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ABSTRACT

Nonlinear inverse problems are challenging because gradient-based inverse algo-
rithms may converge toward local minima instead of the desired global mini-
mum. Different methods can be used to solve nonlinear inverse problems based
on a linearized model extension; these methods differ in their global-convergence
characteristics and in their convergence rate. We present and analyze, both an-
alytically and numerically, three types of such methods. All three methods show
attractive global convergence properties. However, our analysis is both incom-
plete and based on a simple 1D wave-propagation problem where the medium is
characterized by a single slowness value. We discuss the convergence rate of the
three types of solution we proposed, but, at the current stage of our research, we
cannot reach any definitive conclusions on their convergence rate.

INTRODUCTION

Full waveform inversion (FWI) has a well-known convergence problem when the start-
ing velocity model is far from the correct one and low frequency are not present in
the data, or they are too noisy. One of the most promising direction of research
for overcoming this problem is based on an extension of the velocity model. The
first proposed solutions were based on extension of the reflectivity model (e.g. mi-
grated image); we will refer to all of these methods, somewhat inappropriately, as
wave-equation migration velocity analysis (WEMVA) methods (Symes and Caraz-
zone, 1991; Biondi and Sava, 1999; Sava and Biondi, 2004; Shen and Symes, 2008;
Zhang and Biondi, 2013). More recently, Symes (2008) and Biondi and Almomin
(2014) have proposed extensions of the whole velocity model; that is, of long wave-
length as well as short wavelength. These methods have been successful to converge
to good models when applied to field data; however, their convergence might be too
slow for being directly applicable to large scale problems (Almomin and Biondi, 2014).
With another rough, but convenient, generalization we will refer two these methods
as tomographic waveform inversion (TFWI) methods.

The main goals of our project are: 1) to develop faster-converging algorithms to
apply to the extended FWI methods (e.g. TFWI), and 2) to explore the applicability
of the idea of a linearized extension to the solution of other important nonlinear
inverse problems in geophysics. In the first section of this report we formalize the
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idea of applying a linearized model extension to a generic non-quadratic optimization
problem.

The second section presents the modeling equation of a simple 1D waveform inver-
sion problem. We assume the data to be a single trace recorded from a transmission
experiment between one source and one receiver in an homogeneous medium, with
the slowness of the medium being the only parameter to estimate. We also introduce
a useful linear extension of the nonlinear modeling operator that will be used to test
inverse methods.

In the last sections of this report we present and analyze three ways of solving
the nonlinear inverse problem by using a linearized model extension. The first way
is based on the optimization of a two-term objective function, and it is related to
the TFWI methods proposed by Symes (2008) and Biondi and Almomin (2014); The
first term measures data fitting whereas the second one is a regularization (model
focusing) term.

The second approach is based on alternating between the optimization of two
objective functions. It is conceptually related to WEMVA methods as presented
by Biondi and Sava (1999); Sava and Biondi (2004); Zhang and Biondi (2013) (e.g.
migration and velocity model updating), where the velocity updating is driven by the
matching of the current image to a better focused image.

The third proposed methods minimizes an objective function with a single term.
This single term depends on the slowness model through two modeling operators:
the original nonlinear operator and the extended linear operator. Our analysis shows
that this one-term objective function has some characteristics of both the FWI and
the WEMVA objective functions; we will refer to it as the FWI-WEMVA objective
function. A version of this objective function was first presented by Symes (2008). In
that paper this objective function was used as the basis for the formalization of the
velocity analysis problem as a constrained optimization problem, rather than to be
directly minimized.

SOLVING NON-QUADRATIC OPTIMIZATION
PROBLEMS BY LINEARIZED MODEL EXTENSION

As mentioned above, one of our goals is to explore the applicability of the idea of
a linearized extension to the solution of other important nonlinear inverse problems
in seismology. Therefore, we first formalize the inversion problem in general terms,
and then we study several inversion approaches by analyzing their application to a
specific 1D waveform inversion problem.

We want to estimate the vector of model parameters, m, from the recorded data
vector, dr, recorded as the output of an operator L that is non-linear with respect to
the model parameters; that is,

dr = L (m) , (1)



Biondi et al. 3 Nonlinear inversion by model extension

where m is the “true” value of the parameter vector, and it is the ideal solution of
the estimation problem. We can set up the estimation as the least-squares problem
of minimizing

J (m) =
1

2
‖L (m)− dr‖2

2 . (2)

Because of the non-linear dependency between the modeled data, d = L (m) and the
parameter vector m, the objective function in equation 2 is not quadratic, and in
general, is not even convex, and presents many local minima. Therefore, when we
apply gradient-based methods to solve the optimization problem in 2 we are likely to
converge towards a local minimum, instead of the desired global one (m).

We are interested in improving the convergence towards the global minimum by
solving a different optimization problem that shares the global minimum with the one
expressed in 2, but does not have local minima, or at least, can be “safely driven”
to converge to the global minimum starting from an arbitrary starting solution m0.
We start by extending the non-linear operator by adding to the modeled data (d) the
output, Ld, of an appropriately defined linear operator, L̃, applied to an additional
parameter vector Lm. The“total” modeled data vector is thus expressed as,

Td = L̃ (m, Lm) = L (m) + L̃ (m) Lm = d + Ld, (3)

where L̃ is the “extended” modeling operator that is function of both the original
parameter vector, m, and the extended model parameter vector, Lm. Notice that the
linear operator L̃ is itself a non-linear function of the parameter vector m.

The optimization problem in 2 can be modified into the following

JE (m, Lm) =
1

2

∥∥∥L̃ (m, Lm)− dr

∥∥∥2

2
, (4)

that obviously has a global minimum for (m = m, Lm = 0). In a more compact
notation, if we combine the two model vectors into one, we can write

JE (Tm) =
1

2

∥∥∥L̃ (Tm)− dr

∥∥∥2

2
, (5)

where Tm = (m, Lm) and Tm = (m = m, Lm = 0).

The extension operator L̃ plays an important role in the method, and it should be
defined according to the specific non-linear behavior of L (m) that prevents conver-
gence to the global minimum of J in the practical problems that we want to address.
Ideally, dL̃

dTm
is close to be a unitary operator, or at least the following approximation

is valid:

dL̃
dTm

(m)
dL̃
dTm

′

(m) [L (m)− dr] =

dL̃
dTm

(m)
dL̃
dTm

′

(m) [L (m)− L (m)] ≈ [L (m)− L (m)] ∀m and m. (6)
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In practice, there is not a single linear extension that fulfills the requirement expressed
in 6 for all possible events present in typical reflection-seismic data, and for any
possible error in starting velocity model. For example, Biondi and Almomin (2014)
showed that a time-lag extension of the slowness model is capable of modeling the
kinematics of the data residuals caused by long-wavelength errors in the velocity
model. However, the same linear extension is not as effective when the nonlinear
wave phenomena that hamper global convergence are related to multiple-scattering
by discrete interfaces; e.g. multiples.

Focusing operator

The optimization problem in 4 (and 5) is under-constrained. For any choice of the
extended model vector m, it is likely that there is a corresponding value of Lm that
minimizes JE. Furthermore, the extension of the modeling operator is only an end
to achieve the goal of robustly converging toward m. At convergence, or even in a
neighborhood of the global minimum, we would would like to have the contributions
of the linearized extension to be negligible. To achieve this goal, we introduce a
“focusing” F operator.

An essential property of the focusing operator is that its output is more focused
than its input. If we define an optimally focused model vector Lm when all the energy
is focused in at one particular model coordinate xf , we can define a measure of the
defocusing as

D (Lm) = ‖Xf Lm‖2
2 , (7)

where Xf is a diagonal matrix with the absolute value of the distance from xf ; that
is, Xf = diag(|xf − xf |). By construction D (Lm) = 0.

The focusing operator must have at least the property that{
F (Lm) = Lm if Lm = Lm

D (F (Lm)) < D (Lm) if Lm 6= Lm.
(8)

In the following sections we discuss how the focusing operator can be introduced
in a regularization term to be added the data-fitting term of the objective function,
or how we can directly introduce it into the data-fitting term of the objective func-
tion. Depending on the way that the focusing operator is introduced in the objective
function(s), and on the choice of L̃, other properties, in addition to 8, of F are re-
quired for defining an estimation method that robustly converges towards the global
minimum.

SIMPLE 1D WAVEFORM INVERSION PROBLEM

In the following sections we present several approaches to solve the estimation prob-
lem. We analyze the behavior of these methods using a simple 1D “wavelet-shift”
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modeling operator. In a homogeneous medium with slowness s̄, the wavefield gen-
erated by one source and recorded by one receiver at a distance l is equal, when we
ignore an amplitude scaling, to the source wavelet time-shifted by ∆t = ls. The
recorded-data vector dr ∈ <Nt is expressed as follows:

dr = L (s̄) = S (ls̄) g, (9)

where g ∈ <Ng is the source vector, and S (∆t) ∈ <NtxNg is a time-shift operator that
shifts an input vector by the time interval ∆t.

We define the linearized extension of modeling as the time convolution of the
shifted wavelet with a filter c; that is as,

Ld (t) = g (t− ls) ∗τ c (τ) , (10)

where with the symbol ∗τ we denote convolution with the filter c (τ) along the time-
lag axis τ . For matter of convenience, we fix the value of c at the origin to be equal
to zero; that is, c (τ = 0) = 0.

The data vector, Ld, produced by the linearized extension can be expressed by
the following matrix-vector product

Ld = L̃ (s) c, (11)

where L̃ (s) ∈ <NtxNτ is a matrix appropriately constructed with the elements of the
shifted source vector S (ls̄) g, and c is a vector of length Nτ representing the dis-
cretization of convolutional filter c. The total modeled data Td can thus be expressed
as follows:

Td = L̃ (s, c) = L (s) + L̃ (s) c = S (ls) g + L̃ (s) c. (12)

As mentioned before, we set the zero-lag coefficient of c to zero; that is, c0 = 0. For
convenience, we also assume that c is centered around the origin; that is, ci 6= 0 for
Nτ/2 ≤ i ≤ Nτ/2 with Nτ even.

Notice that our choice of L̃ is, in purpose, not the most obvious one. The most
natural choice would have been to define L̃c as the convolution of c with the first
time derivative of the shifted source wavelet; that is, to build L̃ with elements of
−lS (ls̄)

.
g, instead of S (ls̄) g (Biondi and Almomin, 2014). In practice, there is a

little differences between these two choices. The main reason we made this choice is
to emphasize that the definition of L̃ does not need to be based on physical arguments.
The main criterion driving the definition of L̃ should be to fulfill the approximation
expressed in 6 as accurately as possible.

Linearization of modeling operators

When computing gradients of the proposed objective functions, we need to linearize
the modeling operators with respect to perturbations of the model parameters. In
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this section we derive the linearization of the simple 1D modeling operator L̃ (s, c)
with respect to slowness s and the coefficients of the convolutional filter c. Taking
advantage of the fact that slowness is a scalar, the operators derived from these
linearizations can also be expressed as vector and matrices.

The derivative of the operator L (s) with respect to slowness, that we will denote
as the vector L ∈ <Nt , is given by the following:

∂L (s)

∂s
= L (s) = −lS (ls)

.
g, (13)

where
.
g is the discretization of the first time derivative of the source function g (t).

The derivative of the extension operator L̃ (s, c) with respect to slowness is given

by the matrix-vector product of the matrix
.

L̃∈ <NtxNτ with the vector c as follows:

∂L̃

∂s
(s, c) =

.

L̃ (s) c. (14)

As for the matrix L̃ (equation 11), also the matrix
.

L̃ can be appropriately constructed
with the elements of the first time derivative of the shifted source vector S (ls)

.
g scaled

by −l.

Since Ld is linear with respect to the convolutional filter c, the linearization of
the extension operator L̃ (s, c) with respect to c is simply the matrix L̃; that is,

∂L̃

∂c
(s, c) = L̃. (15)

Numerical example

We illustrate the properties of the operators defined above by using a numerical
example. Figure 1 shows the results of this numerical example.

Figure 1a shows the wavelet that we used for this example. It was derived by
taking the first time derivative of a Ricker wavelet with fundamental frequency of
7 Hz. For convenience, in the proceedings we will refer to it as the Ricker-derived
wavelet. Figure 1b shows the data residuals (L (so) − L (s̄)) for a range of starting
slowness values (so), and a true slowness s̄ = 1 s/km. The source-receiver distance l
is 4 km.

Figures 1c and 1d show the back projection of the data residuals into the model
space. These back projections are an important component of any gradient-based
estimation algorithm. Figure 1c shows the application of the adjoint of L (so) to
the corresponding data residuals shown in Figure 1b. Similarly, Figure 1d shows the
application of the adjoint of L̃ (so) to the same data residuals shown in Figure 1b.

As discussed, above, an important characteristic of the extended modeling oper-
ator is that its linearization should be close to be unitary, in the sense defined by
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Figure 1: a) Ricker-derived wavelet used for the numerical examples. b) data residuals
for a range of starting slowness values. c) back projection of the data residuals into
slowness space for the same range of starting slowness values. d) back projection of
the data residuals into the convolutional filter space. [ER]
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the relation in equation 6. Figure 2 shows that the original (non extended) linearized
operator is far from fulfilling that condition, whereas the linearized extension fulfills
that condition, at least with regards to the kinematics of the reconstructed residuals.

Figure 2b shows the application of LL′ to the data residuals shown in Figure 1b,
which for convenience of the reader are also displayed in Figure 2a. Figure 2b can
also be described as the forward projection into the data space of the slowness per-
turbations shown in Figure 1c. The data residuals are well reconstructed only in a
small interval of starting slowness centered around the true slowness (s̄). Further-
more, at both ends of this range, the reconstructed residuals have the wrong polarity.
In contrast, Figure 2c shows the application of L̃L̃′ to the data residuals. It can also
be described as the forward projection into the data space of the convolutional filter
perturbations shown in Figure 1d. The kinematics of the events in the data residuals
are well reconstructed. The only noticeable difference between panel 2a and panel 2c
is that the reconstructed events are convolved with the square of the source wavelet.

Figure 2: a) Data residuals [L (so)− L (s̄)]. b) LL′ [L (so)− L (s̄)]. c)
L̃L̃′ [L (so)− L (s̄)]. [ER]

Focusing operators

We tested different focusing operators; all of them are linear with respect to the
convolutional filter c. Therefore, we will denote as F and write F (c) = Fc. There
are two families of focusing operators that can be useful. The operators belonging
to the first family scale the filter coefficients as a function of the distance from the
origin; that is, as a function of the time lag τ . We refer to the focusing operators
belonging to this family as amplitude focusing operators because they simply scale the
amplitudes of the input filter. The operators belonging to the second family “shift”
the filter coefficients towards the origin. Therefore, we refer to these operators as
phase focusing operators because they actually change the phase of the convolutional
filter.
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DSO (Differential Semblance Operator)

The first operator we analyze is derived from the classical DSO operator (Symes and
Carazzone, 1991) and defined as FD = diag(τf ) with

τf =

{
τwτmax−|τ |
τwτmax

if |τ | < τwτmax

0 if |τ | ≥ τwτmax,
(16)

where τmax is the maximum τ represented in c, and τw (with 0 ≤ τw ≤ 1) is an
adimensional parameter that determines the width of the triangular window; this
parameter may change with iterations. Notice that the classical DSO operator is
equal to I− FD with τw = 1.

Gaussian window

The second operator we analyze is also a simple amplitude focusing operator; it is
defined as the truncated Gaussian window FG = diag(τf ), with

τf =

{
e
−5 τ2

(τwτmax)2 if |τ | < τWτmax

0 if |τ | ≥ τWτmax,
(17)

where τmax and τW have the same meaning as in equation 16.

Shift

The third operator we analyze is the simplest phase focusing operator (Almomin,
personal communication). The operator FS shifts by one sample the coefficients of c
towards the origin. The i-th coefficient ĉi of the output filter are computed from the
coefficients ci of the input filter as:

ĉi =


ci+1 if i > 0

ci−1 if i < 0.

0 if |i| = Nτ/2 or i = 0.

(18)

Shrink

The fourth, and last, operator we analyze is also a phase focusing operator; it scales
the τ axis of its input filter by a factor α, that is ĉ (τ) = c (ατ), with α ≥ 1.
The operator Fα is the discrete implementation of this axis-shrinking operator that
employs a sinc interpolator.
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Examples of application of focusing operators

Figure 3 shows the outputs of these four focusing operators as applied to the con-
volutional filters shown in Figure 1d. Figures 3a, 3b, 3c, and 3d show the results of
applying FD, FG, FS, and Fα, respectively. The output of FS is indistinguishable
from its input because FS shifts its input by one sample only.

Figure 4 shows the plots of the defocusing measure D defined in equation 7 to the
input and output c vectors shown in Figure 1d and Figure 3. It demonstrates with
a numerical example that all four focusing operators fulfill the condition introduced
in 8. For this example, we set τW = 1.0 for both FD and FG, and α = 1.111 for Fα.
The functions are obviously symmetric around so = 1 s/km, and thus for clarity we
plotted them only for so ≥ 1 s/km. The values of D (FSc) are uniformly smaller than
the values of D (c); however, their respective plots shown in Figure 4 almost perfectly
overlap because their difference is tiny.

TFWI OBJECTIVE FUNCTIONS

Model-space regularization

As previously discussed, there are three different ways in which we constrain problem
4 using the focusing operator F . One of these approaches is to use it in a model
regularization term in addition to the data-fitting term defined in problem 4. For the
simple 1D problem described above, we can write this objective function as:

JM (s, c) =
1

2

∥∥∥L̃ (s, c)− dr

∥∥∥2

2
+
ε

2
‖(I− F) c‖2

2 , (19)

where F is the linear focusing operator. Through our numerical experiments, we have
found that choosing F as the DSO operator provides the best convergence properties.
This observation is related to the fact that the phase-focusing operators are nearly
unitary and therefore, the result of their forward and adjoint applications in the
computation of the gradients does not provide the correct focusing of the extended
model space.

The results of running 7000 iterations of a non-linear conjugate gradient inversion
are shown in Figure 5. For this inversion, the starting physical slowness (s0) was 1.12
s/km and the starting extended slowness (c0) was 0. For the regularization, we set
ε = 100 and F to be the DSO operator.
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Figure 3: Results of applying the four focusing operators to the convolutional filters
c shown in Figure 1d: a) FDc, b) FGc, c) FSc, and d) Fαc. For both FD and FG,
τW = 1., and α = 1.111 for Fα. [ER]

Figure 4: Plots of: D (c),
D (FDc), D (FGc), D (FSc), and
D (Fαc). For both FD and FG,
τW = 1., and α = 1.111 for Fα.
Notice that the plot of D (FSc) al-
most perfectly overlaps the plot of
D (c); however, it is below it for
all values of so. [ER]
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Data-space regularization

Another approach of regularization is to add a data-space regularization term. One
way to write this objective is as:

JD (s, c) =
1

2

∥∥∥L̃ (s, c)− dr

∥∥∥2

2
+
ε

2

∥∥∥L̃ (s, c)− L̃ (s,Fc)
∥∥∥2

2
. (20)

As was discussed with the model-space regularization, choosing F to be the DSO
operator provides the best convergence properties for optimizing this objective func-
tion. The results of running this inversion for 10000 iterations and a starting model
of s0 = 1.12 s/km and c0 = 0 with ε = 10 and the DSO operator as the focusing
operator F are shown in Figure 5.

Comparison

Comparing both model and data space regularization results (blue and red curves
respectively) in each of the panels in Figure 5 we observe from the data residual
norms (panel (a)) that the model space regularization reduces the extended FWI
objective function (||L̃ (s, c) − dr||22) faster than does the data space. This is due
to the fact that with the model space regularization, we are directly focusing the
model therefore providing better focusing of the extended model (c). This is clear
in panel (b) which shows the focusing measure D(c) with iteration. However, the
data space regularization does update the model much faster than the model space
regularization. This is evident in panels (c) and (d) where the FWI data residual
norm (1

2
||L (s) − dr||22) and the model residual are shown respectively. From these

figures it is clear that in only 600 iterations the updated physical slowness is within
0.45% of the true slowness. In contrast, the model space regularization needs more
than 1500 iterations before it reaches that point in the inversion. At later iterations, it
is evident in both panels (c) and (d) that the model-space regularization does reduce
the objective function more than the data-space regularization. This only occurs
when the residuals are quite small.

These results suggest that a data-space regularization with frequent restarts; that
is, by resetting set c to zero might be the best approach within this class of methods.
Biondi and Almomin (2014) presented a nested optimization algorithm that included
a restart at each outer iteration. At the limit, if the algorithm is restarted by resetting
set c to zero after each update of the slowness model, we will implement an inversion
scheme close the the alternating algorithms presented in the next section.

A CLASS OF ALTERNATING ALGORITHMS

In this section, we discuss a class of algorithms to solve the extended FWI problem.
We begin by first introducing an algorithm based on a simple intuitive idea, which
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(a) (b)

(c) (d)

Figure 5: Results of inversions with model space (blue curve) and data space (red
curve) regularization. Both inversions ran for 7000 iterations and plots are windowed
here for display. The inversions were run with starting a model of s0 = 1.12 s/km and
c0 = 0. (a) Data residual norms of extended FWI objective function (1

2
||L̃ (s, c) −

dr||22), (b) focusing measure D(c) as defined in equation 7, (c) data residual norms
of FWI objective function (1

2
||L (s)−dr||22), and (d), model residual (|siter− s̄| where

siter is the physical slowness at the current iteration). [CR]
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we will refer to as the “alternating algorithm”. Guided by computational evidence
that the algorithm converges to the true slowness s̄ for any incorrect starting slowness
s0, we attempt to understand the underlying cause of its global convergence. Math-
ematical analysis reveals the key property governing its convergence properties. We
discuss some of these findings briefly.

Although we are not able to mathematically prove global convergence of the alter-
nating algorithm, we are able to build on the analysis to develop a simpler modified
algorithm that retains the global convergence properties. We will refer to it as the
“modified alternating algorithm”. It should be noted that the modified alternating
algorithm is under investigation and it converges faster, but this property may be
specific to the 1D problem analyzed in this paper. Whether these properties hold for
the general case is not known at this time.

Throughout this section we do not enforce the requirement that c0 = 0. It is
not necessary for the class of algorithms discussed in this section for the specified 1D
problem. In addition, we also assume that the length of the convolution filter is given
by Nτ = 2Nt − 1.

Alternating algorithm

We motivate the first algorithm by considering the residual of the total modeled data
using the extended modeling operator measured in the l2 norm. For a given starting
slowness s0 and convolution filter c, we denote this quantity as Jc(s0, c). It is defined
below as:

Jc(s0, c) =
1

2
||L̃(s0, c)− dr||22. (21)

It is important to remember that we had originally introduced the convolution
filter c to represent an extended set of model parameters that we could change as
we like to model the recorded data, for any starting slowness s0. A natural way to
achieve this goal is to fix s0 in equation 21, and then perform gradient descent to
determine a suitable c that minimizes Jc(s0, c). In fact for fixed s0, the function
Jc(s0, c) is a semidefinite quadratic, and thus doing a sequence of steepest descent
iterations over c will converge to a global minimum, which in absence of noise in the
data happens to be zero. However, solving such a subproblem to convergence involves
repeated iterations, irrespective of the optimization algorithm employed.

We look at a cheaper alternative which is to only look at the negative gradient
at the first iteration, still for fixed s0 but with c = 0. We denote this quantity ĉ(s0)
and define it below,

ĉ(s0) = −∂Jc(s, c)

∂c

∣∣∣∣
s=s0,c=0

= L̃′ (so)
[
dr − L̃(s0,0)

]
= L̃′ (so) [dr − L(s0)] . (22)
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Note that −ĉ(s0) is the same quantity that was plotted before in Figure 1d, i.e the
application of L̃′ (so) to the data residual L(s0)− dr. This figure can be understood
as a superposition of a central positive band that is invariant with respect to s0,
and a diagonal negative band that depends on s0. The positive band is exactly the
term L̃′ (so)L(s0), while the negative band is the term −L̃′ (so) dr appearing in the
expression for ĉ(s0) in equation 22.

It can be mathematically proved that the positive band is invariant with respect to
s0. It is also clear from the figure that the closer s0 is to s̄, the diagonal negative band
is closer to the zero lag coefficient of ĉ(s0). This observation is key in understanding
this algorithm and motivates the following idea : given any ĉ(s0), we can try to apply
a focusing operator F to transform ĉ(s0) to an approximation of ĉ(s0 +∆s), where ∆s
is a slowness perturbation towards s̄. Mathematically, this idea is expressed below:

Fĉ(s0) ≈ ĉ(s0 + ∆s). (23)

Assuming that we have carried out the above transformation, the only thing re-
maining to do is to find a way to recover ∆s from Fĉ(s0). An intuitive idea would

be to match the quantities L̃(s0, ĉ(s0)) and L̃(s,Fĉ(s0)) in the least squares sense,
where s is close to s0. For fixed s0, this leads to the following objective function:

Js(s) =
1

2
||L̃(s0, ĉ(s0))− L̃(s,Fĉ(s0))||22. (24)

The quantity L̃(s0, ĉ(s0)) represents the total modeled data using the extended

modeling operator for slowness s0 and convolution filter ĉ(s0), while L̃(s,Fĉ(s0))
represents the total modeled data for any slowness value s close to s0 and the focused
convolution filter Fĉ(s0). The expectation is that minimizing the objective function
Js(s) will yield a slowness perturbation ∆s towards s̄. Putting all these ideas together,
we have the following algorithm:

1. For any starting slowness s0, compute ĉ(s0) = L̃′ (so) [dr − L(s0)] .

2. Start from s = s0, and solve the following local optimization problem:

s∗ = argmin
s

Js(s) (25)

3. Set s0 = s∗ and iterate 1-3 till convergence.

In the above discussion F is a general focusing operator. However in this section,
we restrict ourselves to the particular case of the shift focusing operator, which was
introduced earlier in equation 18. Note that the choice of the shift focusing operator
is inherently restrictive, because we only shift the coefficients in the extended model
vector by one sample towards the zero lag coefficient. Doing that automatically



Biondi et al. 16 Nonlinear inversion by model extension

enforces small changes in ∆s. It is indeed possible to incorporate bigger shifts up
to a limit into FS, and we would obtain similar results to what we present next.
The choice of studying the one sample shift focusing operator captures all the effects
that would be true with bigger shifts. The subsequent analysis of the alternating
algorithm also holds in this regime in a slightly modified form. In fact, with bigger
shifts the rate of convergence is much faster at each iteration when s0 is far away
from s̄. However, if the shifts are too large we lose the property that ∆s is a slowness
perturbation towards s̄ for all starting slowness s0.

Such ideas of incorporating bigger shifts and speeding up convergence can also be
incorporated with the use of other types of focusing operators like the shrink focusing
operator Fα introduced earlier.

Numerical results

We provide computational evidence that the alternating algorithm converges to s̄
for any starting slowness s0. To illustrate this we start by plotting the objective
function Js(s) for different values of s0 in Figure 6. It is clearly seen from each panel
that minimizing Js(s) starting from s0 will yield a slowness update ∆s towards s̄.
Therefore, if this process is repeated at every iteration, we will reach s̄. The iterates
eventually stop changing when s0 = s̄ as the gradient of Js(s) with respect to s at
s = s̄ becomes zero. This test shows that the alternating algorithm converges to the
true slowness s̄ starting from any s0.

Another way of seeing the global convergence property is to evaluate the gradient
of the objective function Js(s) for each s0 at ∆s = 0, i.e ∂Js(s0)

∂s
. We first calculate

the gradient of Js(s) below:

∂Js(s)

∂s
= −

[
∂L(s)

∂s
+
∂L̃ (s)

∂s
Fĉ(s0))

]′ [
L̃(s0, ĉ(s0))− L̃(s,Fĉ(s0))

]
= −

[
L(s)+

.

L̃ (s) Fĉ(s0))

]′ [
L̃(s0, ĉ(s0))− L̃(s,Fĉ(s0))

]
= −

[
L′(s) + ĉ′(s0)F′

.

L̃′ (s)

] [
L̃(s0, ĉ(s0))− L̃(s,Fĉ(s0))

]
.

(26)

Evaluating this quantity at s = s0 gives:

∂Js(s0)

∂s
= −

[
L′(s0) + ĉ′(s0)F′

.

L̃′ (so)

]
L̃ (so) [I− F]ĉ(s0) . (27)

We have plotted the quantity ∂Js(s0)
∂s

as a function of different starting slowness
values s0 in Figure 7. The figure tells us that for s0 > s̄, the gradient is always
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positive, while for s0 < s̄, the gradient is always negative. Thus, the search direction
which is the negative of the gradient always points in the correct direction. Finally
when s0 = s̄, the gradient is zero, which means that the algorithm will terminate
when s0 = s̄.

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4
s

0
 = 0.690 ms/m

J
s
(s

)

Slowness perturbation ∆s (ms/m)

 

 

J
s
(s)

(a)

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4
s

0
 = 1.290 ms/m

J
s
(s

)
Slowness perturbation ∆s (ms/m)

 

 

J
s
(s)

(b)

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4
s

0
 = 0.990 ms/m

J
s
(s

)

Slowness perturbation ∆s (ms/m)

 

 

J
s
(s)

(c)

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4
s

0
 = 1.010 ms/m

J
s
(s

)

Slowness perturbation ∆s (ms/m)

 

 

J
s
(s)

(d)

Figure 6: Plot of the function Js(s) for different values of s0 : (a) s0 = 0.69 ms/m
represents the case when s0 is slow compared to s̄, (b) s0 = 1.29 ms/m represents the
case when s0 is fast compared to s̄, (c) s0 = 0.99 ms/m represents the case when s0

is almost close to s̄ on the slower side, and (d) s0 = 1.01 ms/m represents the case
when s0 is almost close to s̄ on the faster side. [ER]

Analysis of the alternating algorithm

The computational evidence of global convergence to s̄ naturally leads us to take a
closer look at the alternating algorithm. Here the main question of interest is “why is
the algorithm converging ?”. We want to isolate the pieces of the objective function
that is responsible for its convergence.
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Figure 7: Plot of the quantity ∂Js(s0)
∂s

in equation 27 as a function of different starting
slowness values s0. [ER]

We first focus our attention to the behavior of Js(s) for some fixed s0. We will also
henceforth use ĉ to denote ĉ(s0), unless stated otherwise to avoid excessive notation.
We start by expanding the expression for Js(s) and group similar terms to get the
following:

Js(s) =
1

2
||L̃(s0, ĉ)− L̃(s,Fĉ)||22 =

1

2
|| [L(s0)− L(s)] +

[
L̃ (so) ĉ− L̃ (s) Fĉ

]
||22

=
1

2
|| [L(s0)− L(s)]−

[
L̃ (so) L̃′ (so)L(s0)− L̃ (s) FL̃′ (so)L(s0)

]
+
[
L̃ (so) L̃′ (so) dr − L̃ (s) FL̃′ (so) dr

]
||22

=
1

2
||u + v + w||22 =

1

2

[
||u||22 + ||v||22 + ||w||22

]
+ [u′v + v′w + w′u] ,

(28)

where we have denoted,

u := u(s) = L(s0)− L(s)

v := v(s) = −[L̃ (so)− L̃ (s) F]L̃′ (so)L(s0)

w := w(s) = [L̃ (so)− L̃ (s) F]L̃′ (so) dr .

(29)

The different terms involving u,v and w

It turns out that the most interesting term is the one involving only ||w||22. This term
is the key in getting the correct update when s0 is far away from s̄, and so the modeled
data L(s0) and the recorded data dr don’t interfere with each other. When this is
the case, two key mathematical properties hold for the 1D problem being studied, as
stated below:
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FL̃′ (so) dr = L̃′ (s0 + ∆s) dr +O((δt)2) , (30a)

L̃ (so) L̃′ (so) = L̃ (s0 + ∆s) L̃′ (s0 + ∆s) +O((δt)2) . (30b)

Demonstration of equations 30 is straightforward but lengthy; therefore, we de-
cided to omit it from the text.

In equation 30, ∆s is a slowness perturbation in the correct direction (towards s̄).
The immediate consequence of these relations is that the quantity 1

2
||w||22 vanishes at

s0 + ∆s. This is illustrated below in equation 31, where the second line follows from
30(a) and the third line follows from 30(b).

1

2
||w||22

∣∣∣∣
s0+∆s

=
1

2
||L̃ (s0 + ∆s) FL̃′ (so) dr − L̃ (so) L̃′ (so) dr||22

=
1

2
||L̃ (s0 + ∆s) L̃′ (s0 + ∆s) dr − L̃ (so) L̃′ (so) dr +O((δt)2)||22

=
1

2
||L̃ (so) L̃′ (so) dr − L̃ (so) L̃′ (so) dr +O((δt)2)||22

= O((δt)4) ≈ 0 .

(31)

Numerical studies also suggest that the function 1
2
||w||22 is increasing in the interval

[min(s0, s0 + ∆s),max(s0, s0 + ∆s)]. Thus if we carry out local minimization of the
1
2
||w||22 term starting from the initial slowness s0, we would obtain the new optimal

point s0 + ∆s, which is always closer to the true slowness s̄. It is to be noted that
the above argument only holds in the regime when s0 is far away from s̄. When this
is not the case, the modeled data L(s0) and the recorded data dr begin to interfere
and equation 31 does not hold. However, numerical studies seem to indicate that one
can still get the correct update direction by minimizing 1

2
||w||22.

These aspects are illustrated in Figure 8, where we have plotted the quantity
1
2
||w(s0 +∆s)||22 as a function of the slowness perturbation ∆s around s0, for different

values of s0. Figures 8(a) and 8(b) represent cases when s0 and s̄ are sufficiently far
apart so that there is no interference between L(s0) and dr. As can be seen on both
the figures, the function goes to zero on the “correct” side, i.e if we start from ∆s = 0
and try to minimize 1

2
||w(s0 + ∆s)||22, the optimal ∆s would represent a step towards

s̄. The same fact is true also for Figures 8(c) and 8(d), which represent cases where
s0 is so close to s̄ that there is interference between L(s0) and dr. In both of these
cases, one can see that the minima of 1

2
||w(s0 + ∆s)||22 is still in the right direction,

but the function does not become zero at the minima. This is precisely connected to
the fact that equation 31 is losing accuracy in this regime.

It seems from the analysis of the 1
2
||w||22 term that if one ignored all the other

terms in the expression for Js(s), we would still have global convergence. In fact
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Figure 8: Plot of the function 1
2
||w(s0 + ∆s)||22 for different values of s0 : (a) s0 =

0.69 ms/m represents the case when s0 is slow compared to s̄, (b) s0 = 1.29 ms/m
represents the case when s0 is fast compared to s̄, (c) s0 = 0.99 ms/m represents
the case when s0 is almost close to s̄ on the slower side, and (d) s0 = 1.01 ms/m
represents the case when s0 is almost close to s̄ on the faster side. [ER]
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this is actually the case, and would later motivate the development of the “modified
alternating algorithm”. However, we still need to consider the behavior of the re-
maining terms in the expression for Js(s) and understand if they help or impede the
convergence. We thus turn to the 1

2
||u||22 and 1

2
||v||22 terms next.

The 1
2
||u||22 term is not useful. Using the definition of u in equation 29, we have

1
2
||u||22 = 1

2
||L(s) − L(s0)||22. This looks exactly like the FWI objective function

1
2
||L(s) − dr||22, but where the recorded data dr = L(s̄) has been replaced by L(s0),

i.e data modeled using an incorrect slowness s0. We know from the properties of the
FWI objective function that it is a convex function in a sufficiently close neighborhood
of the true slowness. Therefore, this property also carries over to the 1

2
||u||22 term, and

we conclude that the 1
2
||u||22 is locally convex around s0. This means that if we start

sufficiently close to s0, the gradient of s with respect to the 1
2
||u||22 term will always

point towards s0. This observation is important, as it says that while the presence
of the 1

2
||w||22 term in Js(s) will provide the correct update direction, including the

1
2
||u||22 term in Js(s) will oppose the correct slowness update. Clearly, this is not a

desirable property and we thus conclude that we should omit the 1
2
||u||22 term in the

definition of Js(s).

Finally we consider the 1
2
||v||22 term. It turns out that this term is also convex

locally around s0. For this particular 1D case, an interesting fact about this term
is that its profile does not vary with s0. This is illustrated in Figure 9. As clearly
seen, the curves in both the figures are exactly same. In fact, this is also true for
all possible values of s0 irrespective of whether s0 is close or far from s̄, but this is
most likely only true for the specific 1D problem we are studying. However, we think
that the local convexity property of 1

2
||v||22 close to s0 may be more general. Thus,

presence of this term will also impede convergence as its gradient will oppose any
change from s0.
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Figure 9: Plot of the function 1
2
||v(s0 +∆s)||22 for different values of s0 : (a) s0 = 0.69

ms/m corresponds to the case when s0 is slower compared to s̄, and (b) s0 = 1.29
ms/m corresponds to the case when s0 is faster compared to s̄. [ER]
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The cross terms u′v + v′w + w′u are quite complicated and evades mathematical
analysis at the moment. Preliminary analysis has not revealed any clear understand-
ing of how they may be affecting convergence. In general, they produce gradients
which are sometimes in the correct direction and at other times not. So it is quite
a miracle that the full expression for Js(s) produces the correct update direction, as
evidenced in the numerical results shown earlier.

Slowdown of convergence

It is quite clear that for this 1D problem, the effect of the 1
2
||w||22 term dominates

that of the others in the full expression for Js(s). So as a net, we obtain the correct
slowness perturbation ∆s by minimizing Js(s) at every step of the iterative algorithm.
Starting from any slowness s0, one step of the algorithm takes us closer to the true
slowness s̄, and this process iterated enough times finally takes us to s̄. The process
converges to s̄ because as we get closer and closer to s̄, the updates ∆s get smaller
and smaller. In fact for s0 = s̄, we have ∂Js(s̄)

∂s
= 0, and so we do not get any more

update.

However from the point of view of algorithmic efficiency and rate of convergence,
we would really like to avoid the ill-effects associated with the terms involving u and v.
Based on the analysis done so far, we would like to only use the 1

2
||w||22 term for solving

the local minimization problem at each iteration. But first, we provide some numerical
evidence of how the convergence is affected. As an example, we have chosen to drop
all terms involving u from the expression of Js(s), and analyze the behavior of the
remaining terms given by Js(s) = 1

2
||w||22 + 1

2
||v||22 +v′w = 1

2
||w+v||22. This situation

is plotted in Figures 10(a),10(b) for slowness values s0 = 0.69 ms/m, 0.99 ms/m. In
each figure, we have displayed the quantities 1

2
||v||22, 1

2
||w||22 and 1

2
||w + v||22. As we

can clearly see in both cases, minimizing 1
2
||w + v||22 or 1

2
||w||22 starting from s0 will

yield a slowness perturbation towards s̄. But in the latter case, the step will be larger
compared to the former. It should be mentioned that similar conclusions are also
obtained for the cases when s0 is faster than s̄. We thus conclude that minimizing
the complete expression for Js(s) will take longer to converge to s̄ in the presence of
the u and v terms.

Modified alternating algorithm

To address the convergence issue, we now discuss a modified alternating algorithm
that is based on the idea of replacing the original expression for Js(s) in equation 24
by Js(s) = 1

2
||w||22 = 1

2
||[L̃ (so) − L̃ (s) F]L̃′ (so) dr||22. As we have shown previously,

local minimization of the 1
2
||w||22 term produces the correct update direction at ev-

ery iteration. We had also argued previously based on Figures 8(c) and 8(d) that
minimizing the 1

2
||w||22 term gives the correct update direction, even when s0 is close

to s̄. This is indeed the case for the choice of the modeling parameters like wavelet
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Figure 10: Plot of the different terms 1
2
||v(s0 +∆s)||22, 1

2
||w(s0 +∆s)||22 and 1

2
||w(s0 +

∆s)+v(s0+∆s)||22 for different values of s0, indicated by the red, blue and black curves
respectively : (a) s0 = 0.69 ms/m represents the case when s0 is slow compared to s̄,
and (b) s0 = 0.99 ms/m represents the case when s0 is almost equal s̄, but slightly
slower. [ER]

and sampling interval used to create those plots. However, it has also been observed
that for other choices of modeling parameters, the 1

2
||w||22 term starts to have the

minima exactly at s0, when s0 starts to get close to s̄ and the algorithm terminates
before reaching s̄. It is quite difficult to characterize this situation analytically due
to the interference between L(s0) and dr, but we suspect that the effect is related
to the shape and frequency of the wavelet and also numerical inaccuracies stemming
from the choice of the modeling parameters. We discuss a robust alternative below
that was found to not suffer from this issue by modifying the objective function in
such a manner that when s0 is far from s̄, it is exactly equal to 1

2
||w||22, and the only

differences are when s0 is close to s̄.

We first define the unit shift operators in the positive and negative directions S+

and S−. S+ defines a linear map <Nτ → <Nτ , where each sample is shifted down by
one sample. S− defines a linear map <Nτ → <Nτ , where each sample is shifted up by
one sample. These operators have the explicit matrix form as defined below:

S+ =


0
1 0

. . . . . .

1 0
1 0


Nτ×Nτ

, S− =


0 1

0 1
. . . . . .

0 1
0


Nτ×Nτ

. (32)

We next introduce the masking operator Mi. It also defines a linear map <Nτ →
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<Nτ , and its action on a vector c ∈ <Nτ is defined as follows:

Mic = c̃ ,where, c̃j =

{
cj, if j ≤ i

0, if j > i
. (33)

The above quantities S+,S−,Mi form the building blocks of the modified al-
gorithm. For the remainder of this section we will redefine the quantity ĉ to be
ĉ = L̃′ (so) dr. We also need to define two more quantities r+(s) and r−(s), which
can be interpreted as generalized residuals and defined below:

r+ := r+(s) = L̃ (s) M0S+ĉ− L̃ (so) M−1ĉ

r− := r−(s) = L̃ (s) [I−M−1]S−ĉ− L̃ (so) [I−M0]ĉ .
(34)

It is instructive to look at what the combination of terms appearing in equation
34 involving S+,S− and M0,M−1 look like when applied to a vector c. To clarify
this point, we choose a dummy vector c corresponding to the choice of parameters
Nt = 5, Nτ = 2Nt−1 = 9 as shown in Figure 11(a). We then applied the unit positive
and negative shifts and plotted the results in Figures 11(b) and 11(c), respectively.
In Figures 12(a), 12(b), 12(c), and 12(d) we plot the terms M0S+c, M−1c, [I −
M−1]S−c and [I−M0]c, respectively. As seen from these figures, the terms M0S+c
and M−1c are exactly shifted copies of each other with the property that all positive
lag coefficients are zero. Similarly, the terms [I −M−1]S−c and [I −M0]c are also
shifted copies of each other with the property that all negative lag coefficients are
zero.

Thus r+ term can be interpreted as the difference between the data produced by
the linearized extension using the starting slowness s0 and convolution filter M−1ĉ
(which is the L̃ (so) M−1ĉ term), and the linearized extension using a slowness s
close to s0 and convolution filter M0S+ĉ (which is the L̃ (s) M0S+ĉ term). A similar
interpretation also holds for r−(s). It is clear from the definition of the mask operator
that when the support of ĉ is strictly negative, r− = 0 holds identically, and when the
support of ĉ is strictly positive, r+ = 0 holds identically. These situations correspond
to the cases s0 >> s̄ and s0 << s̄ respectively and hence the modeled data L(s0) and
recorded data dr do not interfere with each other in both these cases.

The preceding observations allow us to define the modified objective function
JM(s) in terms of the squared l2 norms of r+ and r− which we define to be J+(s) and
J−(s) respectively, as below:

J+(s) =
1

2
||r+||22 =

1

2
||L̃ (s) M0S+ĉ− L̃ (so) M−1ĉ||22

J−(s) =
1

2
||r−||22 =

1

2
||L̃ (s) [I−M−1]S−ĉ− L̃ (so) [I−M0]ĉ||22

JM(s) = J+(s) + J−(s) .

(35)
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Figure 11: Plot of the result of application of the shift operators to a vector cor-
responding to the choice of parameters Nt = 5, Nτ = 9. (a) This is the vector c.
(b) Result of application of unit positive shift S+c. (c) Result of application of unit
negative shift S−c. [ER]

We can finally write the modified alternating algorithm:

1. ĉ = L̃′ (so) dr.

2. Start from s = s0, and solve the local minimization problem:

s∗ = argmin
s

JM(s) (36)

3. Set s0 = s∗ and iterate 1-3 till convergence.

The objective function JM(s) has two interesting properties. The first one is that
when s0 is far away from s̄, JM(s) = 1

2
||w||22. The second property is that when

s0 >> s̄, J−(s) = 0 and hence JM(s) = J+(s), and similarly when s0 << s̄, J+(s) = 0
and hence JM(s) = J−(s). Both J+(s) and J−(s) are non-zero only when L(s0) and
dr are interfering, which happen when s0 is close to s̄. We have plotted the behavior
of the functions JM(s), J+(s), J−(s) in Figure 13. It is clear from these plots that the
modified alternating algorithm will converge to the true slowness s̄ from any starting
slowness s0, as minimizing JM(s) yields a step ∆s towards s̄.

We finally note that the modified alternating algorithm converges faster than the
alternating algorithm. This can be realized by noting the fact already mentioned that
for s0 sufficiently far away from s̄, JM(s) = 1

2
||w||22. This observation can be seen

by comparing the profiles of JM(s) in Figures 13(a) and 13(b), with the profiles of
1
2
||w||22 in Figures 8(a) and 8(b). Thus in the regime when s0 is far away from s̄,

the convergence is controlled by the behavior of the 1
2
||w||22 term. But we know that

the 1
2
||w||22 term has better convergence than Js(s), and thus so does the modified

alternating algorithm.

It must be mentioned here that just like it was discussed that it is possible to
incorporate the idea of bigger shifts in the shift focusing operator used in the alter-
nating algorithm, it is possible to do the same thing also with the modified alternating
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Figure 12: Plot of the composite terms appearing in equation 34, involving the mask
and shift operators, with vector c in Figure 11(a). (a) M0S+c - The result is the
zeroing of all samples of S+c after the sample at index 0. (b) M−1c - The result is
the zeroing of all samples of c after the sample at index -1. (c) [I−M−1]S−c - The
result is the zeroing of all samples of S−c before the sample at index 0. (d) [I−M0]c
- The result is the zeroing of all samples of c before the sample at index 1. [ER]
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Figure 13: Plot of the functions JM(s), J+(s), J−(s) for different value of starting
slowness s0 : (a) s0 = 0.69 ms/m represents the case when s0 is slow compared to
s̄, and hence J+(s) = 0, (b) s0 = 1.29 ms/m represents the case when s0 is fast
compared to s̄, and hence J−(s) = 0, (c) s0 = 0.99 ms/m represents the case when
s0 is almost close to s̄ on the slower side, and (d) s0 = 1.01 ms/m represents the case
when s0 is almost close to s̄ on the faster side. [ER]
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algorithm. Doing so will increase the magnitude of the update ∆s obtained at each
iteration leading to faster convergence, but this will only work up to some maximum
shift beyond which the global convergence property will be lost. However, the es-
sential features of running the alternating algorithm with bigger shifts are similar to
what have been presented here with the unit shift operators.

FWI-WEMVA OBJECTIVE FUNCTION

Finally we analyze the behavior of the following objective function that incorporates
the focusing operator directly in the data fitting term:

JFW (s) =
1

2

∥∥∥(I− F) L̃′ (s)
[
L̃ (s, c = 0)− dr

]∥∥∥2

2

=
1

2

∥∥∥(I− F) L̃′ (s) [L (s)− dr]
∥∥∥2

2
. (37)

This objective function is related to the one presented by Symes (2008) in equation
14. One of its attractive properties is that it depends on slowness through both the
data residuals (L (s) − dr) and the focusing of the backprojection of these residuals
into the space of c by the operator L̃′ (s). Our conjecture is that during the inversion
process, the gradient component corresponding to the direct dependency on the data
residuals introduces short wavelengths into the slowness model, whereas the gradient
component corresponding to the focusing of c introduces long wavelengths into the
slowness model. If that were the case, optimizing this objective function would have
the potential of achieving simultaneous inversion of all model scales. Unfortunately,
this conjecture cannot be fully tested using our simple 1D model because we assumed
the slowness to be a scalar, and obviously cannot be decomposed into different scales.

Another attractive properties of the objective function in equation 37 is that,
when the amplitude focusing operators FD and FG are used, its behavior substantially
changes according to the value of the parameter τW. These changes in behavior of
JFW can be easily understood by analyzing the gradient of the objective function
with respect to slowness. This gradient has two terms because both L and L̃′ are
function of the slowness. The term deriving from the dependency of L from s is a
FWI-like gradient, whereas the one deriving from the dependency of L̃′ from s is a
WEMVA-like gradient. The total gradient can be expressed as follows:

∇JFW = L′ (s) L̃ (s) (I− F)′ (I− F) L̃′ (s) [L (s)− dr]︸ ︷︷ ︸
FWI−like gradient

(38)

+ [L (s)− dr]
′
.

L̃ (s) (I− F)′ (I− F) L̃′ (s) [L (s)− dr]︸ ︷︷ ︸
WEMVA−like gradient

. (39)

= ∇JFW +∇JFW (40)

When τW ≈ 0 the first term in the gradient (∇JFW in equation 40) is close to the
conventional FWI gradient because L̃L̃′ (L (s)− dr) ≈ (L (s)− dr) by virtue of the
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approximation in equation 6. It also dominates the gradient, because the second term
(∇JFW in equation 40) is small (it would be actually zero if we had not imposed the
constraint of c0 = 0).

In contrast, when τW ≈ 1, the first term in the gradient, ∇JFW, is small because
the application of (I− F)′ (I− F) strongly attenuates the time lags in c that con-
tribute the most to the backprojection of the residuals (see Figure 2b). Consequently
the WEMVA-like term, ∇JFW, dominates the gradient, and ensures convergence to-
wards the global minimum.

This behavior of the objective function in equation 37 is illustrated by Figure 14
through Figure 17. Figures 14 and 15 show JFW (so) for F = FD and F = FG,
respectively. In each figure, the three panels correspond to different values of τW: for
panels a) τW = 1.0, for panels b) τW = 0.5, and for panels c) τW = 0.0. The objective
functions in the leftmost panels are convex. A gradient-based method would have no
problems to converge towards the global minimum; the convergence, however, would
be slow. In the middle panels, the objective functions are ”tighter” but still convex.
In contrast, the objective functions plotted in the rightmost panels are oscillatory
and may cause similar convergence problems as experienced in the minimization of
conventional FWI objective function. On the other hand, the high sensitivity of
these oscillating objective functions to small changes in slowness may also enable
the inversion to achieve high resolution, once we are close enough to the correct
slowness. These observations suggest the application of an iterative inversion process
that starts with wide focusing operators (τW = 1.0) and that slowly tightens the
focusing operators toward τW = 0.0 as the data kinematics are fitted. Such an
algorithm has the potential of achieving both robust global convergence from arbitrary
starting model and fast local convergence close to the desired global minimum.

Figures 16 and 17 show the FWI-like gradient term for F = FD and F = FG,
whereas Figures 18 and 19 show the WEMVA-like gradient term for F = FD and
F = FG. Notice that the FWI-like gradient term is strongly oscillatory for all values
of τW, but also that its amplitude is higher than the amplitude of the WEMVA-
like term only for τW = 0 (panels c) in the figures. In contrast, the WEMVA-like
term of the gradient that is shown in panels a) and b) is well-behaved for both
choices of focusing operator. However, close to convergence; that is for so close to
s̄, the gradient is small. If we had to rely only on this gradient-component, the
resolution of the inversion would be likely to suffer. In panels c) the WEMVA-like
term becomes oscillatory and has “wrong” sign even close to convergence, but its
amplitude insignificant compared to the amplitude of the corresponding FWI-like
gradient terms.

We can also observe the WEMVA-like gradients in panels a) and b) are smoother
when F = FG (Figure 19) than when F = FD (Figure 18). This difference may be
indicative of a difference in robustness between the two focusing operators. To test
this hypothesis we conducted a a similar test, but with a zero-phase wavelet in place
of the Ricker-derived wavelet shown Figure 1a. The zero-phase wavelet has the same
central frequency as the Ricker-derived wavelet, but it is more ringing. Consequently
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the objective functions and gradients are more oscillatory than the ones shown in
previous figures.

Figure 20a shows the objective function computed using the highly-ringing zero-
phase wavelet when F = FD and τW = 1.0; it corresponds to the objective function
computed using the Ricker-derived wavelet and shown in Figure 14a. With this new
wavelet, the objective function is not any more convex, and the total (FWI-like plus
WEMVA-like term) gradient (Figure 20b) has two zero-crossing on each side of s̄.
On the contrary, the objective function computed with F = FG (Figure 21a) is still
convex; its total gradient (Figure 21b) gets close to the horizontal axis, but it does not
cross it, except at the expected zero-crossing at so = s̄. This difference in behavior
can be explained by comparing the WEMVA-like gradient terms (Figure 20c and
Figure 21c). The one computed with F = FG is smoother than the one computed
with F = FD.

Figure 14: JFW (so) computed with F = FD and with: a) τW = 1.0, b) τW = 0.5, and
c) τW = 0.0. [ER]

Figure 15: JFW (so) computed with F = FG and with: a) τW = 1.0, b) τW = 0.5, and
c) τW = 0.0. [ER]

DISCUSSIONS

All the three approaches that we presented to solve the extended inverse problem show
promises to lead to inversion algorithms with robust global convergence. However,
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Figure 16: ∇JFW (so) computed with F = FD and with: a) τW = 1.0, b) τW = 0.5,
and c) τW = 0.0. [ER]

Figure 17: ∇JFW (so) computed with F = FG and with: a) τW = 1.0, b) τW = 0.5,
and c) τW = 0.0. [ER]

Figure 18: ∇JFW (so) computed with F = FD and with: a) τW = 1.0, b) τW = 0.5,
and c) τW = 0.0. [ER]
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Figure 19: ∇JFW (so) computed with F = FG and with: a) τW = 1.0, b) τW = 0.5,
and c) τW = 0.0. [ER]

Figure 20: a)JFW (so) computed with a zero-phase wavelet that was more ringing
than the Ricker-derived wavelet used for the previous figures. b) ∇JFW (so), and c)
∇JFW (so). All these three curves were computed with F = FD and τW = 1.0. [ER]

Figure 21: a)JFW (so) computed with a zero-phase wavelet that was more ringing
than the Ricker-derived wavelet used for the previous figures. b) ∇JFW (so), and c)
∇JFW (so). All these three curves were computed with F = FG and τW = 1.0. [ER]
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we have not sufficiently developed our analysis to draw firm conclusions on the rate
of convergence of the proposed methods. Since the development of efficient inversion
algorithms is one of our main goals, further work in this direction is needed.

The 1D wave-propagation problem we used to analyze the proposed inversion
methods has two useful advantages: 1) it enables comprehensive analysis of global
convergence because it is computationally fast and 2) objective functions and gra-
dients can be analyzed as simple 1D plots. However, it has also two (related to
each other) main shortcomings: 1) it models transmitted events but not reflected
ones, and 2) its model space (a simple scalar) cannot be decomposed into different
scales, and thus does not enable insights on how different model scales (long vs. short
wavelengths) behave during the inversion process.

REFERENCES

Almomin, A. and B. Biondi, 2014, Preconditioned tomographic full waveform inver-
sion by wavelength continuation: SEG Technical Program Expanded Abstracts,
33, 944–948.

Biondi, B. and A. Almomin, 2014, Simultaneous inversion of full data bandwidth by
tomographic full waveform inversion: Geophysics, 79, WA129–WA140.

Biondi, B. and P. Sava, 1999, Wave-equation migration velocity analysis: SEG Tech-
nical Program Expanded Abstracts, 18, 1723–1726.

Sava, P. and B. Biondi, 2004, Wave-equation migration velocity analysis-I: Theory:
Geophysical Prospecting, 52, 593–606.

Shen, P. and W. W. Symes, 2008, Automatic velocity analysis via shot profile migra-
tion: Geophysics, 73, VE49–VE59.

Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical
Prospecting, 56, 765–790.

Symes, W. W. and J. J. Carazzone, 1991, Velocity inversion by differential semblance
optimization: Geophysics, 56, 654–663.

Zhang, Y. and B. Biondi, 2013, Moveout-based wave-equation migration velocity
analysis: Geophysics, 78, U31–U39.


