Overview of a C++ Helmholtz solver library

Joseph Jennings and John Washbourne

ABSTRACT

SEP received a Helmholtz solver during a visit from Chevron researchers. We
describe a high-level overview of the workings of the solver and provide simple
examples of how this solver may be used for performing full-waveform inversion.

INTRODUCTION

Since the onset of research on full-waveform inversion (FWI) at SEP, the majority
of our implementations have been performed in the time domain (Mora, 1987; Shen,
2014; Biondi and Almomin, 2014). Time-domain methods have the advantage that
they are relatively straightforward to implement with explicit finite differences and
thus require relatively less memory (Wang et al., 2011). In comparison, frequency
domain techniques that solve the Helmholtz equation require factorizing a large, asym-
metric, sparse matrix (the Helmholtz operator). In spite of this, frequency-domain
methods offer the advantage that they solve the wave-equation for a single frequency,
easily allowing for frequency continuation methods that have been used to mitigate
cycle-skipping (Bunks et al., 1995). Computationally, they also lend themselves to
multiple-source modeling as the factorized matrix can be reused for additional source
vectors (Marfurt, 1984). In turn, this property becomes very useful for iterative inver-
sion schemes such as Gauss-Newton and Full-Newton algorithms that require many
forward propagations for primary and secondary sources at each iteration (Pratt
et al., 1998). For these and other reasons, frequency-domain FWTI is becoming more
common in the geophysical exploration industry (Washbourne et al., 2013).

As part of the Chevron Center of Research Excellence (CoRE) at Stanford, Chevron
researchers visited SEP this summer and shared a Helmholtz solver with SEP re-
searchers. The solver is written in C++ in an object-oriented fashion and utilizes
the UMFPACK factorization libraries from SuiteSparse (Davis et al., 2014). The
solver consists of three operators: a non-linear forward operator for solving the non-
linear wave equation, a linearized operator that maps a perturbation in velocity to a
perturbation in the data, and lastly the adjoint of the linearized operator.

In this report, we first give a brief introduction to numerically solving the Helmholtz
equation. We then describe the different operators of the Helmholtz solver. With each
operator, we provide a simple example for how it might be used in an FWI context.
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DISCRETIZATION OF THE HELMHOLTZ EQUATION

We begin with the constant-density acoustic wave equation,

1 Q%u(x,t)

o0 ~V2u(x,t) = f(x,1). (1)

If we then take the temporal Fourier transform of equation 1, we arrive at the well-
known Helmholtz equation,

u(x,w) — Viu(x,w) = f(x,w).

c(x)?

Discretizing the Laplacian with second-order finite differences, we write the discrete
Helmholtz equation as:

2
%U(W)M‘F

u(w)i,m - QU(w)i,j + U(w)i+1,j U(W)i,jfl - QU(w)m‘ + U(w)m’H s
Ax? * Az? = ~fulw).

Grouping terms by spatial index, we can write the system of equations as a matrix
vector product:

Au=f, (2)

where the coefficients of A depend on the spatial samplings (Axz, Az), velocity (c) and
the frequency (w). Note that A is nonlinear in the velocity ¢(x) and is independent
for each frequency.

EXAMPLES

The Helmholtz solver contains four principal operators. These operators consist of
three wave equation operators: the nonlinear modeling operator, the linearized mod-
eling operator, the adjoint of the linearized modeling operator and a receiver restric-
tion operator that interpolates the wavefield onto the receiver locations. Each of the
wave-equation operators has the capability of performing conventional phase and am-
plitude, phase-only and normalized-amplitude modeling. In the following subsections,
we provide examples of how to use these operators on simple synthetic models.

Nonlinear forward operator

The nonlinear forward wave equation operator maps an input source function f to a
data vector d given a velocity model:
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d=RA'f, (3)

where A is the Helmholtz matrix as defined in equation 2 and R is a restriction
operator that interpolates the wavefield to the receivers. Note that intermediately,
we compute the wavefield u = A~'f. When we do this, we only need to factorize A
once and thus we can apply A~! to multiple sources.

As A is quite large, sparse and asymmetric, sparse LU decomposition algorithms
can be used to factorize A into two lower and upper triangular matrices. In this
Helmholtz solver, this is done with the UMFPACK libraries within SuiteSparse.

To factorize A and perform the nonlinear modeling, we must construct both A
and f. To construct A we need to choose a velocity model and frequency. The velocity
model for this particular example is shown in Figure 1 and the frequency of choice
is 1.0 Hz. For all of these examples, the velocity contains no imaginary component.
Note that another advantage of frequency domain modeling is that it is trivial to
implement attenuation by providing an imaginary component to the velocity.

2000 4000 6000 8000

Figure 1: The velocity used in
the nonlinear modeling. For this
example it contains no imaginary &
component. [ER] ¥3

For velocity model shown in Figure 1 and a frequency of 1.0 Hz, the Helmholtz
matrix A is shown in Figure 2. Note that, A is banded but not symmetric. This
asymmetry is due to the use of one-sided derivatives used in the Engquist/Majda
absorbing boundaries. (Ajo-Franklin, 2005; Engquist and Majda, 1977). The width
of the bands depends on the length of the stencil used for computing the Laplacian.
For higher frequencies and faster velocities, the stencil size must be increased to avoid
numerical dispersion. This in turn increases the computational cost of factorizing A.
For this reason this solver implements a compact 9-point stencil that is based on a
Padé-like approximation (Singer and Turkel, 1998).
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In order to construct the source vector f and the receiver restriction operator R,
the solver must be provided with the source and receiver coordinates. Note that this
solver does not assume that the sources and the receivers are located on the same
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Figure 2: (a) The sparsity pattern of A. (b) A zoom-in on the upper diagonal of the
matrix (first 70 elements). Note the three bands on the main diagonal and the outer
fringes. Also note two stray points near the main diagonal. These stray points appear
due to the one-sided derivative at the boundary and are the cause of the asymmetry

of A. [ER] |joseph2/. A-0-2499,A-0-69)]

grid as the velocity. Figure 3 shows the overlay of the acquisition geometry for the
nonlinear modeling and also that the sources and receivers are placed on a different
grid than the velocity grid.

With each of the components of equation 3 built, we can perform the nonlinear
modeling. The real part of the result of the modeling performed is shown in Figure
4(a) and the real part of the recorded data is shown in Figure 4(b).

Linearized operator

We can express the linearized operator in terms of the Helmholtz matrix by first
expressing A~! as a first-order Taylor-series expansion around my:

A"Y(m)f ~ A (mo)f + (WAm) f,

where m is a vector of length nm containing the velocity ¢(x) and m = mg + Am.
my is the initial (background) model and Am is our model perturbation. We can
further expand the derivative as:

Au = (M) f = <—A1MA1Am> f, (4)

om om

SEP-165



Jennings and Washbourne ) Helmholtz solver overview

x (m) X (m)
0 2000 4000 6000 8000 1500 1600 1700 1800 1900 2000
| | \ | )

&~ O 0 0O 0O O ® 00 000 O0Oxw 00 00 O0 0x0 O

400

800

~ ~
g &
-
N Q N
o
Q
—
o
o O X0 X X OX0 X X OXO K XOX) X 0XO03X &K 0XO0 X
o ®
©
—
[ ——
source e receiver XXXXXXXX
o receiver 00000000 gl‘ld 00000000
o
o
Q

(a) (b)

Figure 3: (a) The acquisition geometry for the nonlinear modeling overlain on the
velocity model shown previously in Figure 1. Note that the velocity here is shown
only to 2000 m in depth. (b) A zoom-in on the source, receiver and velocity grid.
Note that the source, receiver and velocity grid all have different spatial sampling
intervals and are not co-located. [ER] |joseph2/. vel-geom-ovrly,srsrecmod
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Figure 4: (a) The real part of the wavefield for a wavelet of 1Hz .(b) The real part

of the data obtained after modeling at all source locations and the application of R.
[ER]
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where Au is the linearized Born wavefield. As 0A/0m is a tensor, we need to sum
over the different components of m to write equation 4 as a chain of operators:

Au = —A""(my) Am; A~ (mg)f. (5)

7

At this point in our derivation, the physical interpretation is quite clear. Starting
from the rightmost side of equation 5, we have the background wavefield from the
application of A~ to the source f. We denote this as ug. This is then scaled
by a perturbation and a second time derivative is applied with the application of
86_7:1-‘ The output of these two operations (g—;:iqumi) is commonly known as the
secondary source in linearized modeling, and serves as input to another propagation
A~ thus resulting in the single-scattered or Born wavefield (Au). If we consider only
perturbing one single point in the model space (i.e. Am contains only one non-zero
component), at model point j then we can drop the summation and rewrite equation
5 as:

Au = A" 'DugAm,

where D = % and Am = Am;. With the application of R, we now have a linear
J

relationship between a perturbation in the data and a perturbation in the model
parameters:

Ad = RAu = RA 'DugAm. (6)

To perform the linearized modeling in the solver, we use the layered velocity which
consists of the smooth background and the perturbation. These are shown in Figure
5. The real part of the wavefield that resulted from applying the chain of operators in
equation 5 to the perturbation shown in Figure 5(c) is shown in Figure 6(a). Figure
6(b) shows the recorded data.

Adjoint of linearized operator

With a simple conjugation and reversal of the operators in equation 6 we obtain the
expression for the application of the adjoint Born operator that relates a perturbation
in the data to a perturbation in the model parameters:

Am = uo*D*(A~')*R*Ad.

Using the solver, we first attempt to map the data perturbation computed in
Figure 6(b) back to the model space. This is shown in Figure 7(a). In this mi-
grated image, we can faintly see the first velocity contrast that occurs at 1500 m
depth (Figure 5(c) is included for reference). As a second example, we compute a
monochromatic sensitivity kernel for homogeneous velocity that is shown in Figure 8.
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Figure 5: (a) Total velocity model (m = mgy + Am), (b) background velocity myg
(low-pass filtered version of (a)) and (c) velocity perturbation Am. [ER]
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Figure 6: (a) The real part of the Born wavefield modeled Au as result of applying
the chain of operations in equation 5 to to the perturbation shown in Figure 5(c).
(b) The real part of the data perturbation obtained after Born modeling at all source
locations and the application of R. [ER]
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Figure 7: (a) The adjoint of the linearized operator applied to the data perturbation
shown in Figure 6(b). (b) The model perturbation in Figure 5(c) shown again for
comparison. Note that the image and perturbation are shown from 1000 m depth.
Also note the faint reflector at 1500 m depth in the image that corresponds to the
first reflector in the model. [ER]
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Figure 8: FWI gradient (sensitivity kernel). Note that this example used only one
source and one receiver located at 775 m and 4000 m depth respectively. [ER]
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CONCLUSION

We have presented a Helmholtz solver written in C4++ that can be used for performing
frequency domain FWI. This solver contains three main operators that implicitly solve
the Helmholtz equation to compute the monochromatic non-linear, linearized and ad-
joint wavefields and data. While in this report only conventional amplitude plus phase
modeling was performed, this solver has the machinery to also perform phase-only
and normalized-amplitude modeling as well. While factorizing the Helmholtz matrix
is more involved than solving wave equation via explicit finite differences, the fre-
quency domain implementation has many advantages such as frequency-continuation,
straight-forward implementation of attenuation and cheap multi-source modeling. We
have presented examples of performing forward modeling and computing gradients in
hopes that this software may be used among SEP researchers.
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