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ABSTRACT

I extend my previous work about the energy imaging condition for anisotropic
reverse-time migration to tilted-transverse isotropic media. Synthetic examples
show the feasibility of this implementation.

INTRODUCTION

This report constitutes the follow-up of a previous report (Cabrales-Vargas, 2016)
where I implemented the energy imaging condition (EIC) in vertical-transverse isotropic
(VTI) media. Similar to its isotropic counterpart, EIC can be used to enhance ei-
ther the tomographic component (applicable to improving the full waveform inver-
sion gradient for cycle skipping reduction) or the reflectivity component of the image
(Whitmore and Crawley, 2012; Rocha et al., 2016a,b) for imaging purposes.

In this report I first introduce the EIC for tilted-trasverse isotropic (TTI) media.
Next, I show the numerical results obtained on the BP TTI 2-D synthetic model.
Finally, I present the conclusions of this work.

METHOD

In isotropic acoustic media (e.g. Rocha et al., 2016a) the EIC can be derived from
the energy function of the acoustic wave equation, which is defined as
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where E(t) is the energy of the acoustic wave equation, u is the propagation wavefield.
From this expression Rocha et al. (2016a) derived the EIC as

I(x) =
∑

t

�S(x, t) · �̃R(x, t), (2)

where S and R are the source wavefield and the receiver wavefield, respectively. The
operator � represents a space-time gradient (also known as D’Alembertian), given in
three-dimensional space-time by
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and the operator �̃ is a modified space-time gradient given by
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where γc represents a cut-off angle that rejects seismic events in the neighborhood
of such value for the reflection angle. For example, setting γc = 0◦ preserves the
reverse-time migration (RTM) tomographic component and rejects reflections in the
neighborhood of zero degrees. On the contrary, setting γc = 90◦ rejects most of
the tomographic component and preserves the reflectivity component, similar to the
Laplacian low-cut filter (Rocha et al., 2016a).

For the TTI case I utilize the anisotropic wave equations proposed by Zhang et al.
(2011),

1

v2

∂2p

∂t2
= BG2p, (5)

where p = [p, r]T is the stress vector with horizontal component, p, and vertical
component, r, matrices B and G2 are given by

B =

[
1 + 2ε

√
1 + 2δ√

1 + 2δ 1

]
(6)

and

G2 =

[
Gxx 0

0 Gzz

]
, (7)

where Gxx = GT
xGx and Gzz = GT

z Gz, and

Gx = DxCOS(θ)−DzSIN(θ),

Gz = DzSIN(θ) +DzCOS(θ), (8)

where ε and δ are the Thomsen parameters, Dx and Dz represent the first order
derivative operators with respect x and z respectively, Gx and Gz constitute the
first order derivatives after axis rotation by the dip angle field θ, and SIN(θ) and
COS(θ) are the corresponding trigonometric functions with their elements arranged
as diagional matrices. The corresponding transpose derivatives are given by

GT
x = COS(θ)TDT

x − SIN(θ)TDT
z ,

GT
z = SIN(θ)TDT

z + COS(θ)TDT
z . (9)

Using Equations 8 and 9 we ensure that Equation 5 remains stable by keeping matrix
G2 symmetric and negative definite (Zhang et al., 2011). In the current implementa-
tion I employ central differences and staggered grids for the derivative operators Dx

and Dz, followed by linear interpolation to the original grid. Logically, DT
x and DT

z

are implemented by applying the adjoint of the interpolation operator, followed by
the adjoint of the derivative operator.
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The definition of the TTI EIC beginning from the energy of the TTI wave equation
(Equation 5) is similar to the VTI case (Cabrales-Vargas, 2016). In such a case the
energy of the VTI wave equation is given by

E(t) =

∫
Ω

{
1

v2
[‖Λ− 1

2 Y‖2ṗ + ‖Dp‖2

}
dx =

∫
Ω

‖�p‖2dx, (10)

where the columns of matrix Y are the eigenvectors of matrix B, and the diagonal
of matrix Λ contains the eigenvalues of matrix B. Such matrices are obtained from
the diagonalization process: B = YT ΛY. Matrix D represents the first derivative
operator, defined as

D =

[
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0
0 ∂
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]
. (11)

With these definitions the space-time gradient for the VTI wave equation becomes a
matrix-like operator defined by
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and the modified version with cut-off angle

�̃ = cos(2γc)
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Therefore, the VTI EIC can be written as

I(x; γc) =
∑

t
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For TTI we substitute G for D,

E(t) =

∫
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}
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∫
Ω
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where G is given as

G =

[
Gx 0
0 Gz

]
(16)

The corresponding TTI EIC thus becomes

I(x; γc) =
∑

t
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∑
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.

The image normalization employed in the VTI case (Cabrales-Vargas, 2016) is appli-
cable for TTI EIC. I use such normalization in the numerical examples presented in
the next section.
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SYNTHETIC EXAMPLES

I compare the result of the EIC with the crosscorrelation imaging condition (CIC) by
applying anisotropic RTM to one half of the BP TTI synthetic dataset (Figure 1(a)).

(a) (b)

(c) (d)

Figure 1: BP TTI synthetic model, after smoothing: (a) Velocity; (b) Epsilon; (c)
Delta; (d) Theta (dip) [ER].

Figure 2 shows the TTI-RTM result using the CIC. The seismic events are ob-
scured by the tomographic component of the RTM image. Applying the EIC with
γc = 0◦ (Figure 3) we can preserve such tomographic component. Figures 2 and 3
are very similar, but closer examination reveals that in fact, using CIC the reflections
are simply obscured, while using EIC for γc = 0◦ the reflections become attenuated.
Figures 4 and 5 show the corresponding sections after the application of a Laplacian
filter, confirming the last argument. The oceanic floor reflector persists because it
encompases a wide reflection angle range, whereas the cut-off angle has the rejection
band confined to a small threshold, in this case around 0◦. Rocha et al. (2016a)
discuss the potential benefit of attenuating the reflectivity while preserving the tomo-
graphic component in the computation of the full-waveform inversion gradient, thus
reducing the susceptibility to cycle skipping.

Figure 6 shows the result of the EIC setting γc = 90◦ to preserve reflectivity, to
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Figure 2: TTI reverse-time migration using CIC [CR].

Figure 3: TTI reverse-time migration usinf EIC with γc = 0◦ [CR].
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Figure 4: TTI reverse-time migration using CIC, after the application of a Laplacian
filter [CR].

Figure 5: TTI reverse-time migration usinf EIC with γc = 0◦, after the application of
a Laplacian filter [CR].
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be compared with Figure 4. This EIC section still exhibits remaining artifacts in the
shallow part, which are absent in the filtered version of CIC. On the other hand, the
Laplacian filter slightly affects the continuity of some shallow events near the ocean
bottom. In contrast to the acoustic case (Rocha et al., 2015, 2016a), it is possible
that in anisotropic propagation, γc values other than 90◦ might give better results
in attenuating the tomographic component. In fact, the EIC offers the flexibility to
choose among different rejection angles, but additional research is needed to determine
the optimum value of γc without relying on trial and error.

Figure 6: TTI reverse-time migration usinf EIC with γc = 90◦ [CR].

CONCLUSION

I derived a TTI energy imaging condition from the VTI case presented in the previous
SEP report. The numerical results show satisfactory preservation of the tomographic
component when setting γc = 0◦. Preservation of the reflectivity component was
less than optimum, possibly because the anisotropic case might require to set γc to
angle values other than 90◦. Therefore, additional research is needed to determine
the optimum cut-off angle.
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