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ABSTRACT

We analyze the impact of identifying and removing coherent anthropogenic noise
on synthetic Green’s functions extracted from ambient noise recorded on a shallow
trenched, dense, linear distributed acoustic sensing (DAS) array. Low-cost, low-
impact urban seismic surveys are possible with ambient noise recorded by DAS,
which uses dynamic strain sensing to detect seismic waves incident to a buried
fiber optic cable. However, ambient noise data recorded in urban areas include
coherent, time-correlated noise from near-field infrastructure such as cars and
trains passing the array, in some cases causing artifacts in estimated Green’s
functions and yielding potentially incorrect surface wave velocities. Based on
our comparison of several methods, we propose an automated, real-time data
processing workflow to detect and reduce the impact of these events on data
from a dense array in an urban environment. We show the effect of removing such
unwanted noise on estimated Green’s functions from ambient noise data recorded
in Richmond, CA in December 2014 and Fairbanks, AK in August 2015.

INTRODUCTION

Urban seismic surveys are an essential tool for many areas of geoscience and civil
engineering, including the design of earthquake-resistant structures and the quantifi-
cation of seismic hazard in cities. However, conventional seismic surveys are all but
impossible in the urban environment because of the high impact of active sources and
the difficulty of deploying a sizable receiver array. Recent experiments have success-
fully shown the applicability of ambient noise interferometry on recordings made with
distributed acoustic sensing (DAS) as an alternative to conventional surveys that is
both low-cost and low-impact (Martin et al., 2015; Daley et al., 2013; Ajo-Franklin
et al., 2015). In a DAS survey, an interrogator unit regularly transmits a coherent
laser pulse along a fiber optic cable network and records the Rayleigh backscatter
intensity, which is converted into an approximate seismogram. The ambient noise
recorded using DAS can then be correlated to extract synthetic Green’s functions
through seismic interferometry, as has been successfully done by Martin et al. (2015)
and Ajo-Franklin et al. (2015).

One important barrier to the wide application of DAS surveys in urban areas is the
presence of coherent transportation-related noise from sources such as cars or trucks
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passing near the array. During correlation, these events correlate with themselves
to produce artifacts in Green’s functions (Martin et al., 2015). In order to improve
Green’s function estimates in these environments, there have been efforts to identify
and automatically down-weight high amplitude noise (Lindsey, 2016). Here, we build
on these methods more specifically to identify strong moving sources of noise related
to transportation. First, we propose a real-time processing workflow that develops
a catalog of times where strong transportation-related noise has been recorded. Our
method utilizes the short-term average over long-term average (STA/LTA) algorithm
from the field of earthquake detection and takes advantage of the density of the
data recordings to minimize the number of false triggers. Second, we demonstrate
a method for down-weighting these events during interferometry that improves the
strength and coherency of Green’s functions estimates on the test data. The methods
discussed in this paper have been developed for use with real-time traffic monitoring
and the removal of near-array transportation-related noise in the DAS ambient noise
survey on Stanford campus that began in September 2016.

CHARACTERIZING NOISE SOURCES

Several sources of noise contribute to any ambient noise recording. Generally, incoher-
ent noise from microseism dominates at low frequencies and incoherent anthropogenic
noise from freeways and other infrastructure dominates at high frequencies. Addi-
tionally, recordings often include signals from earthquakes and coherent noise from
infrastructure near the array, such as passing cars.

Seismic interferometry posits that the correlation of a diffuse wavefield in a medium
will return the impulse response of that medium (Wapenaar et al., 2010). Applied to
the Earth, this means that the cross-correlation of ambient noise recorded on different
channels in an array with that recorded on a single channel produces an approximate
Green’s function, which represents the response of the Earth to a receiver acting as
a virtual source. Greens functions constructed from ambient noise can be used to
monitor changing properties in the subsurface or for tomographic investigations. The
presence of coherent, time-correlated noise in an ambient noise recording violates the
diffuse wavefield assumption and results in artifacts in the estimated source response
that resemble multiple virtual sources.

Ambient noise recorded using DAS in Richmond, CA in 2014 and in Fairbanks,
AK in 2015 contained visually identifiable coherent noise from passing traffic (Ajo-
Franklin et al., 2015; Martin et al., 2016). Incoherent noise from urban infrastructure
far from the recording array is the primary noise source used for high frequency am-
bient noise interferometry because it is a diffuse component of the ambient spectrum
(e.g. Nakata et al. (2011)), but coherent noise from traffic sources near the recording
array is the primary cause of artifacts. This is because traffic passing the array is in
two ways time-correlated. First, surface waves generated by a passing vehicle have
visually identifiable group moveout across the array at traffic speed, giving the wave
package associated with any given car a temporally-correlated velocity relationship.
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Second, surface waves generated by the vehicle do not originate at the source channel
but rather at road bumps and other features that lie along the array, causing addi-
tional virtual sources within the response estimate. An example recording of a vehicle
passing the Fairbanks array is shown in Figure 1.
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Figure 1: Example recording showing a car driving past a linear segment of the
trenched DAS array in Fairbanks, AK. Channel spacing is 1 m. [CR]

The geometry of relevant roads and their distance from the array determine the
properties of the coherent transportation-related noise recorded. In Fairbanks, the
closest cars travelled on a road very near and parallel to the array, so that their traffic
speed was easily identifiable as the group move out of the ground roll at approximately
25 m/s. In Richmond, the closest cars travelled on a road slightly farther from and
oblique to the array, so that the traffic speed was difficult to discern but the surface
waves were still highly coherent. The following methods were designed on both data
sets, and we present suggestions for modifying proposed processing workflow to best
suit recordings with different geometries and noise intensities.
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COMPARISON OF METHODS

In the earthquake detection literature, three principal methods for event detection
exist: (1) autocorrelation, (2) waveform comparison methods, and (3) short-term
average over long-term average (STA/LTA) (Withers et al., 1998).

One prominent feature of data recorded with DAS is optical noise spikes at random
intervals over several channels due to vibration of the laser interrogator unit. The au-
tocorrelation method for event detection entails partitioning each channel’s record into
short-time windows and cross-correlating all possible combinations of these windows.
For data recorded with DAS, optical noise correlates with itself, creating artificially
high correlation coefficients and making transportation-related events difficult to dis-
tinguish. Even more importantly, this method can only operate on a single channel,
so performing this method across an array of several thousand channels proves to be
too slow to run in real time with ordinary computational resources.

While waveform comparison methods have been shown to be the quickest and
most effective method of identifying earthquakes (Yoon et al., 2015), waveform com-
parison tests are impossible to implement for data recorded with DAS because there
are no catalogs of transportation-related event recordings to build a database. Be-
cause of DAS’s low signal-to-noise ratio compared to conventional seismic recording
instruments and because the traces themselves are only derived indirectly from strain
rate approximations, ambient noise recorded with DAS cannot be compared with
conventional data.

The STA/LTA method effectively detects impulsive events with high signal-to-
noise ratio by comparing the squared amplitudes of data summed over two moving
windows of differing lengths. Equation 1 takes two parameters—STA window length
(`sta) and LTA window length (`lta)—which need to be set manually based on the
signal-to-noise ratio and other parameters of the data. The long-term window finds
the average amplitude of the data for some number of samples `lta before sample
i, which is representative of the background, and the short-term window finds the
average amplitude of the data for a shorter number of samples `sta before sample
i, which is representative of the signal at i. When amplitude increases significantly
at some iteration of sample i, the STA/LTA ratio increases. Thus, in conventional
earthquake detection, STA/LTA is a trigger-based algorithm, meaning that the user
pre-sets a threshold STA/LTA value and when the STA/LTA ratio calculated on
a seismogram exceeds this value, an event is cataloged. The STA/LTA method is
advantageous for real-time event detection simultaneously across channels on a large
recording array because it can be easily vectorized across channels and it is often
implemented using a recursive algorithm, making it the cheapest detection method
by far.
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STA

LTA
(i) =

i∑
j=i−`sta

|u(j)|2

i∑
j=i−`lta

|u(j)|2
(1)

PROCESSING WORKFLOW

STA/LTA

We first import a single 60 s file and apply basic pre-processing steps, including a
de-spiking tool to reduce the number of optical noise spikes. Because our data were
recorded at fs = 1 kHz, we lowpass filter the data and downsample by a factor of 10,
which improves computational speed without reducing the quality of the STA/LTA
image. We then calculate STA/LTA on all channels of the file for the complete
record length using a recursive algorithm (Equation 2) that approximates the actual
STA/LTA ratio very closely.

STA(i) =
|u(j)|2

`sta
+ (1− 1

`sta
)× STA(i− 1) (2)

LTA(i) =
|u(j)|2

`lta
+ (1− 1

`lta
)× LTA(i− 1)

We found that `sta = 0.5 s and `lta = 10 s were effective parameter choices for
data recorded in both Richmond and Fairbanks. Smaller `sta/`lta reduces the event-to-
background contrast, whereas higher `sta/`lta reduces the sharpness of event arrivals
(see Figure 2).

Window check

After calculating STA/LTA on the file and storing these values, we apply two threshold-
based tests to determine whether events are present. First, we zero all STA/LTA
values below the STA/LTA threshold (τsta/lta) in order to improve the STA/LTA
signal-to-noise ratio (i.e., the contrast of events from background noise). As with
`sta and `lta, τsta/lta must be chosen by trial and error on a short data sample (5-10
minutes). Specifically, a threshold value that is less than the average STA/LTA value
of all visually identifiable transportation-related events but greater than the average
STA/LTA value of background intervals between events is preferred.

Second, we calculate the square of sums for each time sample on a running time
window across all channels. For each file, this yields a single vector containing the
short-term energy of the STA/LTA ratio averaged over the all channels at any given
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Figure 2: Examples of different `sta and `lta parameter choices. Data must be padded
with `lta− 1 samples to prevent the spike at the beginning, which occurs because the
LTA window is only partially filled. From the top, (a) the original trace (raw data),
(b) `sta = 0.5 s, `lta = 2 s, (c) `sta = 0.5 s, `lta = 10 s, (d) `sta = 0.1 s, `lta = 10 s.
[CR]
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time, which we denote εsta/lta. Values of εsta/lta that exceed an energy threshold τε are
marked as events, producing a binary event catalog of record length with 1 at time
samples where a transportation-related event has been detected and 0 otherwise.
The energy threshold τε must also be set by experimentation on a small dataset.
Because this is the most sensitive parameter for distinguishing true events from both
background and optical noise, τε performs better when designed on as large a sample
dataset as possible. In particular, τε may need to change with the balance of traffic
and background noise intensities during night time and rush hour in order to perform
most effectively. For the Fairbanks dataset, we found τsta/lta = 3 and τε = 500 to be
effective threshold values.

On the Richmond dataset, where the geometry of the array relative to traffic
results in no discernible group moveout of vehicle-induced surface waves, the short-
term energy sum can be applied with a horizontal window that examines all channels
at the same time sample, because the phase moveout of events at apparent surface
wave velocities is effectively instantaneous relative to the sample rate fs = 1− 2 kHz
(see Figure 3).
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Figure 3: (a) The STA/LTA image of an example 60 s file from the Richmond dataset.
(b) Shading shows the region included in the final catalog, superimposed over (a).
[CR]

The Fairbanks dataset, however, showcases one of the potential challenges of this
detection method because the geometry of the array relative to traffic results in a
group moveout at low velocity (approx. 25 m/s). This means that a horizontal
window will only ever include a portion of the event, and the sensitivity of εsta/lta
will be reduced because channels of background noise will be averaged with any real
event. Additionally, a down-weighting filter designed on the resulting event catalog
will remove a significant quantity of usable data. To address this challenge, we correct
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the STA/LTA matrix for linear moveout (LMO) at the approximate traffic speed
before calculating εsta/lta so that events are parallel to the moving time window and
have a stronger signature. This is similar to slant stacking.

Because traffic can be traveling in two directions on any given road, εsta/lta must be
calculated twice with LMO in either direction. We distinguish the favorable direction
(which catalog to use, i.e., the direction in which most cars are traveling in any file)
using the properties of the energy distribution with time. For a file containing a
single car (a unimodal energy distribution with time), the kurtosis of εsta/lta will be
less for the favorable direction because the window will sum across a flat event as
compared to an event with significant move out. For files containing multiple cars
(a multimodal energy distribution with time), the skewness of εsta/lta will be greater
for the favorable direction for a similar reason. When an LMO correction has been
applied during event detection, a direction variable must be passed with the event
catalog in order to design a down-weighting filter with the correct shape. If a file
records cars traveling in multiple directions at the same time (e.g., Figure 5), this
method selects the direction with the strongest events, and either will catalog the
entire interval where events in the opposite direction occur or will not successfully
identify these events, depending on their relative strength.

Down-weighting

When calculating cross-correlations on the data, we use a simple down-weighting
scheme to remove events using the catalogs which were produced by running the tools
outlined above in real time as the data were recorded. First, a data file is imported
along with its event catalog and basic processing is done, including de-spiking (Martin
et al., 2015), temporal normalization, and spectral whitening (Bensen et al., 2007).
Second, a filter is applied to the data which is zero at every time sample corresponding
to a 1 in the event catalog and one at every time sample corresponding to a 0 in the
event catalog, except at the edge of events, where it follows a Gaussian taper. This
taper prevents sharp transitions in the down-weighted file and should ensure that
imperfect detection parameters which only identify portions of events are still effective
at reducing their contribution to the final correlations. When a LMO correction has
been applied during event detection, the direction variable associated with the event
catalog is used to extrapolate the filter from one channel to the next. Figure 6 shows
an example of a down-weighting filter applied to a file from the Fairbanks dataset.

RESULTS ON THE TEST DATA

We calculated cross-correlations on 40 minutes of ambient noise from the Fairbanks
dataset following the methods of Martin et al. (2015) and Bensen et al. (2007), with
the goal of showing the effectiveness of our proposed processing workflow. Lindsey
(2016) showed that manual identification and removal of transportation related noise
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Figure 4: (a) The STA/LTA image of an example 60 s file from the Fairbanks dataset.
(b) The εsta/lta calculated with LMO correction in the correct direction. (c) The
εsta/lta calculated with LMO correction in the incorrect direction. (d) Shading shows
the region included in the final catalog superimposed over (a). [CR]
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Figure 5: (a) The STA/LTA image of an example 60 s file from the Fairbanks dataset
where multiple events cross. (b) Shading shows the region included in the final catalog
superimposed over (a). [CR]

improved extracted Greens functions significantly. Using a smaller test dataset and
less refined pre-processing tools, we were able to show a decrease in the strength of
artifacts in cross-correlation images and a small increase in the degree of convergence
of the Rayleigh wave fundamental mode associated with the virtual source channel
(see Figure 7). More refined workflows, such as in Lindsey (2016), have the potential
to improve the image further.

CONCLUSIONS

Overall, the use of an automated processing workflow for identifying and removing
coherent anthropogenic noise from ambient noise data recorded by a dense DAS array
improved the quality of extracted Greens functions. Our proposed method calculates
the STA/LTA ratio on each file, uses a running window check to pick out events,
and down-weightes these events in the final correlations. The method is adaptable
to different recording geometries, and we present one example of a variation of the
method that corrects for apparent group moveout at road speeds.

This processing workflow is most effective when applied to recordings with low
to moderate levels of traffic-related noise, because it is unable to recover significant
high-quality ambient noise data from recordings capturing more than 3-4 vehicles or
where vehicles traveling in two directions frequently cross the array at the same time.
The method is able to recover the most usable data from recordings capturing 1-3
vehicles traveling in the same direction or where vehicles traveling in two directions do
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Figure 6: Effect of downweighting on an example 60 s file from Fairbanks. (a) The
raw data. (b) The binary catalog determined as above. (c) The downweighting filter
designed using the event catalog derived from (b) and the direction of the LMO
correction. (d) The data after downweighting. [CR]
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Figure 7: Cross-correlations on 40 mins of ambient noise data recorded by the trenched
DAS array in Fairbanks, AK. The left image (a) was created using the complete
recordings, and the right image (b) was created using recordings where transportation-
related events had been down-weighted. [CR]

not cross the array at the same time. This extends the amount of daytime recordings
that we are able to use in interferometry without generating strong artifacts. By
increasing the fraction of recorded data that can be used in interferometry, we are
increasing the potential of this method for time-lapse monitoring of the near-surface
because reliable Greens functions can be extracted more frequently, providing a higher
temporal resolution in monitoring studies.

Future development of this method has the potential to include a more sophisti-
cated filter design process which is able to down-weight cars that cross paths along
the array, as well as the consideration of metrics which determine whether an entire
file needs to be thrown out without following the entire processing workflow. This
method will be applied in a survey currently taking place on Stanford campus in order
to test the potential of ambient noise recorded with DAS to monitor traffic and to
develop an event catalog that can be used in future processing work.
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