3.23(c) are the vertical,

radial and pitch components after NMO and before application of the CWT polariza-

tion filtering. A slow Rayleigh wave mode propagating at around 250 m/s is visible

beginning from t = 0.2 s and ending at t = 0.8 s at offset 400 m. There is a faster

Rayleigh wave mode propagating at about 400 m/s, and yet another, more dispersive

and faster mode propagating at 600 m/s. Since NMO has been applied, the P-wave

reflections are flat, and it is obvious that they are dominated by the ground roll at

nearer offsets and later times.

To estimate the polarization template for the slow Rayleigh wave mode, I took a

time-window from four traces containing this slow Rayleigh wave mode around t = 0.6

s. For the two faster Rayleigh modes, I selected a representative time window from a

single trace where these modes were dominant. I then applied the same polarization

filtering method as for the dynamite data, comparing the first polarization vector of

each time sample (in the CWT domain) to the template polarization, and weighing

it down by its similarity to the template.

Figures 3.23(d), 3.23(e) and 3.23(f) are the vertical, radial and pitch components

after application of the polarization filtering. Observe how the various Rayleigh wave-

modes have been attenuated. In the area indicated by the top circle, the horizontal P

arrivals are now visible from underneath the ground-roll cone. As before, the targeted

wave modes (the “noise”) have been attenuated on all data components.

The targeting of the aliased, slow ground roll also more visible in the frequency-

wavenumber domain, as can be seen by comparing Figures 3.24(c) and 3.24(d). Ob-

serve how the aliased high-wavenumber energy relating to the slow ground roll has

been removed. Consequently, the P wavenumbers are more dominant in the filtered

F-K domain in Figure 3.24(d). These figures show the advantage that polarization

filtering has over standard frequency-wavenumber filters. An F-K filter would have
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(a) (b) (c)

(d) (e) (f)

Figure 3.22: Receiver gather of 25 m depth dynamite source before (top row) and
after (bottom row) polarization filter to attenuate shear and ground roll energy. (a)
Vertical component. (b) Radial component. (c) Pitch component. (d) Vertical com-
ponent. (e) Radial component. (f) Pitch component. Data are shown after NMO
with velocity v = 1700 m/s to flatten the P-wave reflections. AGC with a window
size of t = 0.2 s has been applied for display purposes. The shear-induced energy and
the spatially-aliased ground roll have been mostly attenuated, and the underlying
P-wave reflections in the top circle are visible after filtering. In the top circle, we can
see that the filter has killed the noise and the P-wave data have survived. [ER]

chap3/. 314a,314b,314c,314d,314e,314f



99

(a) (b) (c)

(d) (e) (f)

Figure 3.23: Receiver gather of vibroseis source before (top row) and after (bottom
row) polarization filter to remove ground-roll energy. (a) Vertical component. (b)
Radial component. (c) Pitch component. (d) Vertical component. (e) Radial com-
ponent. (f) Pitch component. Data are shown after NMO with velocity v = 1620
m/s to flatten the P-wave reflections. AGC with a window size of t = 0.2 s has been
applied for display purposes. The spatially aliased ground-roll energy in the bottom
circle has been attenuated, though no coherent P-wave energy is visible underneath
the noise. In the top circle, flat P-wave reflections are visible after filtering. [ER]

chap3/. 315a,315b,315c,315d,315e,315f
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had difficulty in separating signal from noise because of the aliasing.

Advantage of using the rotational pitch component

To have a fair apples-to-apples comparison of the polarization template matching

method for different data components, it is necessary to compare using the same

number of components. This is due to the angular-difference based similarity measure

between the template polarization vector and the data polarization vector at every

sample (eq. 3.6). A different number of components means a different number of

dimensions in the SVD polarization space. A polarization template vector calculated

by applying SVD to 2-component data will have 2 elements, while a vector derived

from 3-component data will have 3 elements.

The implication of the number of components on the region of the SVD polariza-

tion space which would be attenuated is shown in Figures 3.25(a) to 3.25(c). Figure

3.25(a) shows the volume in 3D space for which all vectors have a particular angu-

lar difference from the 3D template polarization vector, indicated by the blue arrow.

The volume described has a cone shape. Figure 3.25(b) shows the 2D slice within

which all vectors have a particular angular difference from the projection of the 3D

template polarization vector onto one of the 2D planes, indicated by the red arrow.

This area is a slice on the 2D plane, and it would be the result of using only 2 data

components. Projecting this slice onto the 3D space, as is shown in Figure 3.25(c), we

see that the resulting volume does not look like the cone for the case of 3D, but rather

like a wedge. Therefore, the angular difference between two vectors in 3D is more

restrictive than for 2D (geometrically, a “cone” versus a “wedge”), and will affect

the similarity measure and the corresponding damping weights. In order to properly

compare between polarization template matching for 2 vs 3 data components, the

weights for the 3-component case would need to be designed as shown in 3.25(c).

The reliable components from the Kettleman survey are the vertical, radial and

transverse translational components, and the pitch rotational component. In order

to demonstrate the additional wave-mode identification capability introduced by the

pitch component, I compare the polarization filtering results using the vertical, radial

and pitch components with those obtained using the vertical, radial and transverse

components.
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(a) (b)

(c) (d)

Figure 3.24: Comparison of the vertical component receiver gather before and after
polarization filtering to remove ground-roll energy in the frequency wavenumber do-
main. (a) Vertical component before filtering. (b) Vertical component after filtering.
(c) Vertical component in the F-K domain before filtering. (d) Vertical component
in the F-K domain after filtering. AGC was applied prior to FK transform. Note
the circled aliased energy that is removed in (d) vs (c). This energy corresponds
to the ground roll indicated in the bottom circle in (a) and (b) The broadband,
low-wavenumber P reflection energy is more dominant in (b). A standard frequency-
wavenumber filter would have had difficulty in separating signal from noise because
of the aliasing. [ER] chap3/. 316a,316b,316c,316d
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(a) (b)

(c)

Figure 3.25: Illustration of the differences between designing the damping weights
(eq. 3.7) in the SVD polarization space for 3 components versus 2 components.
The axes represent the polarization unit vectors, while the blue arrow indicates the
template polarization vector in the 3D space. The red arrow indicates the projection
of the template polarization onto one of the 2D planes. (a) The conical shape of the
volume in the 3D SVD space that would be damped using the angle-based similarity
measure (eq. 3.6) if 3 data components were used. (b) The slice of the 2D SVD
space that would be damped using the angle-based similarity measure if only 2 data
components were used. (c) The projection of the damped 2D SVD space to the 3D
SVD space, which is a wedge-shaped volume rather than a conical one as for 3D
damping. The angular difference between two vectors in 3D is more restrictive than
for 2D and will affect the similarity measure and the corresponding damping weights.
To compare the polarization template matching for different data components, it is
therefore necessary to always compare using the same number of components. [NR]

chap3/. 3D-weight,2D-weight,2D-weight-proj
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Pitch vs transverse comparison for 25 m depth dynamite source

Figures 3.26(a), 3.26(b), 3.26(c) and 3.26(d) are the input receiver gathers of the

vertical, radial, transverse, and pitch components of the 25 m depth dynamite source.

The black circles indicate the shear-induced and Rayleigh wave modes that I am

targeting for removal.

Figures 3.26(e) and 3.26(g) are the vertical and radial components after filtering

based on the polarization vectors derived from the vertical, radial and pitch compo-

nents. The circles indicate the attenuated shear wave and ground roll energy. Figures

3.26(f) and 3.26(h) are the vertical and radial components after filtering based on the

polarization vectors derived from the vertical, radial and transverse components.

Comparing Figures 3.26(e) and 3.26(f), I observe that the shear wave indicated

by the top circle is better attenuated when using the pitch component vs using the

transverse. The flattened P waves are more continuous in Figure 3.26(e) vs Figure

3.26(f). Additionally, the aliased ground roll indicated by the bottom circle is still

present in Figure 3.26(f). The same observations hold for the comparison of the

attenuation of these undesired wave modes on the radial component in Figures 3.26(g)

and 3.26(h).

The pitch component of this gather contains more of the coherent energy of the

shear and ground roll arrivals than does the transverse, and therefore using the pitch

instead of the transverse component in the polarization analysis enables a better

identification and separation of these wave modes.

Pitch vs transverse comparison for vibroseis source

I now compare the polarization filtering results of the slow (250 m/s) Rayleigh wave

mode in the vibroseis data using the vertical, radial and pitch components with

those obtained using the vertical, radial and transverse components. Figures 3.27(a),

3.27(b), 3.27(c) and 3.27(d) are the input receiver gathers of the vertical, radial,

transverse, and pitch components of the vibroseis source. The slow, aliased ground

roll is circled. I use only the slow ground roll’s polarization template, targeting it for

removal.

Figures 3.27(e) and 3.27(g) are the vertical and radial components after filtering
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.26: Comparison of polarization filtering of the shear-induced and ground roll
energy in the 25 m depth dynamite receiver gathers, when using the vertical (Vz),
radial (Vx) and pitch (Ry) components as inputs vs when using the vertical (Vz),
radial (Vx) and transverse (Vy) components as inputs. (a) The input vertical (Vz)
component. (b) The input radial (Vx) component. (c) The input transverse (Vy) com-
ponent. (d) The input pitch (Ry) component. (e) Vertical component after filtering
using Vz, Vx, Ry components. (f) Vertical component after filtering using Vz, Vx, Vy
components. (g) Radial component after filtering using Vz, Vx, Ry components. (h)
Radial component after filtering using Vz, Vx, Vy components. Data are shown after
NMO with velocity v = 1700 m/s to flatten the P-wave reflections. AGC with a
window size of t = 0.2 s has been applied for display purposes. Comparing (e) to (f)
and (g) to (h), I observe that the shear-induced energy and particularly the spatially-
aliased ground roll at t = 0.6 s are better attenuated when using the pitch rotational
component, which contains more coherent energy of these wave modes than does the
transverse component. [ER] chap3/. 317a,317b,317c,317d,317e,317f,317g,317h
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based on the polarization vectors derived from the vertical, radial and pitch compo-

nents. The circles indicate where the ground roll energy has been attenuated. Figures

3.27(f) and 3.27(h) are the vertical and radial components after filtering based on the

polarization vectors derived from the vertical, radial and transverse components.

Comparing Figures 3.27(e) and 3.27(f), I observe that the aliased ground roll is

better attenuated when using the pitch component vs using the transverse. Addition-

ally, the aliased ground roll indicated by the circle has not been removed in Figure

3.27(f). The same observations hold for the comparison of the attenuation of the slow

ground roll on the radial component in Figures 3.27(g) and 3.27(h).

The pitch component of this gather contains more of the coherent energy of the

slow ground roll than does the transverse. This is consistent with the 2D geometry

of the survey, and with the expected deformations and particle translations that a

Rayleigh wave should have as it propagates in the survey’s inline direction. We should

expect the Rayleigh wave initiated at the source point to propagate outwards and

generate vertical and radial motions, but very little transverse motion. The Rayleigh

wave should also induce a rotational deformation around the transverse axis, i.e.,

pitch rotations, as shown in Figure 1.10(a). Therefore using the pitch instead of

the transverse component in the polarization analysis enables a better separation

capability of the slow Rayleigh wave mode.

Pitch vs transverse comparison for the 50 m depth dynamite source

Figures 3.28(a), 3.28(b), 3.28(c) and 3.28(d) are the input receiver gathers of the verti-

cal, radial, transverse, and pitch components of the 50 m depth dynamite source. The

black circle indicates the shear-induced wave mode that I am targeting for removal.

Figures 3.28(e) and 3.28(g) are the vertical and radial components after filtering

based on the polarization vectors derived from the vertical, radial and pitch compo-

nents. The circle indicates the attenuated shear-induced wave. Figures 3.28(f) and

3.28(h) are the vertical and radial components after filtering based on the polarization

vectors derived from the vertical, radial and transverse components.

Comparing Figure 3.28(e) with Figure 3.28(f), and Figure 3.28(g) with Figure

3.28(h), I observe that the shear wave is attenuated equally well using either the

pitch or the transverse components. The shear wave is similarly dominant on both
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Comparison of polarization filtering of the slow (250 m/s) ground roll in
the vibroseis receiver gathers, when using the vertical (Vz), radial (Vx) and pitch (Ry)
components as inputs vs. when using the vertical (Vz), radial (Vx) and tranverse (Vy)
components as inputs. (a) The input vertical (Vz) component. (b) The input radial
(Vx) component. (c) The input transverse (Vy) component. (d) The input pitch (Ry)
component. (e) Vertical component after filtering using Vz, Vx, Ry components. (f)
Vertical component after filtering using Vz, Vx, Vy components. (g) Radial component
after filtering using Vz, Vx, Ry components. (h) Radial component after filtering using
Vz, Vx, Vy components. Data are shown after NMO with velocity v = 1700 m/s to
flatten the P-wave reflections. AGC with a window size of t = 0.2 s has been applied
for display purposes. Comparing (e) to (f) and (g) to (h), I observe that the spatially-
aliased ground roll (circled) is better attenuated when using the pitch rotational
component, which contains more coherent energy of the ground roll than does the
transverse component. [ER] chap3/. 318a,318b,318c,318d,318e,318f,318g,318h
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the input pitch (Figure 3.28(d)) and the input transverse (Figure 3.28(c)) components,

and therefore both of them provide similar information to the polarization analysis.

DISCUSSION

Throughout this chapter I’ve referred to the method of wave-mode separation essen-

tially as a data adaptive filtering. However, note that particular wave modes are being

targeted, and the method attenuates only the targeted wave modes. This would not

work if the method was not able to identify them.

The continuous wavelet domain enables an identification of wave modes based on

their multicomponent spectral polarization vectors at each frequency, while retaining

the temporal sense of the data. Therefore, the filtering is done in a very targeted

manner, exactly where it is needed in time and space.

Rotations, being medium strains, are an indication of wave mode. Combining

measured rotations with measured translations provides better discrimination be-

tween wave modes than using medium translations alone. For some wave modes,

the rotational components provide additional identification capability by providing

another orthogonal data axis in the SVD polarization space along which to identify

those wave-mode’s polarizations. The polarization analysis I show would welcome the

use of as many independent data components as possible, since the more information

we have available about each wave mode, the more orthogonal data axes will be in the

SVD polarization space, the more we will be able to identify and separate between

waves with different polarizations.

I’ve shown that the method is reasonably successful in attenuating particular,

coherent source-generated wave modes (shear, Rayleigh) which obscure other weaker

wave modes of interest (P-wave reflections). Like all polarization filtering methods,

the method has no spatial sampling requirements, and will work on spatially aliased

data.

However, the connection between wave modes and polarization of data components

is not obvious. I do not provide an analytic model for determing how each wave

mode should appear on any given component at any particular offset or azimuth.

Instead, I effectively use an approach more similar to a data science method: the

polarizations are learned from the data. This requires, however, a manual picking of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.28: Comparison of polarization filtering of the shear-induced wave mode in
the 50 m depth dynamite receiver gathers, when using the vertical (Vz), radial (Vx)
and pitch (Ry) components as inputs vs when using the vertical (Vz), radial (Vx) and
pitch (Vy) components as inputs. (a) The input vertical (Vz) component. (b) The
input radial (Vx) component. (c) The input transverse (Vy) component. (d) The
input pitch (Ry) component. (e) Vertical component after filtering using Vz, Vx, Ry

components. (f) Vertical component after filtering using Vz, Vx, Vy components. (g)
Radial component after filtering using Vz, Vx, Ry components. (h) Radial component
after filtering using Vz, Vx, Vy components. Data are shown after NMO with velocity
v = 1700 m/s to flatten the P-wave reflections. AGC with a window size of t = 0.2
s has been applied for display purposes. Comparing to (e) to (f) and (g) to (h),
I observe that there are no significant differences between the filtering results with
the pitch component vs the results using the transverse component, since the shear-
induced wave mode is similarly apparent on both of these input receiver components.
[ER] chap3/. 319a,319b,319c,319d,319e,319f,319g,319h
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a dominant undesired wave mode visible in the data. Furthermore, the polarization

of a particular wave mode can vary with time, offset or even with orientation of the

data components. Therefore the polarization template selected for an undesired wave

mode at a particular position in the data may not be similar to the same wave mode

appearing at other positions in the data.

A more comprehensive method of identifying wave modes would be to classify

the polarizations of all wave modes present in massive amounts of 3D seismic data,

using a machine learning approach. I discuss the use of machine learning to automat-

ically identify wave modes based using their continuous-wavelet polarizations in the

following chapter.
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Chapter 4

Automatic wave mode

identification using machine

learning

The previous chapter dealt with separating wave modes in a seismic gather, partic-

ularly surface waves, as based on a polarization template of a representative arrival

of those wave modes. However, the polarization of any wave mode may depend on

offset, azimuth or even on receiver coupling. Rather than manually selecting particu-

lar arrivals and targeting them for removal, a method that can automatically identify

particular wave modes in large seismic datasets is required.

Manual interpretation of seismic data is slow and subjective, changing from one

interpreter to another according to their experience and talent. I have opted to use a

machine learning method in order to identify wave modes in multicomponent seismic

data. The advantage of machine learning algorithms is that they may be used to

automate many time-consuming manual tasks, making them an attractive prospect

for the processing of large 3D seismic datasets.

INTRODUCTION

Machine learning algorithms are nothing new to geophyical exploration, and have

been used for several geophysical processing applications. For example, Ronen et al.

111
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(1994) and Zhao and Ramachandran (2013) use neural networks to derive a func-

tional relationship between various attributes of seismic data and well-log properties.

Kuzma and Rector (2005) train a support vector machine algorithm to approximate

the results produced by a non-linear AVO inversion. Zhao et al. (2014) use support

vector machines for lithofacies classification based on the waveforms of migrated seis-

mic data from a shale play. They also use well-log data to complement the training of

the support vector machines. Huang and Yang (2015) use neural networks to execute

seismic velocity picking on semblance data. In this chapter, I use a support vector

machine algorithm to identify ground roll on multicomponent data comprising both

translational and rotational components.

In addition to reflections, seismic data include many other seismic responses that

are either unwanted or unneeded, resulting in recorded data containing many different

wave modes. In the case of land acquisitions, high-amplitude ground roll noise may

obscure signal, degrading overall data quality. Ground roll can be spatially aliased

and may be dispersive, resulting in non-linear moveout. Moreover, it is notoriously

difficult to model with generality, making ground roll noise removal a tedious task in

data processing and a challenge in survey design.

In chapter 3, I showed how to apply a filter that attenuates the first polarization

vector of the data that have polarization signatures similar to a selected ground roll

polarization template. However, this methodology requires manual picking of events

on the data gather in order to define the polarization template. Moreover, there was

an underlying assumption of stationarity of the wave modes along offset. There is

no assurance that the polarization signature of a certain wave mode at a particular

offset in the data will be similar at other offsets.

To automate and generalize the process of identifying wave modes in the data I use

support vector machines (SVM), a machine learning algorithm designed to classify

data vectors based on a training set of previously-supplied classifications. In chapter

3 I transformed multicomponent translational and rotational seismic data from the

Kettleman field survey to the continuous wavelet domain, and then applied singular

value decomposition to the transformed data. In this chapter, I manually classify

gathers of a multicomponent receiver gather based on wave modes that I observe in

the data. I the train the SVM on the continuous-wavelet polarization vectors of the

classified training data, teaching it to identify the polarization vectors of a particular
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wave mode from all other modes in the data. I then test the SVM’s capability to

classify wave modes on test data, where the various wave modes are clearly visible

and the success of the classification can be properly gauged.

Though I judge the performance of the SVM classification based on a visual in-

spection of the spatial continuity of wave modes in the classified seismic gathers, I

wish to emphasize that the classification method I describe does not rely on spatial

sampling parameters, but rather only on multicomponent traces from single stations.

Therefore, the method will work on spatially-aliased data, which in turn means that

it can be used to reduce constraints of survey design.

PREPARING DATA FEATURES FOR MACHINE

LEARNING

Support Vector Machines (SVM)

The polarization vectors obtained after applying a continuous wavelet transform

(CWT) and singular value decomposition (SVD) as in equations 3.1 and 3.4 are used

as input for classifying the different wave modes. From there, I treat the polarization

vectors as “feature vectors”, i.e., the training and testing data for a classification

problem.

SVMs are a supervised learning algorithm that have been shown to perform well

in a variety of settings, and are often considered one of the best “out of the box”

classifiers. I used the Python library Scikit Learn to implement the SVM.

To train the classifier, I build a training dataset of N sample pairs,

(x1, y1), (x2, y2), · · · , (xN, yN). The xi are vectors containing real numbers in the

range [0, 1], which represent the normalized polarization-vector values. The yi are

binary class labels and are equal to either 0 or 1, indicating to which wave mode class

the polarization vector belongs, for example, whether the dominant wave mode is a

surface or a body wave.

The support vector classifier determines the optimal hyperplane separating the

two classes in the features space. If we define a hyperplane f(x) by the following:

f(x) = xTβ + β0 = 0, (4.1)
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where β is a unit vector with the length of the polarization vectors and β0 a constant,

the classification rule induced by f(x) can be expressed as:

G(x) = sign[xTβ + β0]. (4.2)

A slack parameter ξ = (ξ1, ξ2, · · · , ξN) is used to account for the fact that the samples

are not perfectly separable. With these notations, the support vector classifier for

the nonseparable case is commonly expressed as:

min
β,β0

‖β‖ subject to

 yi(xi
Tβ + β0) ≥ 1− ξi , ∀i

ξi ≥ 0, ∀i and
∑
ξi ≤ K.

(4.3)

By bounding the sum
∑
ξi , we bound the total proportional amount by which pre-

dictions fall on the wrong side of their margin. Misclassifications occur when ξi > 1,

so bounding
∑
ξi at a value K bounds the total number of training misclassifications

at K.

However, the described support vector classifier is limited to finding linear bound-

aries in the input feature space. To achieve better training-class separation, we

can remap the feature space to a higher dimensional space using preconditioning.

Linear boundaries in the higher-dimensional space translate to nonlinear bound-

aries in the original space, thereby making the problem more flexible. Once the

remapping basis functions hm(x), m = 1, · · · ,M are selected, the procedure is the

same as before. We fit the support vector classifier using input features h(xi) =

(h1(xi), h2(xi), · · · , hM(xi)), i = 1, · · · , N , and produce the (nonlinear) function f̂(x) =

h(x)T β̂ + β̂0. The classifier is Ĝ(x) = sign[f̂(x)] as before.

Hastie et al. (2005) show that we need not specify the transformation h(x) at all,

but require only knowledge of the following kernel function:

K(x, x′) = 〈h(x), h(x′)〉, (4.4)

that computes the inner products in the transformed space. For particular choices of

h, these inner products can be computed very cheaply. Three popular choices for K
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in the SVM literature are shown in the following:

dth—Degree polynomial: K(x, x′) = (1 + 〈x, x′〉)d, (4.5)

Radial basis: K(x, x′) = exp(−γ‖x− x′‖2), (4.6)

Neural network: K(x, x′) = tanh(κ1〈x, x′〉+ κ2). (4.7)

In this chapter, I use the radial basis kernel function for the classification. A more

complete overview of the implementation of support vector machines can be found in

Hastie et al. (2005).

SVM TRAINING AND TESTING WITH KETTLEMAN

DATA

The 2D Kettleman survey was acquired by Chevron near Kettleman, California. It

comprised multiple types of sources and multiple types of receivers, both on the

surface and at depth. The shot line length was 1.6 km long. The seismic sources used

were a vibroseis, an accelerated weight-drop, and buried dynamite charges at 25 m

and at 50 m depth. At one end of the shot line there were five 3 component (3C) linear

accelerometers, which were closely spaced at a 2.1 m interval inline. Additionally, near

the center of the shot line there were two adjacent 3C geophones buried at 1 m depth,

spaced at a 2 m interval inline. The survey also included 3C rotation sensors, which

were placed in between the accelerometers and geophones, in the inline direction.

The survey geometry is shown in Figure 3.3, Figures 4.1(a)-4.1(f) show the receiver

gathers at station 335 shot with the vibroseis source. Figure 4.1(a) is the vertical

component, Figure 4.1(b) is the radial, Figure 4.1(c) is the transverse, Figure 4.1(d)

is the yaw, Figure 4.1(e) is the roll, and Figure 4.1(f) is the pitch component. AGC

has been applied for display.

Note that the signal to noise ratio of the rotation sensor data in Figures 4.1(d)

and 4.1(e) is very low for offsets greater than 300 m. The same is true for the pitch

component of the rotation sensor. Therefore, I derived the pitch component in Figure

4.1(f) by differencing the adjacent vertical accelerometers at station 335, as shown in

equations 2.4. Since the receivers were arrayed only in the inline direction, I could

not derive rotational data for the roll and yaw components as I did for the pitch
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component. Consequently, the analysis here initially includes only the vertical, radial

and transverse translational components, and the pitch rotational component derived

by geophone-differencing for which the signal to noise ratio is sufficient.

The P body-wave reflections are visible at earlier times and longer offsets, but

most of the gather is dominated by various modes of surface waves, which is typical

to land data. There is a very slow Rayleigh wave mode propagating at around 250

m/s, and a faster mode propagating at 400 m/s, which are both labeled on Figure

4.1(a). Henceforth, I will refer to these wave modes as “slow” and “fast” ground roll.

There is yet another, faster mode, propagating at 600 m/s - 700 m/s, which is not

part of the analysis here.

The wave modes we are mostly interested in acquiring in exploration seismology

are the P-wave reflections, since they contain information about the deep subsurface

where our imaging targets are. Surface waves can be much stronger than the P-

wave reflections on a seismic gather, and therefore obscure the reflections. Therefore,

standard seismic processing requires that the surface waves (e.g. “ground-roll”) be

removed. However, as a first step, the unwanted energy must be identified. For large

volumes of 3D seismic data, it would be extremely advantageous to have a machine

learning algorithm automatically identify all the source-generated noise in the data.

SVM training data for classification of surface waves

In order to separate the surface waves from the body waves, I train an SVM classifier

on the data from receiver station 335, shown in Figures 4.1(a) to 4.1(f). I decom-

pose the training data into scaled continuous-wavelet polarization vectors by applying

CWT followed by SVD, as in equations 3.1 and 3.4.

I start the analysis using only the vertical, radial and pitch components, since

these seem to contain most of the coherent energy in the data. Since I am using three

data components, for each offset and each time sample I obtain three polarization

vectors. I use only the first polarization vector as the input feature vector for the

SVM classification, since most of the energy is contained within the first vector.

As an example of a what the feature vectors look like, I select the trace at off-

set 180 m from Figures 4.1(a), 4.1(b) and 4.1(f), i.e., the vertical, radial and pitch

components. After application of CWT and SVD, the normalized feature vectors
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Receiver gathers at station 335 for the vibroseis source. a) Vertical
accelerometer component. b) Radial accelerometer component. c) Transverse ac-
celerometer component. d) Yaw rotation-sensor component e) Roll rotation-sensor
component f) Pitch component derived from differencing two adjacent inline vertical
accelerometers. AGC has been applied for display. Note the various types of sur-
face wave modes present, as annotated on (a), but are recorded on all components.
The yaw and the roll rotation-sensor components have very low SNR at increasing
offsets, and therefore I did not use them in the analysis presented here. [ER]

chap4/. 401a,401b,401c,401d,401e,401f
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for the multicomponent trace at offset 180 m are illustrated in Figure 4.2(a). In this

figure, the continuous-wavelet polarization vector coefficients are renamed as “feature

vectors”. At earlier times, which correspond mainly to P-wave reflection energy, the

maxima of the feature vectors are at lower values of feature index. At later times,

which correspond to surface-wave energy, the maxima of the feature vectors are at

higher values of feature index.

Figure 4.2(b) represents the same feature vectors for the trace at offset 180 m. The

feature vectors corresponding to the slow ground roll are color-coded in red, and the

feature vectors of all other wave modes in this trace are color coded in blue. We can

see a very clear distinction between the slow ground roll and the other types of wave

modes in the feature space, which is indicative of the different seismic signatures that

the wave modes have in the multicomponent data. When I train the SVM classifier,

it is similar to manually color-coding the feature vectors by the wave modes they

represent, as is shown in Figure 4.2(b).

In order to train the classifier, I label the training data manually by selecting

particular wave modes in the data from receiver station 335. The selection was done

using a linear mute function that windowed only the ground-roll energy. Figures

4.3(a), 4.3(b) and 4.3(c) illustrate which regions were labeled as slow ground roll, fast

ground roll and total ground roll. For each of these selected wave modes, I trained an

SVM classifier using the aforementioned polarization feature vectors as input. The

ground roll is labeled as “Class 1”, while all the other wave modes are labeled as

“Class 0”.

I then test the SVM’s classification capability on the same training data. The

classification results obtained on the training data are illustrated in Figures 4.3(d),

4.3(e) and 4.3(f). They are highly similar to the hand-picked labels, indicating that

the classifiers fit the training data well, with a low training error.

SVM classification of surface waves on test data

Testing on other receiver stations

After validating that the classification works on the training dataset, I tested the

previously trained classifiers on test data from other receiver stations for the same

vibroseis source type.
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(a) (b)

Figure 4.2: The training data at receiver station 335 for the SVM. a) Feature vec-
tors for each time sample for the multicomponent trace at offset 180m. b) The same
feature vectors color coded by their respective classification, ’Class 1’ being the slow
ground roll mode and ’Class 0’ representing everything else. Note the differences
between the feature vectors of each class. These feature vectors and their respec-
tive labels indicating the wave mode are the input to the SVM training. [ER]

chap4/. Vib65-st335-3ct-features-V1-off180a,Vib65-st335-3ct-features-V1-off180b

Stations 336 and 337 are adjacent to stations 335 (the training data station) near

the end of the shot line, and therefore the data at these receiver stations should be

similar to the training data. This similarity between the data at the different stations

enables us to estimate how well the classifier identifies the ground roll wave mode on

these test data.

Figure 4.4(g) is the vertical component at station 336. Figures 4.4(a), 4.4(c) and

4.4(e) are the classified slow ground roll, fast ground roll and combined slow+fast

ground roll wave modes at this station, respectively. Figures 4.4(b), 4.4(d) and 4.4(f)

are the complementary data, i.e., the input data minus the data classified as ground

roll. While Figures 4.4(a), 4.4(c) and 4.4(e) show what the SVM has classified as

’Class 1’, Figures 4.4(b), 4.4(d) and 4.4(f) show what it has classified as ’Class 0’.

Recall that this classification is done using the classification generated by training

the SVM on the labeled vertical, radial and pitch components at station 335. Observe

that the classifier has managed to identify the ground roll in these test data relatively

well, and, more importantly, it does not misclassify the body wave energy as ground

roll in any one of the cases shown.

The classification seems to be better when both ground roll modes are combined,
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: SVM training data at station 335, and testing results on the same training
data, for the vibroseis source. Only the vertical component is shown, although the
training data comprised the vertical, radial and pitch components. a) Slow ground
roll mode training data. b) Fast ground roll mode training data. c) Slow+fast
ground roll modes training data. d) Testing classification of slow ground roll mode
on training data. e) Testing classification of fast ground roll mode on training data.
f) Testing classification of slow+fast ground roll modes on training data. [ER]

chap4/. 403a,403b,403c,403d,403e,403f
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as shown in Figure 4.4(e) and 4.4(f). It seems that it is more difficult for the classifier

to differentiate between the two types of ground roll (slow vs fast) than between the

ground roll and body waves. I attribute this to the fact that there is more similarity

between the polarizations of the two ground roll modes than between the polarizations

of either ground roll mode and the body waves.

Figure 4.5(g) is the vertical component at station 337. The same conclusions for

the classification results at station 336 can be drawn for the classification results for

station 337, shown in Figures 4.5(a) to 4.5(f).

Station 191 is about 1 km away from station 335. At station 191 there were

geophones installed, rather than accelerometers as at stations 335,336 and 337. Fur-

thermore, the geophones were buried at 1 meter depth, whereas at stations 335,336

and 337 the accelerometers were on the surface.

Figure 4.6(g) is the vertical component at station 191. Figures 4.6(a), 4.6(c) and

4.6(e) are the classified slow ground roll, fast ground roll and combined slow+fast

ground roll wave modes at station 191, respectively. Figures 4.6(b), 4.6(d) and 4.6(f)

are the complementary data, i.e., the input data minus data classified as ground roll.

The classifier seems to have more difficulty differentiating between the slow and

the fast ground roll modes at this station. Additionally, it has misclassified a small

portion of the body wave energy as ground roll, as can be seen on the left Figure 4.6(e)

at t = 0.4 s. However, by and large the classification does enable the identification of

ground roll energy, despite the acquisitional differences between the data at station

191 vs station 335, on which I trained the SVM.

Testing on other source types

The next test I did was on the same station that provided the training data (335),

but for alternate seismic source types. Figures 4.7(a), 4.7(b) and 4.7(c) are again the

receiver gather of the vertical component at training station 335, training classification

of the slow+fast ground roll (’Class 1’), and the training of the body waves (’Class

0’) for these training data, respectively.

Figure 4.7(d) is the receiver gather of the vertical component at station 335 for
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.4: SVM classification of surface wave modes on test data at station 336,
for the vibroseis source. Only the vertical component receiver gather is shown, al-
though the training and test data comprised the vertical, radial and pitch compo-
nents. g): Input vertical component at station 336. a): classification of slow ground
roll mode. b): Complementary data to (a) (i.e., (g) - (a)). c): classification of fast
ground roll mode. d): Complementary data to (c) (i.e., (g) - (c)). e): classification
of slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)). [ER]

chap4/. 404a,404b,404c,404d,404e,404f,404g
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5: SVM classification of surface wave modes on test data at station 337,
for the vibroseis source. Only the vertical component receiver gather is shown, al-
though the training and test data comprised the vertical, radial and pitch compo-
nents. g): Input vertical component at station 337. a): classification of slow ground
roll mode. b): Complementary data to (a) (i.e., (g) - (a)). c): classification of fast
ground roll mode. d): Complementary data to (c) (i.e., (g) - (c)). e): classification
of slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)). [ER]

chap4/. 405a,405b,405c,405d,405e,405f,405g
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.6: SVM classification of surface wave modes on test data at station 191,
for the vibroseis source. Only the vertical component receiver gather is shown, al-
though the training and test data comprised the vertical, radial and pitch compo-
nents. g): Input vertical component at station 191. a): classification of slow ground
roll mode. b): Complementary data to (a) (i.e., (g) - (a)). c): classification of fast
ground roll mode. d): Complementary data to (c) (i.e., (g) - (c)). e): classification
of slow+fast ground roll. f): Complementary data to (e) (i.e., (g) - (e)). [ER]

chap4/. 406a,406b,406c,406d,406e,406f,406g
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an accelerated weight-drop source. Note that the sampling for this source type was

much denser than the vibroseis source. The ground roll wave modes visible in this

gather are similar to those in Figure 4.7(a), however they are not aliased. Figure

4.7(e) shows the SVM’s classification of the slow+fast ground roll modes (’Class 1’)

for the accelerated weight drop data, after training on the vibroseis data. Figure

4.7(f) shows the complementary data (’Class 0’), which is the input data at 4.7(e)

minus the data classified as ground roll in Figure 4.7(f). Despite the fact that the

source type is different, the classification is able to correctly classify the ground roll in

this gather. Figure 4.7(e) is remarkably similar to Figure 4.7(b), albeit with a better

sampling.

Both the vibroseis and the accelerated weight-drop source were on the surface.

Figure 4.7(g) is the receiver gather at station 335, but for a dynamite source buried at

25 m depth. The ground roll energy has a different appearance in this gather. Figure

4.7(h) is the SVM classification of the slow+fast ground roll wave mode (’Class 1’)

for the dynamite source, after training on the vibroseis data. Figure 4.7(i) shows

the complementary data (’Class 0’), which is the input data at 4.7(g) minus the data

classified as ground roll in Figure 4.7(h). Note that the energy classified as ground roll

does indeed seem to have the same linear moveout as the ground roll in the vibroseis

gather. The classifier even picks up on a portion of a faster surface wave mode that

does not appear in the vibroseis data.

In both test cases shown in Figures 4.7(e) to 4.7(g) and 4.7(h) to 4.7(i), there is

no misclassification of the body wave energy as ground roll.

Comparison of different components used in SVM classifica-

tion

So far I have shown the SVM classification results using the vertical, radial and pitch

components. I now compare the classification results using varying numbers and

types of components used in the training and classification.

Figure 4.8(a) shows the feature vectors derived from the trace at offset 180m at

training station 335, for the vertical and radial components. The feature vectors in

red are from a time window where ground roll is dominant, and the feature vectors

in blue are from the rest of the trace. In Figure 4.8(b), I have added the transverse
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: SVM classification of surface wave modes at station 335, for different
seismic source types. Only the vertical is shown, although the training and test
data comprised the vertical, radial and pitch. a) Vertical of vibroseis source. b)
The portion slow+fast ground roll mode labeled as class 1 from the vibroseis source
data used to train the SVM. c) The complementary data containing body waves
labeled as class 0 from the vibroseis source data used to train the SVM. d) Ver-
tical of accelerated weight-drop source. e) classification of slow+fast ground roll
mode for the accelerated weight-drop source using the SVM trained on the vibro-
seis data. f) classification of the complementary data for the accelerated weight-
drop source using the SVM trained on the vibroseis data. g) Vertical of dynamite
source. h) classification of slow+fast ground roll mode for the dynamite source us-
ing the SVM trained on the vibroseis data. i) classification of the complementary
data for the dynamite source using the SVM trained on the vibroseis data. [ER]

chap4/. 407a,407b,407c,407d,407e,407f,407g,407h,407i
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component to the feature vectors. Observe how now the feature vector is longer, and

there is another indication for the difference between the wave-mode classes. The

same can be said for the addition of the pitch component to the feature vectors in

Figure 4.8(c).

Adding independent components to the feature vectors should improve the classi-

fication capability of the SVM. Figure 4.9(a) shows the classification of the slow+fast

ground roll modes at station 191, where the training was done on 4 components of

station 335: the vertical, radial, transverse and pitch components. Figure 4.9(d)

shows the complementary data, i.e., what has not been classified as either slow or

fast ground roll. Note that in Figure 4.9(a), the SVM has indeed managed to identify

the ground roll, and there is only slight misclassification of the body wave energy as

ground roll. The top of Figure 4.9(d) shows continuous body waves.

In Figure 4.9(b), only the vertical, radial and transverse components were used

for training the SVM, and more of the body wave energy has been misclassified

as ground roll. This can be seen in the complementary data in Figure 4.9(e) as a

slight discontinuity in the classified body waves on the left of the figure at t = 0.4

s. For Figures 4.9(c) and 4.9(f), only the vertical and radial components were used

for training the SVM. We observe that using only two components, even more of the

body wave energy has been misclassified as ground roll. The SVM indeed performs

better when the input feature vectors contain more information regarding the two

classes we expect it to differentiate between.

Wave-mode classification using pitch vs using transverse component

I now test whether one set of components is better for identifying a wave mode than

another set of components. Particularly, I compare using the transverse component

in the classification vs using the rotational pitch component. Figure 4.10(a) is the

vertical geophone receiver gather, showing the classification of the slow ground roll

mode at test station 336, where the training was done on the vertical, radial and pitch

components of station 335. Compare this figure to the classification result shown in

Figure 4.10(b), where the training was done on the vertical, radial and transverse

components of station 335.
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(a) (b)

(c)

Figure 4.8: The input training feature vectors at training station 335 for trace at off-
set 180m, for a varying number of components used in the training. The classification
is color-coded. The slow ground roll mode is ’Class 1’ (red) and everything else is
’Class 0’ (blue). a) Vertical and radial components. b) Vertical, radial and transverse
components. c) Vertical, radial, transverse and pitch components. The more com-
ponents used, the longer is the feature vector, and more differences can be discerned
between the feature vectors of the two wave modes. [ER] chap4/. 408a,408b,408c
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: SVM classification of surface wave modes at testing station 191, for a
varying number of receiver components used in training the SVM at station 335.
a) Classification of slow+fast ground roll using vertical, radial, transverse and pitch
components; b) using vertical, radial and transverse components; c) using only vertical
and radial components. d,e,f) The complementary data to (a), (b) and (c), which are
classified as body waves. For this receiver gather, adding more components in the
SVM training improves the classification of the surface waves vs the P waves. [ER]

chap4/. 409a,409b,409c,409d,409e,409f
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I observe that using the vertical, radial and transverse component in the training

and classification of the slow ground roll mode has produced a better classification

result than when using the vertical, radial and pitch components. There seems to be

less misclassified energy in Figure 4.10(b) vs Figure 4.10(a).

A Similar conclusion can be reached for the classification results of the fast ground

roll mode shown in Figure 4.10(c) vs Figure 4.10(d). Again, in Figure 4.10(d), where

I used the vertical, radial and transverse components, the classification of the fast

ground roll mode seems to be more complete than when using the vertical, radial and

pitch components as shown in Figure 4.10(c).

I make a similar comparison for the receiver gather at test station 191. Figure

4.11(a) is the vertical geophone receiver gather, showing the classification of the slow

ground roll mode at test station 191, where the training was done on the vertical,

radial and pitch components of station 335. It seems that the SVM has misclassified

most of the fast ground roll as slow ground roll, and has missed out on a large part of

the actual slow ground roll. Figure 4.11(b) shows the classification of the slow ground

roll at station 191 where the training was done on the vertical, radial and transverse

components of the training station 335. Although there is a fair bit of misclassification

of the fast ground roll as slow ground roll, compared to Figure 4.11(a) we can see

that at least the slow ground roll has been identified.

Figure 4.11(c) is the vertical geophone receiver gather, showing the classification

of the fast ground roll mode at test station 191, where the training was done on the

vertical, radial and pitch components of station 335. Note that both the fast and the

slow ground roll have been classified as fast ground roll, including some of the body-

wave energy. However, when using the vertical, radial and transverse components in

the training, the classification results of the fast ground roll wave mode is better, as

shown in Figure 4.11(d). However, there is still some misclassification of the body-

wave energy as fast ground roll.

DISCUSSION

Standard seismic processing may utilize some known attributes of ground roll to

identify it. For example, ground roll have a much slower moveout than body waves in

shot or receiver gather domains. Additionally, in multicomponent data the elliptical



131

(a) (b)

(c) (d)

Figure 4.10: SVM classification of slow vs fast ground roll modes at testing station
336, for different components used in training the SVM at station 335. a) Classifica-
tion of slow ground roll using vertical, radial and pitch components; b) using vertical,
radial and transverse components. c) Classification of fast ground roll using vertical,
radial and pitch components; d) using only vertical and radial and transverse compo-
nents. For this receiver gather, the SVM does a better job differentiating between the
slow and fast ground roll modes when using the transverse component rather than
the pitch. [ER] chap4/. 410a,410b,410c,410d
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(a) (b)

(c) (d)

Figure 4.11: SVM classification of slow vs fast ground roll modes at testing station
191, for different components used in training the SVM at station 335. a) Classifica-
tion of slow ground roll using vertical, radial and pitch components; b) using vertical,
radial and transverse components. c) Classification of fast ground roll using vertical,
radial and pitch components; d) using only vertical and radial and transverse compo-
nents. For this receiver gather, the SVM does a better job differentiating between the
slow and fast ground roll modes when using the transverse component rather than
the pitch. [ER] chap4/. 411a,411b,411c,411d
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polarization associated with Rayleigh waves may be employed to identify ground roll.

The approach of machine learning is very different however. Where standard

methods use an a priori, analytical model of ground roll (such as moveout or ellip-

tical polarization), a machine learning approach does away with any predetermined

physical model, and substitutes it for a model learned from the data themselves. The

advantage of such an approach is that it may work in cases where a useful, represen-

tative physical model is beyond our initial, a-priori capability to obtain analytically.

The case of surface waves (ground roll) is of particular interest in this respect, since

the near surface of the Earth is commonly very complex, and in general it is difficult

to accurately model wave propagation in the near surface. For example, Rayleigh

waves do not always have elliptical polarization, nor is their moveout necessarily

predictable. Surface waves may also be generated by body waves inciding on near

surface scatterers, in addition to being radiated directly away from the source position.

Therefore, the prospect of enabling an algorithm to learn from the data what the

source-generated ground roll noise may look like in multiple scenarios is compelling.

I have used the continuous-wavelet polarization vectors of multicomponent seismic

data to train an SVM algorithm to identify ground roll. The classification results using

the test data indicate that the SVM is indeed able to identify ground roll based on

this (rather minimal) training. The method is effectively immune to spatial aliasing,

making it useful for 3D seismic data with arbitrary acquisition patterns.

I have shown that adding the rotational pitch component to the standard set of

three geophone components improves the SVM’s capability to classify the ground roll

vs the body waves. I also show that for differentiating between the two dominant

types of ground roll visible in the Kettleman data, using the vertical, radial and

transverse geophone components in the training and classification is better than using

the vertical, radial and pitch components. I attribute this to the generally lower

SNR levels in the pitch component derived either from geophone differencing (which

inherently lowers SNR), or from the R2 rotation sensors themselves. The transverse

component of motion of the slow ground roll is sufficiently different from the transverse

motion of the fast ground roll so as to enable the SVM to tell them apart.

However, there are several open questions with respect to practical application of

this machine learning algorithm:
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1. In order to have a good representation of the various ways each wave mode

may be polarized at multiple times/offsets/azimuths (given a set of data com-

ponents), massive amounts of seismic data are required. How would we manu-

ally classify and train a machine learning algorithm to identify particular wave

modes in large quantities of data?

2. Can an SVM trained on a particular dataset be used for classification of another

dataset?

3. Are more components necessarily better for the SVM’s classification of wave

modes?

4. Would an unsupervised machine learning algorithm identify wave modes better

than a supervised one such as SVM?

The Kettleman dataset is instrumental in showing the possibility of identifying

wave modes in land data using machine learning, since it has multiple components,

both translational and rotational, which enable enhanced wave-mode identification

by polarization. However, the Kettleman dataset is very small. Machine learning

methods generally rely on large volumes of data for training and evaluating test

results. To properly answer the questions above, I would require a very large, 3D

multicomponent land or OBS dataset.

I can speculate, however, that an SVM trained on one dataset would be unable to

classify wave modes accurately in a dataset acquired over a region with very different

geology. This would be the result of the general complexity of the seismic response

in the different scenarios, but also of the differences in acquisition such as different

source signatures, different receivers and different couplings. I would also say that

having more independent data components should help the classification of wave

modes, assuming that the noise levels are similar for each data component.

The support vector machine algorithm was able to identify the ground roll based

on the polarization vectors of the multicomponent data in the continuous wavelet

domain. Since the wave modes are indeed separable by their polarization vectors, I

think that an unsupervised machine learning algorithm would do just as well if we

provide it with the same polarization vectors. For a large volume of seismic data, an

unsupervised learning algorithm would be preferable, since it would solve the problem,
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stated in question 1 above, of manually classifying portions of the data to train a

supervised learning algorithm. Two possible candidate classification algorithms are

K-means and Neural Networks.
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