
Reproducibility through containers

Robert G. Clapp

ABSTRACT

In order to achieve truly reproducible results the underlying software architec-
ture must be captured. Docker containers, a lightweight alternative to a virtual
machine, can be used to snapshot all software dependencies and allow anyone
to reproduce an author’s results with minimal effort. We demonstrate the effec-
tiveness of Docker containers in several contexts including reproducible research,
computer labs, and writing LaTeX documents.

INTRODUCTION

Reproducible research is one of the fundamental building blocks of scientific advance-
ment. Claerbout (1990) and Schwab et al. (1996) designed a framework for authors to
follow to make their work reproducible. Their basic concept was to introduce generic
targets of build (build all results), view (view the results), burn (remove the results),
clean (remove all intermediate files) that each author would define for each paper.
A limitation of their approach is that when their underlying software dependencies
changed, reproducibility (or even the ability to compile) is not guaranteed. Fomel and
Claerbout (2009) went a step further incorporating papers into the software building
process. As a result, in theory, papers stay reproducible because any bugs introduced
into the software are caught and fixed in the build process. This approach, in addi-
tion to producing an ever larger, and more complex building/debugging requirement,
still makes assumptions that all possible underlying software requirements have been
tested/debugged.

The difference in development and production environments is a well known prob-
lem in the broader software development field. Virtualization, which creates a virtual
machine running within a system, is one approach. Virtualization has drawbacks such
as slow provisioning, performance degradation, and a large memory footprint when
running multiple virtual machines on a single server. A newer approach is containers
(Wikipedia, 2016). The current leading container approach are ‘Docker containers’.
In the context of reproducible research, a Docker container will include: the rules
to build a paper, the software needed to build the paper, the underlying operating
system which the user built the paper on, and how that underlying operating system
was constructed.

In this paper we demonstrate how to use Docker containers to build a reproducible
environment. We demonstrate their utility by using them for report articles, labs,

SEP–165

Clapp 2 Containers

and even building documents.

INTRODUCTION TO DOCKER CONTAINERS

At a very basic level a container can be thought of as a virtual machine. You have
an additional operating system that is taking a part of a host’s resources. In general,
the operating system of the virtual machine exists in the computer’s memory instead
of on disk. The advantage of the virtual machine concept is that we can construct
the perfect environment for my application to run in. In terms of reproducible re-
search, once we’ve tested that the code works in a given virtual machine, that working
state is preserved forever. We can distribute the virtual machine image to anyone
and it will simply work without much, or any, effort on their part. In addition, we
can run multiple virtual machine images on a single host, each running completely
independently.

The complete independence of each virtual machine is also one of its major draw-
backs. Imagine using virtual machines to do a parallel task, because each virtual
machine is completely independent each will have its own complete copy of the oper-
ating system. Containers work a little differently. We normally think of a filesystem
as consisting of a series of directories and files. The directories and files may sit on
different disks or servers but only a single version of a given directory exists for a
given machine. As we make a Docker image, we are building up the filesytem in a
series of layers. Each command in the Docker build process takes a difference between
the state of the filesytem before and after a build command. Each layer of the Docker
image is read-only. By default any changes we make to the Docker filesytem while
running a given Docker image is making changes to a temporary additional filesys-
tem layer. When we exit, all of these changes will be lost (we will discuss read/write
filesystem layers later). When running multiple Docker virtual machines the read-
only layers will be shared between the Docker instances resulting in a much smaller
memory footprint.

In addition Dockers run on the host operating system, allowing it to share a lot
of the host resources. As a result while a virtual machine can take minutes to start
a Docker often starts in less than a second.

Building a Docker image

A Docker image is built from a Dockerfile. A Dockerfile consists of a series of
commands to build the Docker image. As an example we are going to step through
a Dockerfile that builds SEPlib on a Centos-7 machine.

From centos:7

MAINTAINER Bob Clapp <bob@sep.stanford.edu>

SEP–165

Clapp 3 Containers

The beginning of my Dockerfile indicates that we want to start with another Docker
image, in this case, CentOS version 7 (the colon is how you indicate a version number
to Docker). SEPlib uses SU’s library for reading SEG-Y headers so before we build
SEPlib we are going to build SU. The CentOS image is quite small, with the minimum
number of packages. In order to build SU we need to install sum X11 libraries, make,
gcc, and wget using yum. The RUN keyword indicates system commands that need to
be run to build the image.

RUN yum -y install make libX11-devel libXt-devel gcc wget; yum -y clean all

After we’ve installed these packages we need to create a directory for SU and then
download and compile it. We need to do a little bit of work because SU wants to
have this section be interactive.

RUN mkdir /opt/SU && cd /opt/SU ; \

wget ftp://ftp.cwp.mines.edu/pub/cwpcodes/cwp_su_all_44R1.tgz &&\

cd /opt/SU ; tar xf cwp_su_all_44R1.tgz;cd /opt/SU/src &&\

cd /opt/SU/src ;touch cwp_su_version LICENSE_44_ACCEPTED MAILHOME_44 &&\

cd /opt/SU/src; echo "echo boo" >chkroot.sh &&\

cd /opt/SU/src; chmod 777 chkroot.sh &&\

cd /opt/SU/src; CWPROOT=/opt/SU make install xtinstall &&\

rm -rf /opt/SU/cwp_su_all_44R1.tgz /opt/SU/bin

Docker compares the filesystem before and after each command. By combining all
of the installation steps and cleanup on a single line we reduce the overall size of
my Docker image. Once we have the parts of the SU that we need to install some
additional software packages the SEPlib uses that SU does not.

RUN yum -y install make automake autoconf libtool csh git \

libXt-devel libX11-devel libXaw-devel gcc gcc-gfortran flex &&

yum -y clean all

We need to download, compile, and install SEPlib.

RUN mkdir /opt/SEP &&\

git clone http://zapad.Stanford.EDU/bob/SEPlib.git /opt/SEP/src && \

cd /opt/SEP/src; autoreconf -vif &&\

cd /opt/SEP/src; ./configure --prefix=/opt/SEP --with-su=/opt/SU && \

cd /opt/SEP/src; make install &&\

cd /opt/SEP/src; make clean

Finally, we are going to add the environmental variables SEPlib needs to the root
user’s environment.

SEP–165

Clapp 4 Containers

RUN echo export PATH=$PATH:/opt/SEP/bin >> ~/.bash_profile &&\

echo export SEP=/opt/SEP >> ~/.bash_profile &&\

echo export SEPINC=/opt/SEP/include >> ~/.bash_profile &&\

echo export PYTHONPATH=/opt/SEP >> ~/.bash_profile

Once we’ve written my Dockerfile we can build my Docker image using

docker build -t rgc007/seplib:8-centos .

where -t rgc007/seplib:8-centos indicates that the tag -t for this image is seplib
version 8-centos for the Docker account rgc007. The . indicates the directory where
the Dockerfile and any additional files we might add to my image exist. After the
image is built we can run:

docker run -it rgc007/seplib:8-centos /bin/bash

The run command will check to see if the image exists locally. If not, it will it
will attempt to download the layers needed for the Docker image from from the
Docker account rgc007. Any layers that don’t exist locally will then be downloaded.
Finally it will give me a bash shell within the container containing a full version
of SEPlib. we can push this image to Docker by using the command docker push

rgc007/seplib:8-centos. Once Docker is installed the reader can reproduce the
SEPlib build by typing make buildSEPRepo or enter the Docker image by typing
make enterSEP.

USING DOCKERS

There are many uses for containers. Below we discuss four examples of using Dockers
in a research university environment. The Dockerfile described above sets up an image
with a basic SEPlib environment. My reproducible research Docker is going to begin
by inheriting my SEPlib image.

From rgc007/seplib:8-centos

MAINTAINER Bob Clapp <bob@sep.stanford.edu>

We could follow the same procedure described above to build and enter my Docker
but we wouldn’t be able display any X11 graphics. There are several different options
to get graphics working. The one we are going to choose is to add a local ssh server
to my Docker. Using a ssh server approach has the advantage of working on Linux,
MacOSX, and with the right ports and an X11 client, Windows. First we need to
install ssh, passwd, and xauth.

RUN yum -y install openssh-server passwd xauth; yum clean all

SEP–165

Clapp 5 Containers

Next we are going to add to the Docker a script that creates a non-root user, sets
its password, and copy roots environment. In addition it is going to set the SEPlib
datapath to
tmp.

ADD start.sh

where start.sh contains

#!/bin/bash

__create_user() {

Create a user to SSH into as.

useradd user

SSH_USERPASS=newpass

echo -e "$SSH_USERPASS\n$SSH_USERPASS" | (passwd --stdin user)

echo ssh user password: $SSH_USERPASS

echo datapath=/tmp/ >~user/.datapath

cp ~root/.bash_profile ~user/.bash_profile

}

Call all functions

__create_user

To run the ssh daemon we need to create an additional directory and generate an ssh
key.

RUN mkdir /var/run/sshd

RUN ssh-keygen -t rsa -f /etc/ssh/ssh_host_rsa_key -N ’’

We are then going to run the start.sh script.

RUN chmod 755 /start.sh

RUN ./start.sh

We are then going to add to my new Docker a local folder derivative containing a
Makefile and a simple code that applies a first derivate to a 2-D field.

ADD derivative /home/user

RUN chown -R user /home/user

Finally we need to indicate that to enter this image that to enter it one should
use ssh.

SEP–165

Clapp 6 Containers

ENTRYPOINT ["/usr/sbin/sshd", "-D"]

Once we’ve built this image (e.g. docker build -t rgc007/testReport), We can
start the image using

docker run -d -p 22 -t rgc007/testReport

in this case we are running the Docker in detached mode and mapping port 22 of the
Docker to an available port on my local machine. We can get what port my Docker
image mapped port 22 to using docker ps. Finally, we can login to my Docker image
using ssh -Y user@localhost -p XXXX where XXXX is the port number I found
from the docker ps command1 We use the password newpass to login and We are
now in a complete linux environment where we can use make build, burn, clean,

view. The reader can build the reproducibility Docker by typing make buildSEPRepo.
You will need to enter the password newpass at the prompt.

Another use, in an academic research context, is to use a Docker to build LaTex
environment. The Docker image consists of a series of read-only file system layers. As
a result even though we can modify a file within the Docker filesystem those changes
will be lost once the Docker image is stopped. For the reproducible research example
above the read-only nature of the file system is sufficient. When writing a paper
we need to have some persistency in our filesystem. The solution to what Docker
refers to as Docker data volume. The basic concept is to map a directory from
our host system into a directory inside Docker images. Any changes made in the
directory of the Docker image is seen on the host and vice versa. To create a Docker
volume we simply add an option to the docker run command line option of the form
--volume=/local/path:/docker/path where local/path refers to a directory on
the host machine and /docker/path refers to the directory in Docker image. The
reader can build the SEP LaTeX environment by typing make buildSEPTeX and enter
the image by typing make enterSEPTeX.

SEP has a series of four classes that it requires every student to take. One of the
challenges are making sure that peculiarities of a given SEPlib release, compiler, user
environment, etc. do not distract from the purpose of the lab. Dockers solve this
problem. Once a Docker image is built and works once it will work without needed
additional changes. This also allows us to provide our labs to the world without
the challenges of completely setting up their environment. The lab Docker combines
elements of the LaTeX and reproducible research Docker. The Docker can be built
using make buildSEPlLab and entered using make enterSEPLab, again using the
newpass password.

Another interesting use for a Docker is to distribute single software executables.
The entrypoint of a Docker can be running a unix command. When used in con-
junction with a Docker data volume, theoretically a full processing system could be

1It is useful to add -Y -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no to avoid
having to edit your known host file.

SEP–165

Clapp 7 Containers

written using Docker containers. A CMD is added the Dockerfile specifying what
program should be run and any potential arguments. As an example typing make

showModel will first build a 3-D synthetic model and then display it using SEPlib’s
3-D viewer.

CONCLUSIONS

Dockers represent a more complete step along the path of reproducible research.
They can be used to capture not only the user’s code but the user’s full environment.
Dockers also provide effective solutions for code distribution, computational labs, and
building LaTeX documents.

REFERENCES

Claerbout, J. F., 1990, Active documents and reproducible results: SEP-Report, 67,
139–144.

Fomel, S. and J. F. Claerbout, 2009, Reproducible research: Computing in Science
& Engineering, 11, 0005–7.

Schwab, M., M. Karrenbach, and J. Claerbout, 1996, Making scientific computations
reproducible: SEP-Report, 92, 327–342.

Wikipedia, 2016, Operating-system-level virtualization — Wikipedia, the free ency-
clopedia. ([Online; accessed 23-September-2016]).

SEP–165

