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Wave-equation migration 
 Q analysis 

Quality	factor	that	quan?fies	seismic	aBenua?on	
§ 	Small	Q	means	large	a,enua.on	

§ 	Strong	a,enua.on:	Q	~	10-50	

§ 	Nearly	no	a,enua.on:	Q	>5000	

	



Amplitudes	
•  The	higher	frequencies	of	a	

wave	are	a,enuated	more	
than	its	lower	frequencies		
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Effect	of	a,enua.on	on	amplitudes	

Amplitude	
aBenua?on	
only		



Effect	of	a,enua.on	on	phase	

Phase	
•  The	higher	frequencies	of	a	wave	

travel	faster	than	its	lower	
frequencies		
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Amplitude	
+phase	
	

Amplitude	
aBenua?on	
only		



•  Migra?on	without	Q	
compensa?on	
– Damps	amplitudes	
–  Lowers	resolu.ons	
– Disperses	phases	

•  e.g.,		Gas	trapped	in	
sediments	
– Degrades	image	quality	
– Makes	iden.fica.on	and		
interpreta.on	inaccurate	
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(Zhou,	2011)	

Effect	of	a,enua.on	on	image	 		
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A,enuated	 Corrected	

(Francis,	2016)	

Effect	of	a,enua.on	on	
	reservoir	characteriza.on			
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A,enuated	

Corrected	

(Chen	et	al.,	2016)	
	
	

Effect	of	a,enua.on	on	
	reservoir	characteriza.on			



•  Goal	of	my	study	
–  Target	the	a,enua.on	
caused	by	clouds/pockets	

– Understand	and	quan.fy	
the	a,enua.on	effects	

–  Create	and	accurate	Q	
model	

– Use	the	Q	es.mates	to	
enhances	seismic	image	
quality	
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(Zhou,	2011)	

Mo.va.on	



Thesis	chapters	

•  Chapter 1: Introduction 
•  Chapter 2: Wave-Equation Migration Q Analysis  
•  Chapter 3: Rock physics constrained WEMQA  
•  Chapter 4: Multi-parameter inversion of velocity 

     and Q using wave-equation migration 
     analysis  

•  Chapter 5: Field data application  
•  Chapter 6: Conclusions 
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Thesis	chapters	
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•  Chapter 1: Introduction 
•  Chapter 2: Wave-Equation Migration Q Analysis  
•  Chapter 3: Rock physics constrained WEMQA  
•  Chapter 4: Multi-parameter inversion of velocity 

     and Q using wave-equation migration 
     analysis  

•  Chapter 5: Field data application  
•  Chapter 6: Conclusions 



Outline	

•  Background	
•  Theory	of	wave-equa.on	migra.on	Q	analysis	
•  Numerical	examples	

– Synthe.c	examples	
– 3D	field	data	examples	

•  Conclusions	
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Background 
Theory 
Synthetic and field data examples 
Conclusions 



Spectral	ra.o	method	
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Background 
Theory 
Synthetic and field data examples 
Conclusions 



Tradi.onal	approach	

•  Quantify attenuation effects in data space before 
seismic migration 

•  Update Q model using ray-based tomography  
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Tradi.onal	approach:	data	space	
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Synthe?c	examples:	
h,p://www.spectrumgeo.com/imaging-services/land-environment/
depth-processing/pre-stack-depth-migra.on	

Recorded		
seismic	data	

Seismic	data:	5	shot	gathers	

Interfering	events	

Background 
Theory 
Synthetic and field data examples 
Conclusions 
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Synthe?c	examples:	
h,p://www.spectrumgeo.com/imaging-services/land-environment/
depth-processing/pre-stack-depth-migra.on	

Seismic	migrated	image	

Seismic	data:	shot	gathers	

Seismic	
	migra?on	

Background 
Theory 
Synthetic and field data examples 
Conclusions 

New	approach:	image	domain		
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Background 
Theory 
Synthetic and field data examples 
Conclusions 

Tradi.onal	approach:	ray-based	tomography	

ray-based	tomography	

•  High-frequency	approxima.on	
•  Oversimplifies	mul.-pathing	
		

(Tang,	2011)	
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Background 
Theory 
Synthetic and field data examples 
Conclusions 

New	approach:	wave-equa.on-based	tomography	

wave-equa.on-based	tomography	ray-based	tomography	

(Tang,	2011)	



New	approach	

•  Quantify attenuation effects in image space after 
seismic migration 
–  Suppresses the noise 
–  Simplifies and focuses the events 
– Can be implemented in a target-oriented fashion 

•  Update Q model using wave-equation based 
tomography  
– Handle strong heterogeneities in the subsurface 

(e.g., salt body) 
•  Wave-equation migration Q analysis (WEMQA) 
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Background 
Theory 
Synthetic and field data examples 
Conclusions 



Objec.ve	func.on	

•  Define	ρ	as	the	effect	of	a,enua.on	(effect	of	Q)	on	
seismic	migrated	images		

	 J = 1
2

ρ x;Q( )
x
∑

2

	
x	is	each	a	spa.al	loca.on	in	the	image	space	
Q	is	the	current	model	for	quality	factor	

Background 
Theory 
Synthetic and field data examples 
Conclusions 

ln R1
R2

⎛

⎝
⎜

⎞

⎠
⎟

Spectral	ra.o	method	



Reference	migrated	image		
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Reference	image		
(	spectrum	R2)	

True	model:Q2=30		

RMS	amplitudes:	
1.5	
Events	at	z=800	m	

Symmetric	wavelets	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Midpoint [m] 
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Target	image		
(	spectrum	R1)	

Current	
model:Q1=10,000		

RMS	amplitudes:	
0.13	
Up-shiUed	events	

Stretched	wavelets	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] Midpoint [m] 

Reference	image	Target	image	
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Under-
compensated	
(Q1	>	Q2)	

Higher	
frequencies	are	
a,enuated	
ln(R1/R2)	=>	ρ<0	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] Midpoint [m] 

Reference	image	Target	image	
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Target	image		
(	spectrum	R1)	

Current	
model:Q1=25	

RMS	amplitudes:	
3.2	
Down-shiUed	
events	

Squeezed	wavelets	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] 

Target	image	

Midpoint [m] 

Reference	image	
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Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] 

Target	image	

Midpoint [m] 

Reference	image	

Over-
compensated	
(Q1	<	Q2)	

Higher	
frequencies	are	
over-gained	
ln(R1/R2)	=>	ρ>0	
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Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] 

Target	image	

Midpoint [m] 

Reference	image	

Target	image		
(	spectrum	R1)	

Current	
model:Q1=30		

RMS	amplitudes:	
1.5	
Non-shiUed	events	

Non-deformed	
wavelets	
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Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Migrated	image	using	inaccurate	Q	

Midpoint [m] 

Target	image	

Midpoint [m] 

Reference	image	

Adequately-
compensated	
(Q1	=	Q2)	

ln(R1/R2)	=>	ρ=0	
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Slope	

Reference	
spectrum	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Spectral	ra.o	method	in	image	space		



True	Q	model	
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Reflector	at	z=900	m	

Q2=20	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 



A,enuated	image:	migrated	image	at	zero	
subsurface	offset	(stacked	image)	
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Q1=10,000	>Q2	
Under-compensated	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 



Stacked	method	
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R2	R1	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 
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R2	R1	
ln

R1 ʹk( )
R2 ʹk( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= ρ ʹk +G0

ρ<0	ln R1
R2

⎛

⎝
⎜

⎞

⎠
⎟

•  Wavenumber	domain	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Stacked	method	
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R2	R1	

ρ<0	ln R1
R2

⎛

⎝
⎜

⎞

⎠
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•  Q1=10,000	>Q2	

•  The	image	is	under-compensated	
(a,enuated)	

•  ρ<0	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Stacked	method	
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R2	R1	

ρ<0	ln R1
R2

⎛

⎝
⎜

⎞

⎠
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•  Frequency-independent	factors	
–  Different	illumina.on	caused	by	acquisi.on	

limita.ons	
–  Different	reflec.on	coefficients	of	different	

reflectors	
–  Different	geometrical	spreading	because	of	

different	wave-paths.	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Stacked	method	

ln
R1 ʹk( )
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⎝
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•  Select	one	or	more	surface	loca.ons	
as	reference	traces		

•  At	each	image	point	x,	I	use	a	window	
of	which	the	center	is	x	

•  Compare	the	windowed	spectra	for	
ρ:	reference	spectra	and	target	
spectra		

•  The	windows	are	compared	at	the	
same	depth	

Reference:	R2		 Target:	R1	

Stacked	method	
Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

ln
R1 ʹk( )
R2 ʹk( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= ρ ʹk +G0
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Red:	non-a,enuated	regions	
Blue:	a,enuated	regions	

Reference		
trace	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Stacked	method	

Slope	map	
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•  Stacked method using windows wide in 
depth 
–  The spectral variations caused by structure 

differences in each window are statistically 
the same 

–  Does not represent the effect of Q on its 
image point 

–  Mixes the Q effects from different reflection 
angles 

•  Prestack method: angle domain common 
image gather (ADCIG) 

Stacked	method	
Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 
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Reflector	at	z=900	m	

Reflec.on	Angles	Surface	loca.on	x	[m]	

x=0	m		

z[m
]	

z[m
]	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	

	



38	

Reflector	at	z=900	m	

Reflec.on	Angles	Surface	loca.on	x	[m]	

x=0	m		

z[m
]	

z[m
]	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	
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Reflector	at	z=900	m	

Reflec.on	Angles	Surface	loca.on	x	[m]	

x=1,000	m		

z[m
]	

z[m
]	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	
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Reflector	at	z=900	m	

Reflec.on	Angles	Surface	loca.on	x	[m]	

x=1,000	m		

z[m
]	

z[m
]	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	
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•  Select	near	angles	as	the	reference	
angles	for	each	ADCIG	

•  Or		select	the	reference	ADCIGs		
•  Compare	the	windowed	spectra	for	ρ:		

reference	spectra	and	target	spectra		

•  The	windows	are	compared	at	the	
same	depth	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	

	

Reference	
ADCIGs	

ln
R1 ʹk( )
R2 ʹk( )

⎛

⎝
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⎟⎟= ρ ʹk +G0
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x=0	m		 x=1,000	m		

Reference	
ADCIGs	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	

	

Slope	map	 Slope	map	

Red:	non-a,enuated	regions	
Blue:	a,enuated	regions	
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Far		

x=0	m		 x=1,000	m		

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

Prestack	method:	Angle	domain	common	image	
gather	(ADCIG)	
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•  Prestack method using narrower windows 
in depth, If the velocity model is correct 
–  Improve results resolutions 

Prestack	method	
Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 



Q	gradients	

•  Gradients	of	the	objec?ve	
func?on	with	respect	to	Q	

	
	
•  Search	direc?on	for	the	1st	

itera?on	

∂J
∂Q
⎛

⎝
⎜

⎞

⎠
⎟

*

=
∂ρ
∂Q
⎛

⎝
⎜

⎞

⎠
⎟

*

x
∑ ρ

−
∂J
∂Q
⎛

⎝
⎜

⎞

⎠
⎟

*

Search	direc.on	for	the	1st	itera.on	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 



WEMQA	workflow	
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Q	model	 Image	 ρ	 Gradient		

Ini?al	Q	(e.g.,	Q=10,000)	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 
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Q	model	 Image	 ρ	 Gradient		

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

WEMQA	workflow	
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Q	model	 Image	 ρ	 Gradient		

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

WEMQA	workflow	
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Q	model	 Image	 ρ	 Gradient		

Opposite	sign	of	
	the	gradient			

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

WEMQA	workflow	
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Q	model	 Image	 ρ	 Gradient		

Line	search	

Defining ρ in the migrated image space 
Computing ρ from a migrated image  
Wave-equation based Q tomography 
Inversion workflow 

WEMQA	workflow	



Inverted	Q	model	using	prestack	method	

51	Minimum	Q1=20	

Background 
Theory 
Synthetic and field data examples 
Conclusions 



True	Q	model	
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Q2=20	

Minimum	Q2=20	

Background 
Theory 
Synthetic and field data examples 
Conclusions 



ADCIG	before	Q	compensa.on	
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Far		

x=0	m		 x=1,000	m		

Background 
Theory 
Synthetic and field data examples 
Conclusions 



ADCIG	aoer	Q	compensa.on	
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x=0	m		 x=1,000	m		

Background 
Theory 
Synthetic and field data examples 
Conclusions 



ADCIG	before	Q	compensa.on	
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Far		

x=0	m		 x=1,000	m		

Background 
Theory 
Synthetic and field data examples 
Conclusions 
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Source Point – (Sx,Sy) 

Inline  
(Sailing direction) 

Crossline Shot spacing: 50m inline; 300m xline 
Receiver spacing:25m inline; 75m xline  

Field data application: streamer data  
Background 
Theory 
Synthetic and field data examples 
Conclusions 

Polarcus	vessel	(h,p://subseaworldnews.com/wp-content/
uploads/2016/03/Polarcus-Snaps-Up-Dolphins-Streamer-
Package.jpeg)	
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Strongest	Q		
from	gas	
	chimney	

Strong	Q		
from	gas	
	chimney	

Channel	with	
strong	velocity	
drop		
	
	

Background 
Theory 
Synthetic and field data examples 
Conclusions 

Depth slice that highlights anomalies  

SHarp	seismic	data	provided	
courtesy	of	Dolphin	Geophysical	
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2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

2D initial velocity 

gas	
channel	
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2D updated velocity 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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ADCIGs before velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

Depth	(m
)	
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ADCIGs after velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

Depth	(m
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ADCIGs before velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

Depth	(m
)	

 4000	
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2D image before velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image after velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image before velocity updating 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image before Q compensation 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

reference	
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2D image before Q compensation 

	
	
	
	
	
	
	
	
	
	

2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

reference	



68	

Slope of the stacked image 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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Inverted Q using stacked WEMQA 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

Q	anomalies:65~75	
Background	Q:	500		
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Slope of ADCIGs 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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Slope of near angle image  
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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Inverted Q using prestack WEMQA 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
 

Q	anomalies:65~75	
Background	Q:	500		
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Inverted Q using prestack WEMQA 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image before Q compensation 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image after Q compensation 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image before Q compensation 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image after Q compensation 
2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D image before Q compensation: 
Automatic gain control (AGC) is applied 

2D velocity estimation 
2D one-way stacked WEMQA 
2D one-way prestack WEMQA 
 3D one-way WEMVA and WEMQA 
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2D velocity estimation 
2D one-way stacked WEMQA 
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SEP	3D	viewer:	depth	slice	
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3D initial velocity 
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3D updated velocity 
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3D image before velocity updating 
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3D image after velocity updating 
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3D image before velocity updating 
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3D image after Q compensation 
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3D image before Q compensation 
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Zoomed-in image before Q compensation: 
Automatic gain control (AGC) is applied 
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Zoomed-in image after Q compensation: 
Automatic gain control (AGC) is applied 
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Zoomed-in image before Q compensation: 
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3D image spectra 
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Conclusions	I(壹)	

u I have developed an inversion based method, WEMQA, to 
produce reliable Q models with two major features 
Ø Is performed in the image- space   
Ø Uses wave-equation-based Q tomography 
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u Field application shows 
Ø The updated velocity shows regions around the gas 

and channel features, and makes the events in 
ADCIGs flatter. 

Ø The estimated Q anomalies for shallow gas and 
channel are consistent with Dolphin’s interpretation. 

Ø The prestack WEMQA builds a higher resolution Q 
model than stacked WEMQA. 
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Conclusions	II(貳)	



u Field application shows 
Ø The migration compensation makes the seismic 

events below the anomalies clearly visible, with 
improved frequency content and phase coherency.  

Ø These improvements in image quality provide 
greater confidence for hydrocarbon exploration. 
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Conclusions	III(叁)	
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