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ABSTRACT

Strong localized heterogeneities in the subsurface, such as karst caverns and sink-
holes, cause scattering of seismic waves, thereby degrading the images obtained in
conventional processing. We explore the possibility of using pattern recognition
techniques for detecting these strong heterogeneities from seismic data. Through
synthetic models, we generate data with significant scattering. We then perform
reverse time migration (RTM) and use various pre-processing techniques to en-
gineer features fit for supervised learning algorithms. Eventually, we use support
vector machines (SVM) to classify these features and retrieve the approximate
cavern locations.

INTRODUCTION

The Tengiz carbonate platform in northwestern Kazakhstan is one of the largest
producing oil fields in the world. Recently, exploration has targeted karst-like zones
with cavernous porosity along the margin of the platform. Lester et al. (2015) showed
that these karst caverns appear as localized high-amplitude events on seismic volumes
but can also resemble residual noise that may have persisted through processing
and imaging. Such localized features induce positional uncertainty in the migrated
velocity model and can represent drilling hazards. While various methodologies such
as diffraction migration or beam migration (Fomel et al., 2007; Berkovitch et al., 2009;
Lester et al., 2015) have been proposed to address the issue of imaging these strong
heterogeneities, herein we investigate the potential of techniques commonly used in
pattern recognition.

The first algorithm for pattern recognition was introduced 80 years ago (Fisher,
1936). With the advent of computers and the information age, statistical learning has
become a highly explored field in many scientific areas as well as marketing, finance,
and other business disciplines. In recent years, new and improved software pack-
ages have significantly eased the implementation burden for many statistical learning
methods, providing scientists and practitioners with complete toolkits for training,
testing, and deploying models with well-documented examples for all these tasks (Col-
lobert et al., 2002; Pedregosa et al., 2011; James et al., 2013; Jia et al., 2014). With
algorithms automatically tracking faces in photographs (Osuna et al., 1997), what
would prevent us from training machines to detect specific seismic responses in our
data?
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We first generate synthetic seismic data from a cavern model. We then perform
reverse time migration (RTM) and apply various pre-processing techniques, such as
continuous wavelet transforms (CWT) and principal component analysis (PCA), to
build appropriate input features for our pattern recognition problem. We then train
a support vector machine (SVM) classifier to detect the migrated seismic signature
associated with caverns and apply this classifier to different portions of the data to
retrieve the approximate cavern locations.

SYNTHETIC DATA GENERATION

Cavern model

The methodology used in this study is based on the one presented by Huot and Clapp
(2016). We start by generating seismic data from a synthetic cavern model.

For this purpose, we create a three-dimensional synthetic model of an underground
karst channel system in a limestone bedding as illustrated in Figure 1. Caverns of
different scales are inserted at random locations in the model and connected with
channels partially filled with water. In the following, we use four 2D slices along the
y-axis to generate data which we use to train our machine learning model, and a 2D
slice along the x-axis to generate data to test our classification performance.

Figure 1: 3D synthetic cavern model built for this study. It features a randomly
generated karst channel system in a limestone bedding. The model is color-coded
by P-wave velocity. The detailed description of this model is provided in Huot and
Clapp (2016). [NR]

Data modeling

For each of these 2D model slices, we generate synthetic seismic data using wave
propagation code based on the one developed by Alves (2015). We use a Ricker-
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type explosive source with a peak frequency of 20 Hz. The recordings for a single
shot clearly illustrate the scattering effect associated with the presence of the caverns
(Figure 2(b)). From the zero-offset common midpoint (CMP) gathers, we observe that
the caverns incoherently scatter the reflected energy (Figure 2(c)), thereby preventing
accurate identification of the cavern locations.

(a) (b)

(c) (d)

Figure 2: (a) One of the 2D model slices from which we generate data to train our
classification algorithm. (b) Single shot gather obtained from this model slice with a
source located at the surface at x = 2000 m. (c) Zero-offset common midpoint gather.
(d) RTM image generated from this model slice. We clearly distinguish the scattering
effect due to the presence of the caverns. [CR]

BUILDING FEATURES FOR MACHINE LEARNING

We now process the generated data to build features with a suitable format for ma-
chine learning algorithms.

To set up a classification problem, we need to associate each portion of the data
with a binary label indicating whether or not it corresponds to a cavern location.
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Therefore, we first perform reverse time migration (RTM) in order to map the data
to model space, allowing us to label the migrated image points using the synthetic
model slices as reference. Figure 2(d) provides an example of one of these RTM
images. The RTM image also suffers from the strong scattering due to the presence
of the caverns.

Starting with the labeled RTM images, we then apply various processing steps to
compute multiple data features:

• We perform both acoustic and elastic modeling and migration, creating two sets
of features.

• We apply a Laplacian filter on the RTM images to attenuate the migration
artifacts (Biondi, 2006).

• We apply gain power with depth to compensate for amplitude attenuation.

• We apply Gaussian smoothing and spatial frequency bandpassing to reduce high
frequency jitter.

• We apply continuous wavelet transforms (CWT). CWT are commonly used in
pattern recognition, as they have the ability to decompose complex patterns
into elementary forms. They measure the similarity between a signal and an
analyzing wavelet by comparing the input signal to shifted and compressed or
stretched versions of the wavelet. An overview of CWT is provided in Huot
and Clapp (2016). In this study, we use both Ricker and Morlet wavelets as the
mother wavelets, producing multiple sets of features. To each image point, we
associate the full panel of dyadic frequencies obtained after applying CWT, as
described by Huot and Clapp (2016).

• We run a sliding window of three different sizes (8 m×8 m, 12 m×12 m, 16 m×
16 m) over the image. We associate the full set of features captured by each
sliding window to the image point located at its center.

• We standardize all the variables to have zero mean and standard deviation one.

• For faster computation, we perform principal component analysis (PCA). When
faced with a large set of correlated variables, principal components allow us to
summarize the dataset with a smaller number of representative variables that
collectively explain most of the variability in the original set. A full overview
of PCA is provided in Huot (2016). Herein, for each feature set, we use the
minimum number of principal components that collectively explain at least
90% of the total variance.

Using different combinations of these processing steps, we build multiple sets of
features and data characteristics associated with binary labels. We obtain distinct sets
of training features and testing features using the data generated from the different
2D model slices.
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CLASSIFICATION

Support vector machines (SVM)

In the following, we set up a classification algorithm to retrieve the cavern locations
from the data features we have designed. As our problem contains highly correlated
features, we decide to use support vector machines (SVM), known to be efficient for
these type of problems (Hsu et al., 2003; Hastie et al., 2005).

SVM classifiers use large sets of labeled training data to build a decision function.
They can then be applied on other portions of data to predict the corresponding
labels. SVM classifiers are effective in high dimensional spaces, and use only a subset
of training points in the decision function, making them memory efficient. They are
versatile as many different kernel functions can be specified for the decision function,
making it possible to define non-linear boundaries. An overview of the theory behind
SVM is provided in Huot and Clapp (2016).

Implementation

In recent years, new and improved software packages have significantly eased the
implementation burden for many statistical learning methods. In this study, we use
the following Python packages:

• For data visualization and performing operations on data: pandas
(http://pandas.pydata.org/)

• For machine learning models: scikit-learn (http://scikit-learn.org/stable/)

• For plotting data: matplotlib (http://matplotlib.org/)

• For progress monitoring: tqdm (https://pypi.python.org/pypi/tqdm)

Evaluation score

To evaluate how well our SVM classifier retrieves the cavern locations, we have to
introduce an evaluation score. Common metrics used for binary classification are
precision, recall and F1-score (Hastie et al., 2005). A visual representation of these
metrics is provided in Figure 3. Precision is the fraction of retrieved instances that
are relevant, while recall is the fraction of relevant instances that are retrieved:

Precision =
True positives

True positives + False positives

Recall =
True positives

True positives + False negatives
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The F1-score is the weighted harmonic mean of precision and recall, and hence
provides a combined measure:

F = 2 · Precision · Recall

Precision + Recall

Figure 3: Visual representation of common metrics used
for binary classification: precision and recall. Source:
en.wikipedia.org/wiki/Precision and recall/media/File:Precisionrecall.svg [NR]

Classification results

We build an SVM classifier for each different feature set. We use a radial basis function
(RBF) kernel. For each classifier, we select the SVM cost parameter C that provides
best evaluation score among 7 different values : 0.001, 0.01, 0.1, 1, 10, 100, 1000. A
detailed description of these parameters is provided in Huot and Clapp (2016).

The feature sets that yield best classification results are those that have CWT
in the pre-processing steps. The sliding window also improves classification results
significantly. However, even the best classification results we obtained return many
false positives, as illustrated in Figure 4. The associated performance metrics are
provided below:

Precision Recall F1-score
Limestone bedding 0.99 0.95 0.97
Caverns 0.40 0.80 0.53
Avg / total 0.97 0.94 0.95

When examining the classification results, it appears that the classifier also re-
turns a certain number of false positives on the training data, indicating that our
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classification model suffers from high bias. This problem can potentially be improved
by adding more features. Instead of testing sets of features one-by-one to identify
which features yield best evaluation score, it may be preferable to provide the classi-
fier with the full set features that can be computed from all the pre-processing steps,
and skip the PCA.

It also appears that the test error decreases with the number of 2D model slices
used for the training data, suggesting that a larger training set will help.

(a) (b)

Figure 4: (a) 2D model slice on which we test our classification algorithm. (b)
Classification results. While we seem to retrieve the approximate cavern location,
the classifier returns many false positives. [CR]

DISCUSSION

The classification results indicate that it is possible to retrieve approximate karst cav-
ern locations from seismic recordings using pattern recognition algorithms. Migration
is an essential step for accurate labeling of caverns. However, the classification tests
returned many false positives. These results seem to indicate that the classifier would
benefit from using more input features and larger training data. Another idea would
be to change classification algorithm for an edge detection method.

The next step would be to explore whether a classifier could be trained on synthetic
data, which can be conveniently labeled, and be used to predict cavern locations
on field data. We were provided a with a three-dimensional mapping of the cavern
locations of the Lechuguilla channel system from the Carlsbad Caverns National Park.
It features a fine and intricate channel system with caverns of various scales. This
would allow us to generate data on a configuration that is closer to reality than our
simplistic synthetic model.
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