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ABSTRACT

In addition to reflection data, seismic recordings contain many different wave
modes that are either unwanted or unneeded, degrading overall data quality. We
use support vector machines (SVM), a type of supervised learning algorithm,
for automatic wave mode classification. We decompose multicomponent transla-
tional and rotational seismic data from a field survey into polarization vectors,
by applying continuous wavelet transforms (CWT) followed by singular value de-
composition (SVD). We train an SVM classifier to distinguish surface waves from
body waves from these polarization vectors, and show classification results on dif-
ferent portions of the field data. Our method does not rely on spatial continuity,
and can therefore be applied to spatially aliased data.

INTRODUCTION

In addition to reflection data, seismic surveys are cluttered with many other seismic
responses that are either unwanted or unneeded, resulting in recorded data containing
many different wave modes (Yilmaz, 2001). In the case of land acquisitions, high
amplitude ground roll noise can obscure signal, degrading overall data quality.

Ground roll is the main type of coherent noise in land seismic surveys and is char-
acterized by low frequencies and high amplitudes. Common processing techniques for
attenuating ground roll include frequency filtering (Yilmaz, 2001), Radon transform
(Liu and Marfurt, 2004), wavelet transforms (Deighan and Watts, 1997), and the
curvelet transform (Yarham and Herrmann, 2008). However, these techniques can be
limited when ground roll is spatially aliased and has non-linear moveout, and it is
notoriously difficult to model ground roll with sufficient generality. Therefore, ground
noise removal remains a tedious task.

Barak and Ronen (2016) demonstrate how to use combined translational and ro-
tational data to identify and separate particular wave modes. They apply continuous
wavelet transforms (CWT) followed by singular value decomposition (SVD) to iden-
tify the polarization signature of the particular wave modes associated with ground
roll. A filter is then applied to attenuate sections of the data with similar polarization
signatures.
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Nonetheless, this methodology requires selective manual picking of events on the
data section. Moreover, it is based on the underlying assumption of stationarity
of wave modes along offset, although there is no guarantee that the polarization
signature of a certain wave mode at a particular offset should remain similar at
other offsets. Therefore, we extend this process by incorporating pattern recognition
algorithms as described by Huot and Clapp (2016). We use support vector machines
(SVM), a set of supervised learning methods used for classification, to identify the
waves modes associated with ground roll, at all times, offsets and azimuths.

We train an SVM classifier to identify specific wave modes from the polarization
vectors computed on field data, and then test our classification on different portions
of the data where the wave modes are clearly distinguishable to assess the quality of
our classification.

PREPARING DATA FEATURES FOR MACHINE
LEARNING

Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) is defined as:

a
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where g;(t) is the input signal of the " data component, 1 (¢) is a mother wavelet,
¥* is a daughter wavelet, which is the complex conjugate of the mother wavelet
stretched by scale a and time-shifted by b. It is common to use the Morlet wavelet
as a mother wavelet, and we do so in this paper. For brevity, we will use C; (a,b) :=

Ci(a,b; gi(t),9(t))

The continuous wavelet transform effectively shows how correlated our time-series
is with a particular daughter wavelet. Since the correlation is done in running time
windows (shifted by b), the transform retains the temporal sense of the data and yet
decomposes it to wavelet scales, which are in essence similar to frequency. We use
this time-frequency decomposition to identify wave modes of particular frequencies
that appear at particular times in multicomponent data.

Singular Value Decomposition (SVD)

We apply singular value decomposition to a time slice of a single continuous-wavelet
transformed multicomponent trace C;(a, by), where by, is the time index of the slice, a
ranges through the wavelet scales and i represents the data component. Therefore, we
have an N, x N, data matrix D where the rows are the wavelet scales and the columns
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are the data components. SVD is a method of finding the waveform u, magnitude o,
and polarization v of the signal that is present in the data D. The SVD of the data
D is given by

D =UxVT, (2)

where D is the product of an N, x N, matrix U, an N, x N, diagonal matrix ¥, and
the transpose of an N, x N, matrix V. The unit left and right singular vectors u;
and v; are the column-vectors of U and V. The singular values o; are the diagonal
elements of X. They are ordered such that |oq| is the greatest and |oy, | the smallest.
The left and right singular vectors are mutually orthogonal, such that UTU = I and
VVT =1

The right singular vectors v; display the polarization of the data within the par-
ticular frequency window along the data axes. We transpose and multiply the matrix
V by the singular value matrix 3, to obtain the scaled polarization vectors:

S=xVv7’. (3)

Support Vector Machines (SVM)

The polarization vectors obtained after applying CWT and SVD are used as input for
classifying the different wave modes. From here, we set up the classification problem
according to the methodology described in Huot and Clapp (2016).

Support vector machines (SVM) are a supervised learning algorithm that have
been shown to perform well in a variety of settings, and are often considered one
of the best “out of the box” classifiers. To train the classifier, we build a training
dataset of N sample pairs, (z1,y1), (22,%2), -+, (z~, yn), where the z; € R, represent
the features, which are the p values of the polarization vectors, and the y; € {—1,1}
are the binary labels indicating to which wave mode the sample belongs, namely,
whether it is a surface wave or a body wave.

The support vector classifier determines the optimal hyperplane separating the
two classes in the features space, given a certain amount of slack £ = (&;,&a, -+ ,&n)
to account for the fact that the samples are not perfectly separable. If we define a
hyperplane by the following:

{z: fle) =2 B+ =0}, (4)

where (3 is a unit vector and [y a constant, the classification rule induced by f(x) can
be expressed as:

G(z) = sign[z” 8 + B). (5)
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With these notations, the support vector classifier for the nonseparable case is com-
monly expressed as:

yi(x, "B+ Po) > 1—&, Vi

& >0,V and > & < K. (6)

min subject to
min (9] subj {

By bounding the sum > &;, we bound the total proportional amount by which pre-
dictions fall on the wrong side of their margin. Misclassifications occur when &; > 1,
so bounding > &; at a value K bounds the total number of training misclassifications
at K.

However, the support vector classifier subsequently described is limited to finding
linear boundaries in the input feature space. To achieve better training-class sepa-
ration, we introduce the idea of enlarging the feature space using basis expansions.
Linear boundaries in the enlarged space translate to nonlinear boundaries in the
original space, thereby making the problem more flexible. Once the basis functions
hm(x), m = 1,--- | M are selected, the procedure is the same as before. We fit the
support vector classifier using input features h(z;) = (hi(x:), ho(w:), -+, har(24)), i =

Y
A

1,--+, N, and produce the (nonlinear) function f(z) = h(z)? 3+ By. The classifier is

~

G(z) = sign[f(z)] as before.

In practice, we need not specify the transformation h(z) at all, but require only
knowledge of the following kernel function:

K(z,z') = (h(x), h(z')), (7)

that computes the inner products in the transformed space. For particular choices of
h, these inner products can be computed very efficiently.

Three popular choices for K in the SVM literature are shown in the following:

d™—degree polynomial: K(z,2') = (1+ (x,2'))%, (8)
Radial basis: K(z,2") = exp(—yl|lz —2'|]), (9)
Neural network: K (x,2’) = tanh(ki{x,2") + k2). (10)

A more complete overview of the implementation of support vector machines is
described in Huot and Clapp (2016).

SVM TRAINING AND TESTING WITH KETTLEMAN
DATA

The 2D Kettleman survey comprised multiple types of sources and multiple types of
receivers, both on the surface and at depth. The shot line length was 1.6 km long. The
seismic sources used were a vibroseis truck, an accelerated weight-drop, and buried
dynamite charges. At one end of the shot line there were five 3 component (3C) linear
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accelerometers, which were closely spaced at a 2.1 m interval inline. Additionally, near
the center of the shot line there were two adjacent 3C geophones buried at 1 m depth,
spaced at a 2 m interval inline.

Although the survey also had 3C rotation sensors, the signal to noise ratio of these
sensors was very low for offsets greater than 300 m. Therefore, we derived the pitch
rotational component by differencing adjacent vertical geophones and accelerometers
at each receiver station. Derivation of rotational components from translational data
is described in Barak and Ronen (2016), Barak et al. (2015), Muyzert et al. (2012)
and Brokesova and Malek (2015).

Since the sensors were arrayed only in the inline direction, we could not derive
rotational data for the roll and yaw components. Consequently, our analysis here
includes only the vertical and radial translational components and the pitch rotational
component. Figure 1(a) is the vertical component receiver gather at station 335 shot
with the vibroseis source, Figure 1(b) is the radial component, and Figure 1(c) is the
pitch component. AGC has been applied for display.

The P body-wave reflections are visible at earlier times and longer offsets, but
most of the section is dominated by various modes of surface waves, which is typical
in land data. There is a very slow Rayleigh wave mode propagating at around 250
m/s, and a faster mode propagating at 400 m/s. Henceforth we will refer to these
wave modes as “slow” and “fast” ground roll. There is yet another, faster mode,
propagating at 600 m/s - 700 m/s, which is not part of the analysis here.
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Figure 1: Receiver gathers at station 335 for the vibroseis source. a) Vertical ac-
celerometer component. b) Radial accelerometer component. ¢) Pitch component
derived from differencing two adjacent inline vertical accelerometers. AGC has been
applied for display. Note the various types of surface waves present. [ER]

Standard seismic processing requires that the surface waves (“ground-roll”) be
removed, as the data we are commonly interested in are the P body-wave reflections
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that are obscured by the surface waves. However, as a first step, the unwanted energy
must be identified.

SVM training data for classification of surface waves

In order to separate the surface waves from the body waves, we train an SVM classifier
on the data from receiver station 335. We decompose the training data into scaled
continuous-wavelet polarization vectors by applying CWT followed by SVD, as in
equations 1 and 3. Since we are using three data components, for each offset and each
time sample we obtain three polarization vectors. We use only the first polarization
vector as our input feature vector for the SVM classification, since most of the energy
is contained within the first vector.

The feature vectors are illustrated in Figure 2(a). We can clearly distinguish high
amplitude parcels corresponding to the specific seismic signature of the different wave
modes. Figure 2(b) represents the same feature vectors plotted by color code, red for
slow ground roll and blue for all other wave modes. We can see that the wave modes
have distinct behaviors in the feature space.

In order to train the classifier, we label the training data manually by selecting
particular wave modes in the data from receiver station 335. The selection was done
using a linear mute function that windowed only the ground-roll energy. Figures 3(a),
3(b) and 3(c) illustrate which regions were labeled as slow ground roll, fast ground
roll and total ground roll. For each of these selected wave modes, we trained an SVM
classifier using the aforementioned polarization feature vectors as input. The ground
roll is labeled as “Class 1”7, while all the other wave modes are labeled as “Class 0”.

We then test the SVM’s fitting capability. The classification prediction results
obtained on the training data are illustrated in Figures 3(d), 3(e) and 3(f). They are
highly similar to our hand-picked labels, indicating that our classifiers fit the training
data well, with a low training error.

SVM prediction of surface waves on test data

Testing on other receiver stations

We then tested our previously trained classifiers on data from other receiver stations
for the same vibroseis source type.

Stations 336 and 337 are adjacent to stations 335 (the training data station) near
the end of the shot line, and therefore the data at these receiver stations should
be similar to the training data. This enables us to estimate how well the classifier
predicts the ground roll wave mode on these test data. Figure 4(a) is the vertical
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Figure 2: The training data at receiver station 335 for the SVM. a) Feature vectors
for each time sample at offset 180m. b) The same feature vectors color coded by
their respective classification, ’Class 1’ being the slow ground roll mode and 'Class 0’
representing everything else. [ER|]

component at station 336. Figures 4(b), 4(c) and 4(d) are the predicted slow ground
roll, fast ground roll and combined slow+fast ground roll wave modes at this station,
respectively. Recall that this prediction is done using the classification generated by
labeling the data at station 335. Observe that the classifier has managed to identify
the ground roll in these test data relatively well, and it does not misclassify the body
wave energy as ground roll.

The prediction seems to be better when both ground roll modes are combined, as
show in Figure 4(d). It seems that it is more difficult for the classifier to differentiate
between the two types of ground roll (slow vs fast) than between the ground roll and
body waves. The same conclusions can be drawn for the prediction results for station
337, shown in Figures 4(f), 4(g) and 4(h).

Station 191 is about 1 km away from station 335. At station 191 there were
geophones installed, rather than accelerometers as at stations 335, 336 and 337. Fur-
thermore, the geophones were buried at 1 meter depth, whereas at stations 335, 336
and 337 the accelerometers were on the surface.

Figures 4(j), 4(k) and 4(1) are the predicted slow ground roll, fast ground roll
and combined slow-+fast ground roll wave modes at station 191, respectively. The
classifier seems to have more difficulty differentiating between the slow and the fast
ground roll modes at this station. Additionally, it has misclassified a small portion of
the body wave energy as ground roll, as can be seen on the left Figure 4(1) at ¢t = 0.4
s. However, by and large, the classification does enable the identification of ground
roll energy, despite the differences between the data at station 191 vs station 335, on
which we trained our SVM classifier.
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Figure 3: SVM training data and fitting results from station 335, for the vibroseis
source. a) Slow ground roll mode training data. b) Fast ground roll mode training
data. ¢) Combined (slow+fast) ground roll modes training data. d) SVM fitting of
slow ground roll mode on training data. e¢) SVM fitting of fast ground roll mode on
training data. f) SVM fitting of combined (slow+fast) ground roll modes on training
data. [ER|]

SEP-165



Barak and Huot 9 Automatic wave mode identification

offset (m)
0 200 400

offset (m)
0 200 400 600

80
80

80
(Pes)awry

(oos)owir}
80
(Pes)awry
(09s)owury

a1
2T
a1

(d)

offset (m)
200 400

(a) (b)

offset (m) offset (m)
200 400 200 400

offset (m)
200 400

8°0
8°0

80
(oos)awry

(oos)owiny
(oos)awry
(o9s)owury

27
27

offset (m)

offset (m) offset (m)
800

400 800 1200 400 800 1200

70
7o

27
21

Figure 4: SVM prediction of surface wave modes on test data, for the vibroseis source.
a,e,i): Vertical component at receiver stations 336, 337 and 191. b.fj): prediction of
slow ground roll mode for stations 336, 337 and 191. c,gk): prediction of fast ground
roll mode for stations 336, 337 and 191. d,h,l): prediction of combined (slow+fast)
ground roll modes for stations 336, 337 and 191. [ER]
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Testing on other source types

We then tested the classifier on the same station that provided the training data
(335), but for alternate seismic source types.

Figures 5(a) and 5(d) are again the receiver gather of the vertical component at
station 335, and portion of combined (slow+fast) ground roll labeled as “Class” 1 for
the training data.

Figure 5(b) is the receiver gather of the vertical component at station 335 for
an accelerated weight-drop source. Note that the sampling for this source type was
much denser than the vibroseis source. The ground roll wave modes visible in this
section are similar to those in Figure 5(a), however they are not aliased. Figure 5(e)
shows the SVM’s prediction of the combined (slow+fast) ground roll modes for the
accelerated weight drop data. Despite the fact that the source type is different, the
classification is able to correctly predict the ground roll in this section. Figure 5(e)
is remarkably similar to Figure 5(d), albeit with a better sampling.

Both the vibroseis and the accelerated weight-drop source were on the surface.
Figure 5(c) is the receiver gather at station 335, but for a dynamite source buried
at 25 m depth. The ground roll energy has a different appearance in this section.
Figure 5(f) is the SVM prediction of the slow+fast ground roll wave mode for the
dynamite source. Note that the energy classified as ground roll does indeed seem to
have the same linear moveout as the ground roll in the vibroseis section. The classifier
even picks up on a portion of a faster surface wave mode that does not appear in the
vibroseis data.

In both test cases shown in Figures 5(e) and 5(f), there is no misclassification of
the body wave energy as ground roll.

DISCUSSION

Standard seismic processing may utilize some known attributes of ground roll to
identify it. For example, ground roll has a much slower moveout than body waves in
common shot or receiver gathers. Additionally, in multicomponent data the elliptical
polarization associated with Rayleigh waves may be employed to identify ground roll.

The approach of machine learning is very different however. Standard methods
use an a priori, analytical model of ground roll, such as moveout or elliptical polar-
ization. A machine learning approach does away with any predetermined model, and
substitutes a model learned from the data themselves. The advantage of such an
approach is that it may work in cases where a useful, representative model is beyond
our capability to represent analytically.

The case of surface waves (ground roll) is of particular interest in this respect,
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Figure 5: SVM prediction of surface wave modes at station 335, for different seismic
source types. a) Vertical component of vibroseis source. b) Vertical component of
accelerated weight-drop source. c¢) Vertical component of dynamite source. d) The
portion of the combined (slow-+fast) ground roll mode labeled as class 1 from the
vibroseis source data. e) prediction of combined (slow-fast) ground roll mode for the
accelerated weight-drop source. f) prediction of combined (slow-+fast) ground roll
mode for the dynamite source. [ER]
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since the near surface of the Earth is commonly very complex, and in general it is
difficult to accurately model wave propagation in the near surface. For example,
Rayleigh waves do not always have elliptical polarization, nor are their moveouts
necessarily predictable. Surface waves may also be generated by body waves incident
on near surface scatterers, in addition to being radiated directly away from the source
position. Therefore, the prospect of enabling an algorithm to learn from the data what
ground roll may look like in multiple scenarios is compelling.

We have used the continuous-wavelet polarization vectors of multicomponent seis-
mic data to train an SVM algorithm to identify ground roll. The classification results
using the test data indicate that the SVM is indeed able to identify ground roll based
on this (rather minimal) training.

There remain several open questions with respect to practical application of this
machine learning algorithm:

1. In order to have a good representation of the various ways each wave mode
may be polarized at multiple times/offsets/azimuths (given a set of data com-
ponents), massive amounts of seismic data are required. How can we classify
massive quantities of data?

2. Can an SVM trained on a particular dataset be used for classification of another
dataset?

3. Are more components necessarily better for the SVM’s classification of wave
modes? If not, which minimal set of components would be the most useful?

The Kettleman dataset is instrumental in showing the possibility of identifying
wave modes in land data using machine learning, since it has multiple components,
both translational and rotational, which enable identification by polarization. How-
ever, the Kettleman dataset is very small, and therefore we cannot answer the ques-
tions stated above with it. For that, we would require a very large, 3D multicompo-
nent land or OBS dataset.
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