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ABSTRACT

Seismic surveys provide us with an abundance of data characteristics. Is there
an informative way to visualize a survey’s metadata? Using exploratory data
analysis (EDA) tools, we investigate a land survey’s metadata to detect trends
among the observations. We derive indicators of the quality of a seismic trace.

INTRODUCTION

With the advent of multi-component sensors, we are faced with an abundance of data
characteristics which may contain precious information about our survey. For exam-
ple, within a seismic survey, noise levels vary by receiver location, source location,
offset, frequency, time of the day, etc. While bad traces are easy to pick out, the
study of data characteristics can yield criteria for assessing the quality of a seismic
trace.

High noise levels degrade seismic images. Thus, significant efforts are deployed
in seismic signal processing to attenuate and remove noise from the signal (Yilmaz,
2001), while stacking techniques are commonly used to improve signal to noise ratio
(Claerbout and Black, 2008). Once bad traces are identified, they can be selectively
left out of the imaging process using weighing and penalty functions as introduced
by Claerbout (2014).

Therefore, it would be extremely useful to derive indicators of noise level or record-
ing quality from a survey’s metadata. However, what would be an informative way to
visualize these metadata? How can we efficiently discover trends among the variables
or among the observations? Which are the important variables?

Exploratory data analysis (EDA) refers to a diverse set of techniques for answering
questions such as these. Herein we use R, a free software environment for statistical
computing, to perform our analysis. We conduct our study on the metadata of the
SOLA dataset.
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THE SOLA LAND DATASET

Acquisition geometry

The SOLA survey is a three-component 2D array land acquisition conducted during
summer 2015. It has 3,600 receivers arranged into 54 hexagonal arrays and 4,000
shots. The arrays are 200 m to 600 m wide, with 63 to 110 receivers per array. In order
to record a wide range of frequencies while still providing comprehensive coverage,
the arrays are irregularly sampled: the receiver spacing varies from 5 to 10 m on the
inside of the array to 50 m on the outside. The survey has about 7 million traces, but
for this study we were provided with the data characteristics of a subset of 350,000
traces. This subset’s acquisition geometry is illustrated in Figure 1.

(a) (b)

Figure 1: (a) The SOLA acquisition geometry. (b) Zoomed in portion of the survey.
In order to record a wide range of frequencies while still providing comprehensive
coverage, the receivers are arranged in irregularly sampled hexagonal arrays. [ER]

The metadata we will be considering for this study contains two types of entries:
descriptive headers and data characteristics.

Descriptive headers

The descriptive headers cover all acquisition parameters for each seismic trace, such as
source and receiver location, shot times, offset and azimuth (Figure 2). The complete
list of headers is provided for reference in the appendix. Certain headers were left
out from this study for they were redundant or did not vary over the selected subset,
leaving us with 25 variables.
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(a) (b)

Figure 2: Examples of parameters contained in the survey’s descriptive headers.
(a) Inline and crossline offset. (b) Source and receiver elevation. [ER]

Data characteristics

The data quality varied greatly over the survey, and the acquisition recorded various
levels of surface noise. To capture this variability, a certain number of data charac-
teristics were computed for each trace. These data characteristics include variables
such as first break pick, average amplitude, and average frequency or spikiness of the
signal (Figure 3). When possible, they were computed both over the full trace and
over various time windows, constituting a total of 52 variables. The complete list of
computed data characteristics is provided in the appendix.

Using both the header information and the computed data characteristics, we
herein seek to identify trends in the noise variability.

DATA VISUALIZATION

Combining the descriptive headers and data characteristics, we have a total of n =
350, 000 observations over p = 77 different variables. We could visualize these data
by plotting two-dimensional scatter plots, each of which contains the n observations’
measurements on two of the p variables. However, there are

(
p
2

)
= p(p−1)/2 = 2, 926

such scatter plots, which makes it prohibitive to look at all of them. Moreover, most
of them would not be very informative since they each contain only a small fraction
of the total information present in the dataset.
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(a) (b)

Figure 3: Examples of the computed data characteristics. (a) Sum of amplitudes over
each trace. (b) Weighted average frequency of each trace. [ER]

Principal component analysis (PCA)

When faced with a large set of correlated variables, principal components allow us
to summarize the dataset with a smaller number of representative variables that
collectively explain most of the variability in the original set. The idea is that each
of the n observations lives in a p-dimensional space, but not all of these dimensions
are equally interesting. Principal component analysis (PCA) seeks a small number
of dimensions that are as interesting as possible, where the concept of interesting
is measured by the amount that the observations vary along each dimension. The
dimensions found by PCA are called principal components. Principal components
are a sequence of linear combinations of the p variables, mutually uncorrelated and
ordered in variance. They are the directions along which the original data is highly
variable.

In the following, we provide a brief overview on how to compute the principal
components of a dataset, based on formulations by Hastie et al. (2005). The first
principal component Z1 of a set of variables X1, X2, ..., Xp is the normalized linear
combination,

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp,

that has the largest variance. The elements φ11, ..., φp1 are called the loadings of
the first principal component. Together, they make up the principal component
loading vector, φ1 = (φ11 φ21 ... φp1)

T . As an arbitrarily large value of these loadings
would result in an arbitrarily large variance, the loadings are normalized such that∑p

j=1 φ
2
j1 = 1.
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Let’s consider a certain n × p dataset X. As we are only interested in variance,
we assume that each of the variables in X has been centered to have mean zero. The
first principal component of X is computed by finding the linear combination of the
sample variable values of the form zi1 = φ11xi1 +φ21xi2 + ...+φp1xip, that has largest
sample variance, subject to the constraint that

∑p
j=1 φ

2
j1 = 1. In other words, the

first principal component loading vector solves the following optimization problem:

max
φ11,...,φp1

 1

n

n∑
i=1

(
p∑
j=1

φj1xij

)2
 subject to

p∑
j=1

φ2
j1 = 1. (1)

The objective in Equation 1 can be re-expressed as 1
n

∑n
i=1 z

2
i1. Since 1

n

∑n
i=1 xij = 0,

the average of the z11, ..., zn1 will be zero as well. Hence the objective that we are
maximizing in Equation 1 is just the sample variance of the n values of zi1. Equation 1
can then be solved via an eigen decomposition (Golub and Van Loan, 1983).

Once the first principal component Z1 has been determined, the second principal
component is the linear combination of X1, X2, ..., Xp that has maximal variance out
of all the linear combinations that are uncorrelated with Z1. Constraining Z2 to
be uncorrelated with Z1 is equivalent to constraining the loading vector φ2 to be
orthogonal to φ1. As a consequence, to find the second principal component, we solve
a problem similar to the one expressed in Equation 1, with φ2 replacing φ1, and with
the additional constraint that φ2 is orthogonal to φ1.

Data projection

By projecting the data along the first few principal component directions, we can
build two-dimensional representations that capture most the dataset’s variability.
PCA was performed on the SOLA metadata after standardizing each variable to have
zero mean and standard deviation one. Figure 4 represents the dataset projected
along its three first principal components.

This representation allows us to visualize the nature of the first principal com-
ponents. The first principal component puts weight mostly on source and receiver
elevation, common depth point location, and average energy over various time win-
dows. The second principal component accounts for absolute offset, first break pick
and average frequency over various time windows. The variability over the seismic
traces seems to be mostly explained in terms of source and receiver elevation and ab-
solute offset as far as the descriptive headers are concerned, and average energy and
frequency content for the data characteristics. Among the various time windows on
which the summed energy and average frenquencies were computed, 2.8 to 3.2 s seems
to carry most weight. The variables that accounted for the spikiness of the data have
little to no impact on the first principal components, and only start carrying weight
from the 11th component onwards.
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(a)

(b)

Figure 4: Projection of the SOLA metadata on its first principal component di-
rections. The dots represent the projected metadata, while the arrows indicate the
loadings associated to each variable. For readability reasons, only the loadings greater
than 0.05 are labeled. The description of each label is provided in the appendix. (a)
Projection on the first and second principal components. (b) Projection on the first
and third principal components. [CR]
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Proportion of variance explained

Although there are a possible p = 77 principal components, approximately 23 account
for 90% of the total variation, while the first three ones account for 46%. Together,
the first seven principal components explain around 65% of the variance in the data.
This may not seem a large amount of variance. However, from the plots in Figure 5,
we see that while each of the first seven principal components explain a substantial
amount of variance, there is a marked decrease in the variance explained by further
principal components. This suggests that there may be little benefit to examining
more than seven principal components.

(a) (b)

Figure 5: (a) Proportion of variance explained by each principal component. (b)
Cumulative proportion of variance explained. [CR]

IDENTIFYING TRENDS IN THE DATA

Variables that are located close to each other in the PCA projection indicate potential
correlations, enabling us to identify trends in the data. Each panel of Figures 6, 7,
8 and 9 is a scatterplot for a pair of variables whose identities are given by the
corresponding row and column labels.

Amplitudes seem to decrease with receiver elevation (Figure 6). The average fre-
quency variation narrows down with receiver elevation (Figure 7). As to be expected,
the time of first break is highly correlated with the absolute offset (Figure 8). How-
ever, the decrease of energy with offset only shows on the variables computed on early
time windows. Unsurprisingly, the quality of first break pick is closely linked to the
amplitudes before and after first break, and the first break’s maximum amplitude
(Figure 9).
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Figure 6: Scatterplots of receiver elevation (REC ELEV) versus various measures of
energy over different time windows. The full description of each variable is provided
in the appendix. We notice that amplitudes seem to decrease with receiver elevation.
[CR]
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Figure 7: Scatterplots of receiver elevation (REC ELEV) versus various measures of
average frequency over different time windows. The full description of each variable is
provided in the appendix. We notice that average frequency variation narrows down
with receiver elevation. [CR]
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Figure 8: Scatterplots of absolute offset (AOFFSET) versus first break pick
(FB PICK3) and various measures of energy over different time windows. The full
description of each variable is provided in the appendix. Unsurprisingly, we notice
that first break pick is highly correlated with absolute offset. However, the decrease
of energy with offset only shows on the variables computed on early time windows.
[CR]
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Figure 9: Scatterplots of quality of first break pick (FB QUAL3) versus amplitudes
before (PRE FB) and after (FB ENER) first break, and the first break’s maximum
amplitude (FB PEAK). Unsurprisingly, all these variables are closely linked. The full
description of each variable is provided in the appendix. [CR]
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IDENTIFYING NOISY TRACES

Using the data characteristics computed on various time windows, we can identify
portions of the signal which deviate from the remainder of the signal by unacceptable
amounts, as these are likely to correspond to noise bursts.

In order to flag outliers, we use the interquartile range (IQR), which is the dif-
ference between the upper and lower quartiles of the data (IQR = Q3 − Q1), as
a measure of statistical dispersion. According to Tukey’s range test (Tukey, 1977),
outliers are observations that fall outside the range:[

Q1 − kIQR,Q3 + kIQR
]
,

where k is a positive constant. In our study, we use k = 1.5, a value commonly used
in statistics. On a normal distribution, this value flags less than 1% of the data as
outliers.

Figure 10 plots the outliers on the data characteristics both in PCA projection
and over the survey’s acquisition geometry. It appears that certain receiver locations
accounted for noisy measurements. For comparison, Figure 11 represents the same
plot, but only marks the outliers associated with spikiness of the signal.

STATISTICAL ROBUSTNESS

For statistical soundness, each operation presented in this study was performed on
ten different subsets of the data, where each subset contained 90% of the original
data sampled at random. The different subsets did not show any significant change
in the trends presented here.

DISCUSSION

Statistical computing provides useful tools for exploring new datasets and searching
for outliers and trends. Free software environments such as R ease the implementation
burden for scientists and practitioners. The operations conducted in this study reflect
some basic steps commonly used in exploratory data analysis. While the results
obtained may not seem surprising to the trained geoscientist, a deeper study may
yield more intricate trends. Therefore, it would be of interest to extend this study to
the full scope of the original 7 million traces.

Moreover, a statistical approach may help identify and quantify different types of
noise by flagging traces that deviate significantly from the remainder of the signal. By
extending this study to a larger set of traces, it would be possible to visualize whether
noise levels vary in this survey by time of the day, or day of the week. Clustering
techniques may help identifying different type of noise.
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(a)

(b)

Figure 10: Outliers identified by Tukey’s range test for k = 1.5 . (a) In PCA projec-
tion. (b) Over the survey’s acquisition geometry. Certain receiver locations accounted
for noisy measurements. [CR]

SEP–165



Huot 14 Exploratory data analysis

(a)

(b)

Figure 11: Outliers identified by Tukey’s range test for k = 1.5 for all the variables
related to spikiness of the signal. (a) In PCA projection. (b) Over the survey’s
acquisition geometry. [CR]
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APPENDIX

The complete list of descriptive headers is provided below. The headers marked with
a ∗ symbol were left out from this study for they were redundant or did not vary over
the selected subset, leaving us with 25 header variables.

SOU X Source X coordinate
SOU Y Source Y coordinate
SOU ELEV Source elevation
DEPTH∗ Source depth
UPHOLE∗ Source uphole time
SIN Source internal index number
SOU SLOC External source location number
FFID∗ Field file index number
SOURCE∗ Live source number
S LINE Swath or sail line number
REC X Receiver X coordinate
REC Y Receiver Y coordinate
REC ELEV Receiver elevation
GEO COMP∗ Geophone component (x,y,z)
CHAN Recording channel number
REC SLOC Receiver index number
SRF SLOC External receiver location number
R LINE Receiver line number
CDP X X coordinate of common depth point
CDP Y Y coordinate of common depth point
OFFSET Signed source-receiver offset
AOFFSET Absolute value of offset
OFF IL Inline offset
OFF XL Crossline offset
SR AZIM Source-receiver azimuth
SR COS Cosine of source-receiver azimuth
SR SIN Sine of source-receiver azimuth
ARRAY ID Array index number
YER SHOT∗ Year
DAY SHOT Day
TIM SHOT Time of the day
TRC TYPE∗ Trace type
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The complete list of the 52 computed data characteristics is provided below.

FB PICK3 First break pick
FB QUAL3 Quality of fine tuned first break
FB NDIFF FB PICK3 - FB NAVG
TR ENER Sum of amplitudes of trace
TR AVGF Weighted average frequency of trace
PRE FB Pre-first break energy, normalized
FB PEAK Max amplitude of first break
FB ENER Energy from first break to 0.5 s afterwards
FB SHARP First break sharpness
POST FB Energy from 0.5 to 2.0 s after first break
R PREFB1 FB ENER / PRE FB
R PREFB2 POST FB / PRE FB
SPIKT AL Spikiness of time data
SPIKF AL Spikiness of frequencies
ENER 05 Average amplitude from 0.2 to 0.8 s
ENER 10 Average amplitude from 0.8 to 1.2 s
ENER 15 Average amplitude from 1.2 to 1.8 s
ENER 20 Average amplitude from 1.8 to 2.2 s
ENER 25 Average amplitude from 2.2 to 2.8 s
ENER 30 Average amplitude from 2.8 to 3.2 s
ENER 35 Average amplitude from 3.2 to 3.8 s
ENER 40 Average amplitude from 3.8 to 4.2 s
ENER 45 Average amplitude from 4.2 to 4.8 s
ENER 50 Average amplitude from 4.8 to 5.2 s
ENER 55 Average amplitude from 5.2 to 5.8 s
AVGF 05 Average frequency from 0.2 to 0.8 s
AVGF 10 Average frequency from 0.8 to 1.2 s
AVGF 15 Average frequency from 1.2 to 1.8 s
AVGF 20 Average frequency from 1.8 to 2.2 s
AVGF 25 Average frequency from 2.2 to 2.8 s
AVGF 30 Average frequency from 2.8 to 3.2 s
AVGF 35 Average frequency from 3.2 to 3.8 s
AVGF 40 Average frequency from 3.8 to 4.2 s
AVGF 45 Average frequency from 4.2 to 4.8 s
AVGF 50 Average frequency from 4.8 to 5.2 s
AVGF 55 Average frequency from 5.2 to 5.8 s
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SPIKF05 Spikiness of frequencies from 0.2 to 0.8 s
SPIKF10 Spikiness of frequencies from 0.8 to 1.2 s
SPIKF15 Spikiness of frequencies from 1.2 to 1.8 s
SPIKF20 Spikiness of frequencies from 1.8 to 2.2 s
SPIKF25 Spikiness of frequencies from 2.2 to 2.8 s
SPIKF30 Spikiness of frequencies from 2.8 to 3.2 s
SPIKF35 Spikiness of frequencies from 3.2 to 3.8 s
SPIKF40 Spikiness of frequencies from 3.8 to 4.2 s
SPIKF45 Spikiness of frequencies from 4.2 to 4.8 s
SPIKF50 Spikiness of frequencies from 4.8 to 5.2 s
SPIKF55 Spikiness of frequencies from 5.2 to 5.8 s
R FB 1S Ratio of energy from 0.5-1.0 s after first break to 1.5-2.0 s
R FB 2S Ratio of energy from 0.5-1.0 s after first break to 2.5-3.0 s
R FB 3S Ratio of energy from 0.5-1.0 s after first break to 3.5-4.0 s
R FB 4S Ratio of energy from 0.5-1.0 s after first break to 4.5-5.0 s
R FB 5S Ratio of energy from 0.5-1.0 s after first break to 5.5-6.0 s
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