Wave-equation migration Q analysis

Yi Shen Thesis Defense – Nov 29th, 2016

Wave-equation migration Q analysis

Quality factor that quantifies seismic attenuation

- Small Q means large attenuation
- Strong attenuation: Q ~ 10-50
- Nearly no attenuation: Q >5000

Effect of attenuation on amplitudes

Amplitudes

 The higher frequencies of a wave are attenuated more than its lower frequencies

Effect of attenuation on phase

Phase

• The **higher** frequencies of a wave travel faster than its lower frequencies

Effect of attenuation on image

Migration without Q compensation

- Damps amplitudes
- Lowers resolutions
- Disperses phases
- *e.g.,* Gas trapped in sediments
 - Degrades image quality
 - Makes identification and interpretation inaccurate

Effect of attenuation on reservoir characterization

(Francis, 2016)

Effect of attenuation on reservoir characterization

Motivation

Goal of my study

- Target the attenuation caused by clouds/pockets
- Understand and quantify the attenuation effects
- Create and accurate Q model
- Use the Q estimates to enhances seismic image quality

Thesis chapters

- Chapter 1: Introduction
- Chapter 2: Wave-Equation Migration Q Analysis
- Chapter 3: Rock physics constrained WEMQA
- Chapter 4: Multi-parameter inversion of velocity and Q using wave-equation migration analysis
- Chapter 5: Field data application
- Chapter 6: Conclusions

Thesis chapters

- Chapter 1: Introduction
- Chapter 2: Wave-Equation Migration Q Analysis
- Chapter 3: Rock physics constrained WEMQA
- Chapter 4: Multi-parameter inversion of velocity and Q using wave-equation migration analysis
- Chapter 5: Field data application
- Chapter 6: Conclusions

Outline

Background Theory Synthetic and field data examples Conclusions

- Background
- Theory of wave-equation migration Q analysis
- Numerical examples
 - Synthetic examples
 - 3D field data examples
- Conclusions

Spectral ratio method

Background Theory Synthetic and field data examples Conclusions

(Tonn, 1991)

Traditional approach

- Quantify attenuation effects in data space before seismic migration
- Update Q model using ray-based tomography

Traditional approach: data space

Background Theory Synthetic and field data examples Conclusions

Seismic data: 5 shot gathers

Synthetic examples:

http://www.spectrumgeo.com/imaging-services/land-environment/ depth-processing/pre-stack-depth-migration

New approach: image domain

Background Theory Synthetic and field data examples Conclusions

Seismic data: shot gathers

Synthetic examples:

http://www.spectrumgeo.com/imaging-services/land-environment/ depth-processing/pre-stack-depth-migration

Traditional approach: ray-based tomography

Background ' Theory Synthetic and field data examples Conclusions

ray-based tomography

- High–frequency approximation
- Oversimplifies multi-pathing

New approach: wave-equation-based tomography

Background Theory Synthetic and field data examples Conclusions

(Tang, 2011)

New approach

 Quantify attenuation effects in image space after seismic migration

- Suppresses the noise
- Simplifies and focuses the events
- Can be implemented in a target-oriented fashion
- Update Q model using wave-equation based tomography
 - Handle strong heterogeneities in the subsurface (e.g., salt body)
- Wave-equation migration Q analysis (WEMQA)

Objective function

Background Theory Synthetic and field data examples Conclusions

 Define ρ as the effect of attenuation (effect of Q) on seismic migrated images

$$J = \frac{1}{2} \sum_{\mathbf{x}} \left| \rho(\mathbf{x}; Q) \right|^2$$

x is each a spatial location in the image space *Q* is the current model for quality factor

Spectral ratio method

Reference migrated image

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

Reference image (spectrum R₂)

True model:Q₂=30

RMS amplitudes: 1.5

Events at z=800 m

Symmetric wavelets

Spectral ratio method in image space

True Q model

Attenuated image: migrated image at zero subsurface offset (stacked image)

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

$$\ln\left(\frac{R_1(\mathbf{k}')}{R_2(\mathbf{k}')}\right) = \rho\left[\mathbf{k}'\right] + G_0$$

• Wavenumber domain

$$\ln\left(\frac{R_1(\mathbf{k}')}{R_2(\mathbf{k}')}\right) = \rho |\mathbf{k}'| + G_0$$

- Q₁=10,000 >Q₂
- The image is under-compensated (attenuated)
- ρ<0

$$\ln\left(\frac{R_1(\mathbf{k}')}{R_2(\mathbf{k}')}\right) = \rho|\mathbf{k}'| + G_0$$

- Frequency-independent factors
 - Different illumination caused by acquisition limitations
 - Different reflection coefficients of different reflectors
 - Different geometrical spreading because of different wave-paths.

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

- Select one or more surface locations as reference traces
- At each image point x, I use a window of which the center is x
- Compare the windowed spectra for p: reference spectra and target spectra

$$\ln\left(\frac{R_1(\mathbf{k}')}{R_2(\mathbf{k}')}\right) = \rho|\mathbf{k}'| + G_0$$

• The windows are compared at the same depth

- Stacked method using windows wide in depth
 - The spectral variations caused by structure differences in each window are statistically the same
 - Does not represent the effect of Q on its image point
 - Mixes the Q effects from different reflection angles
- Prestack method: angle domain common image gather (ADCIG)

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

40

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

- Select near angles as the reference angles for each ADCIG
- Or select the reference ADCIGs
- Compare the windowed spectra for ρ: reference spectra and target spectra

$$\ln\left(\frac{R_{1}(\mathbf{k}')}{R_{2}(\mathbf{k}')}\right) = \rho |\mathbf{k}'| + G_{0}$$

• The windows are compared at the same depth

Blue: attenuated regions

Prestack method

- Prestack method using narrower windows in depth, If the velocity model is correct
 - Improve results resolutions

Q gradients

Defining ρ in the migrated image space Computing ρ from a migrated image Wave-equation based Q tomography Inversion workflow

 Gradients of the objective function with respect to Q

$$\left(\frac{\partial J}{\partial Q}\right)^* = \sum_{\mathbf{x}} \left(\frac{\partial \rho}{\partial Q}\right)^* \rho$$

 Search direction for the 1st iteration

Inverted Q model using prestack method

Background Theory Synthetic and field data examples Conclusions

51

True Q model

ADCIG before Q compensation

ADCIG after Q compensation

ADCIG before Q compensation

Field data application: streamer data

Depth slice that highlights anomalies

2D initial velocity

2D velocity estimation

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

58

2D updated velocity

2D velocity estimation

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

2D velocity estimation

ADCIGs before velocity updating

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

2D velocity estimation

ADCIGs after velocity updating

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

2D velocity estimation

ADCIGs before velocity updating

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

2D image before velocity updating

2D velocity estimation

2D one-way stacked WEMQA 2D one-way prestack WEMQA <u>3D one-</u>way WEMVA and WEMQA

2D image after velocity updating

2D velocity estimation

2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

2D image before velocity updating

2D velocity estimation

2D one-way stacked WEMQA 2D one-way prestack WEMQA <u>3D one-</u>way WEMVA and WEMQA

2D image before Q compensation

2D image before Q compensation

Slope of the stacked image

Inverted Q using stacked WEMQA

Slope of ADCIGs

Slope of near angle image

Inverted Q using prestack WEMQA

Inverted Q using prestack WEMQA

2D image before Q compensation

2D image after Q compensation

2D image before Q compensation

2D image after Q compensation

2D image before Q compensation: Automatic gain control (AGC) is applied

2D image after Q compensation: Automatic gain control (AGC) is applied

2D image before Q compensation: Automatic gain control (AGC) is applied

SEP 3D viewer: inline section

SEP 3D viewer: inline section

SEP 3D viewer: depth slice

3D initial velocity

3D updated velocity

3D image before velocity updating

3D image after velocity updating

3D image before velocity updating

ADCIGs before velocity updating

2D velocity estimation 2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

89

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

ADCIGs after velocity updating

2D velocity estimation 2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

90

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

ADCIGs before velocity updating

2D velocity estimation 2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

91

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Inverted Q model using prestack WEMQA

2D velocity estimation 2D one-way stacked WEMQA 2D one-way prestack WEMQA 3D one-way WEMVA and WEMQA

1.89 (Q=75)

3D image before Q compensation

3D image after Q compensation

3D image before Q compensation

Zoomed-in image before Q compensation: Automatic gain control (AGC) is applied

Zoomed-in image after Q compensation: Automatic gain control (AGC) is applied

Zoomed-in image before Q compensation: Automatic gain control (AGC) is applied

3D image spectra

Conclusions I(壹)

I have developed an inversion based method, WEMQA, to produce reliable Q models with two major features

- Is performed in the image- space
- Uses wave-equation-based Q tomography

Conclusions II(貳)

Field application shows

- The updated velocity shows regions around the gas and channel features, and makes the events in ADCIGs flatter.
- The estimated Q anomalies for shallow gas and channel are consistent with Dolphin's interpretation.
- The prestack WEMQA builds a higher resolution Q model than stacked WEMQA.

Conclusions III(叁)

Field application shows

- The migration compensation makes the seismic events below the anomalies clearly visible, with improved frequency content and phase coherency.
- These improvements in image quality provide greater confidence for hydrocarbon exploration.

Acknowledgements

- Thanks Dolphin Geophysical for providing us with this SHarp seismic data
- Thanks Shuki Ronen, Sergio Grion, Gareth Williams for their help with the data permisioon

ThankQ and Q?