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ABSTRACT

Linearized Waveform Inversion or least-squares migration is a process that aims
at obtaining a better estimation of the subsurface reflectivity, in comparison with
conventional migration. During the process, the background model (velocity or
slowness) remains invariant. Only the reflectivity component is updated.
In this report we revisit the Linearized Waveform Inversion with Velocity Updat-
ing theory introduced in a previous report, and present the first synthetic exam-
ples. The method introduces controlled updates to the background model during
the reflectivity inversion, correcting for slowness inaccuracies that negatively af-
fect seismic amplitudes during conventional linearized waveform inversion. The
method incorporates Wave-Equation Migration Velocity Analysis to transform
such background model updates into perturbations in the image.

INTRODUCTION

Imaging complex oil & gas reservoirs with seismic methods demands solutions beyond
kinematically accurate subsurface images. Beyond identification of reservoir traps,
proper characterization of oil-bearing rock facies is vital for optimal drilling programs
and exploitation. One important tool in the achievement of these goals is the variation
of seismic amplitudes as a function of the rock and fluid type.

For several years, the interpretation of amplitude variations has relied on “true-
amplitude” Kirchhoff migration images. The high-frequency approximation assump-
tion entailed by Kirchhoff modeling and migration algorithms allows splitting the
solution into two components: a kinematic component, and an amplitude compo-
nent. The former is obtained by means of traveltime computations, resulting in an
image with correctly positioned seismic events in relatively simple geology. The lat-
ter (amplitude coefficients) is usually an approximation to the transport equation
solution.

Kirchhoff-based solutions present an important caveat: the high-frequency ap-
proximation fails in the presence of strong velocity contrasts and complex geology.
Downward continuation methods and two-way wave equation methods are thereby
mandatory for adequately addressing such complexities. Nonetheless, the final image
usually is only kinematically correct. One reason is that the imaging condition con-
stitutes a zero-lag crosscorrelation of the source wavefield and the receiver wavefield
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(Claerbout, 1971). The amplitudes can be balanced by implementing deconvolution
imaging conditions (e.g. Guitton et al., 2007), but the amplitude still remains inac-
curate.

One important limitation of the migration methods, regardless of the amplitude
treatment, is that they merely constitute the first step of the inversion process aimed
at estimating the subsurface reflectivity:

m̃ = L′d0, (1)

where d0 represents the seismic data collected at discrete surface locations, m̃ rep-
resents here the estimated reflectivity, and L′ represents the adjoint of the Born
modeling operator, better known as migration (Claerbout, 1992). We denominate m̃
as the migrated image. Born modeling constitutes a linearization of the full modeling
operator, L, around a background velocity (or slowness) field, with the reflectivity
acting as a perturbation in such background field.

Unfortunately, the amplitudes of the migration image are often not representative
of the geologic variations. The problem is further exacerbated by irregular and/or
sparse acquisition geometries (frequently due to obstacles and/or limited budget) and
limited frequency bandwidth of the data. As a consequence, the resulting image often
constitutes a blurred version of the subsurface reflectivity: the imperfect acquisition
geometry and limited frequency content negatively impact both the seismic resolution
and amplitude preservation.

Linearized waveform inversion (LWI) (a.k.a. least-squares migration) (e.g. Nemeth
and Schuster, 1999; Ronen and Liner, 2000; Clapp, 2005; Valenciano, 2008; Tang,
2011b; Dai et al., 2010; Fletcher et al., 2016) constitutes an iterative process for ap-
proximating the inverse of seismic modeling, hence recovering a better reflectivity
estimation than conventional migration. It can be expressed as the solution of the
normal equations, formally cast as

L′Lm = L′d0, (2)

where m constitutes the subsurface reflectivity. Solving Equations 2 is equivalent to
minimizing the following objective function in data space

Φ(m) =
1

2
‖Lm− d0‖22, (3)

or in model space

Φ(m) =
1

2
‖Hm− m̃‖22, (4)

where d = Lm constitutes synthetic data, and H is the Hessian operator associated
to the misfit function Φ (a.k.a. Gauss Newton Hessian). Note that in Equation 3 we
aim at fitting synthetic data to the recorded data, whereas in Equation 4 we aim at
fitting a reflectivity model to the migrated image. Both constitute different versions
of the same optimization problem, which is linear because the Born operator and
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the Hessian are linear with respect to the reflectivity model. In other words, such
operators are independent of the reflectivity model.

LWI has been so far parameterized exclusively in terms of the subsurface reflec-
tivity. The velocity field is assumed to be either correct or inaccurate to some degree
(e.g. Luo and Hale, 2014), but either way fixed during the optimization process. It
does not participate in the reflectivity estimation during LWI. Thus, the obvious ques-
tion is, can we push the LWI capabilities further by allowing velocity (or slowness)
to participate in the optimization process?

We developed Linearized waveform inversion with velocity updating (LWIVU)
to incorporate a perturbation component of the velocity field into the optimization
process (Cabrales-Vargas et al., 2016). The objective is to obtain better estimations
of the reflectivity with respect to conventional LWI. The updates in the velocity
(or slowness) field are intended to be perturbations small enough to maintain the
linearity of the inversion. Moreover, such perturbations are not incorporated back to
the background velocity field, but merely used to compute perturbations in the image
that would increase the accuracy of the inverted reflectivity. With this approach, we
exploit the fact that, in real data, the “correct velocity field” is accurate enough for
positioning seismic events, but remaining inaccuracies can affect the amplitudes.

LWIVU can be derived from a simplification of the nonlinear optimization process
known as full-waveform inversion (FWI), by splitting the Hessian into Gauss-Newton
Hessian and wave-equation migration velocity analysis (WEMVA) Hessian, and adding
a WEMVA-based constraint that maximizes the stacking power. In the next section
we revisit the original derivation introduced in our previous report (Cabrales-Vargas
et al., 2016). Next, we present synthetic examples in a two-layer model with a Gaus-
sian slowness anomaly. Next, we analyse the computational costs of LWIVU compared
to conventional LWI. Finally, we present the conclusions of this report.

THEORY

Derivation of LWIVU from FWI

Full-waveform inversion (FWI) (Tarantola, 1984; Virieux and Operto, 2009; Fichtner,
2011; Biondi and Almomin, 2014) is a nonlinear optimization scheme that minimizes
the misfit between the recorded seismic data, dr, and modeled data, d, with respect
to a subsurface parameters model, m,

ΦFWI(m) =
1

2
‖d− dr‖22. (5)

where d = L(m). As aforementioned, L constitutes the non-linear seismic modeling
operator. It is worth remarking that the non-linearity of this operator is with respect
to the model parameters, m. On the contrary, the operator is linear with respect to
the source term (Almomin, 2013).
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We can apply the Gauss-Newton method to minimizing the misfit function in
Equation 5. Firstly, notice that a necessary condition is that the gradient of the
misfit function vanishes at a minimum (Fichtner, 2011),

∇ΦFWI(mmin) = 0, (6)

where mmin constitutes such a minumum. Now we can expand the gradient in
Equation 6 in Taylor series around a nearby model, mi, such that the difference
δm = mmin −mi is small enough to allowing us to truncate the series at the second
term:

∇ΦFWI(mmin) ≈ ∇ΦFWI(mi) + H(mi)δm = 0, (7)

where H represents the FWI Hessian operator. It is the second derivative of the misfit
function with respect to the model parameters. We use this result to estimate the
model update, δm, by solving the linear system

H(mi)δm = −∇ΦFWI(mi), (8)

which is known as the Newton’s equation. In the FWI problem we solve Equation 8
as part of an iterative non-linear optimization scheme aimed at updating the model
parameters using mi+1 = mi + δm, repeating the process until desired convergence
is reached.

For the LWIVU derivation, we adopt the Barnier and Almomin (2014) notation,
separating the model parameters in a low-wavenumber component, b, and a high-
wavenumber component, r,

m = b + r. (9)

We refer to b and r as the background and reflectivity components, respectively. Now
we perturb each component,

m = b0 + ∆b + r0 + ∆r, (10)

where b0 constitutes the most background model, ∆b is the perturbation in the back-
ground model, r0 is the background reflectivity, and ∆r is the perturbation in the
reflectivity. In practice, we assume that the model parameters (e.g., slowness) have
transitions smooth enough to allowing us to neglect the background reflectivity, hence
r0 = 0. Therefore, the reflectivity image is defined exclusively by ∆r. For such reason
we sometimes refer to it as “the image”.

With these considerations we can recast the Newton’s equation in such a way that
we keep b0 unchanged during the inversion, and only update the perturbations by
setting δm = ∆b + ∆r. Thus, Equation 8 becomes

H(b0)[∆b + ∆r] = −∇ΦFWI(b0). (11)

We first interpret the meaning of the right-hand side of Equation 11. Back to Equa-
tion 5, let us set m = b0,

ΦFWI(b0) =
1

2
‖L(b0)− dr‖22, (12)
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with the corresponding gradient becoming

∇ΦFWI(b0) =

[
∂L(m)

∂m

∣∣∣∣
m=b0

]′[
L(b0)− dr

]
, (13)

where ′ represents the adjoint. The synthetic data evaluated at the most background
model contains transmitted and direct waves, but no reflections, while the recorded
data contains all the events. Therefore, this data difference corresponds to the neg-
ative of the recorded data after removing the transmitted and direct waves, i.e., the
negative of the reflection data, d0 = dr − L(b0). The derivative of the synthetic
data evaluated at the most background model is the Born modeling approximation.
The adjoint of this operator is reverse-time migration (RTM) (Barnier and Almomin,
2014). Therefore, the gradient in Equation 13 represents the negative of the reverse-
time migration image,

∇Φ(b0) = −∆rmig, (14)

where we represent the migrated image as ∆rmig to be consistent with the notation
employed throughout this report. The migrated image (and hence the gradient)
remains unchanged during the optimization process.

Now we interpret the left-hand side of Equation 11. According to Biondi et al.
(2015) we can split the full Hessian H into the so-called Gauss-Newton Hessian, HGN ,
and the wave-equation migration velocity analysis (WEMVA) Hessian, HW :

H = HGN + HW . (15)

Substituting Equation 14 and Equation 15 into Equation 11 we obtain

(HGN + HW )(∆b + ∆r) = ∆rmig. (16)

We can explicitely apply each Hessian to the perturbations, regrouping terms in a
convenient manner:

(HGN∆r + HW ∆b) + (HGN∆b + HW ∆r) = ∆rmig. (17)

We first analyze the first part of the left-hand side of Equation 17. The first term,
HGN∆r, is the Gauss-Newton Hessian applied to the perturbation of the reflectivity.
The Gauss-Newton Hessian constitutes the adjoint of the Born modeling operator
followed by the corresponding forward operator: HGN = LT L. Fitting this term
alone to the migrated image represents conventional LWI in model space (Valenciano
et al., 2009), to be distinguished from the LWI formulation in data space (Nemeth and
Schuster, 1999) (both methods are sketched out in Equations 1 to 3). Therefore, this
term yields a reflectivity estimation that is more accurate than the conventionally
migrated image, in terms of amplitude and seismic resolution. The second term,
HW ∆b, is the WEMVA operator applied to the perturbation of the background
model, which yields a perturbation of the reflectivity image. Such term is what we
need to implement the proposed method.
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Now we analyze the second part of the left-hand side of Equation 17. The first
term, HGN∆b, is the Gauss-Newton Hessian applied to the perturbation of the back-
ground model. Insofar as our objective is to account for reflectivity estimations, we
can neglect this term because improving the background model is not part of this
objective. The second term, HW ∆r, is the WEMVA operator applied to the pertur-
bation of the reflectivity. This term accounts for second-order scattering effects, such
as multiples. We do not consider such effects for LWIVU, therefore we can neglect
this term too.

After these considerations, we simplify Equation 17 to obtain

HGN∆r + HW ∆b =
[
HGN HW

] [∆r
∆b

]
≈∆rmig. (18)

From Equation 18 we can cast an optimization problem with the following misfit
function,

Φ1(∆r,∆b; b0) =
1

2
‖HGN∆r + HW ∆b−∆rmig‖22, (19)

where the optimization parameters are ∆r and ∆b, for a seismic experiment real-
ization with the most background model b0. Both Hessians are independent of the
optimization parameters; they only depend on b0. Hence, the optimization problem
portrayed by Equation 19 is linear. We have labeled this misfit function as Φ1 be-
cause an additional constraint is required to update ∆b in synergy with the original
purpose of producing more focused images. One way to ensure this happens is en-
forcing the maximization of stacking power, or conversely, the minimization of the
negative of stacking power. On these grounds we include an additional term in the
misfit function,

Φ2(∆b; b0) = −λ
2

2
‖HW ∆b + ∆rmig‖22, (20)

where λ is a parameter that allows us to control the level of stacking power maxi-
mization. In order to analyze the interaction between the misfit functions Φ1 and Φ2,
we express Equation 19 as an optimization problem aimed at fitting the reflectivity
model to an

¯
improved migrated image ∆̂rmig(∆b), such that

∆̂rmig(∆b) = ∆rmig −HW ∆b, (21)

therefore Equation 19 becomes

Φ1(∆r,∆b; b0) =
1

2
‖HGN∆r− ∆̂rmig(∆b)‖22, (22)

According to this definition, once ∆b satisfies the misfit function, Φ2 (thus max-

imizing the stacking power), it should yield an improved migrated image, ∆̂rmig.
However, the maximizing effect gained by ∆b precisely removes such correction from
such migrated image, because of the minus sign in Equation 21. Such a scheme would
harm the reflectivity estimation. Hence, it becomes logical to re-define the improved
migrated image as the term to be maximized inside the norm in Equation 20,

∆̂rmig(∆b) = ∆rmig + HW ∆b, (23)
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thus the LWIVU misfit function becomes

Φ(∆r,∆b; b0) = Φ1(∆r,∆b; b0) + Φ2(∆b; b0)

=
1

2
‖HGN∆r− ∆̂rmig(∆b)‖22 −

λ2

2
‖∆̂rmig(∆b)‖22. (24)

Let us explicitely express Equation 24 in terms of H∆b:

Φ(∆r,∆b; b0) =
1

2
‖HGN∆r− (HW ∆b + ∆rmig)‖22 −

λ2

2
‖HW ∆b + ∆rmig‖22. (25)

In order to implement gradient-based optimization schemes we obtain the gradient
of the misfit function in Equation 25. Deriving with respect to the model parameters
∆r and ∆b,

∇∆rΦ = H′GN(HGN∆r−HW ∆b−∆rmig), (26)

∇∆bΦ = H′W (HGN∆r−HW ∆b−∆rmig)− λH′W

[
λ(HW ∆b + ∆rmig)

]
, (27)

the total gradient becomes

∇Φ =

[
∇∆rΦ
∇∆bΦ

]
=

[
H′GN 0
−H′W −λH′W

] [
HGN∆r−HW ∆b−∆rmig

λ(HW ∆b + ∆rmig).

]
(28)

The adjoint of LWIVU is the matrix-like operator at the right-hand side of Equa-
tion 28, [

H′GN 0
−H′W −λH′W

]
, (29)

which is applied to the residuals vector. Note that such residuals correspond to the
fitting goals, i.e., the optimization terms in Equation 25. The adjoint of the LWIVU
adjoint operator constitutes the LWIVU forward operator:[

HGN −HW

0 −λHW

]
. (30)

With the forward and adjoint operators we can set forth LWIVU as a gradient-based
optimization scheme. We implement the optimization using the conjugate directions
method (Claerbout, 2014). We discuss such implementation in the Appendix A. In
the Appendix B we derive the WEMVA optimization problem using maximization
of the stacking power, in an effort to provide the reader with additional tools for
understanding the LWIVU derivation.

SYNTHETIC EXAMPLES: LWI VS. LWIVU

For the sake of illustration we implement LWIVU in a 2-D synthetic dataset obtained
from a two-layer subsurface model with a Gaussian anomaly (Figure 1). The model
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space consists of 151 × 461 grid-points in depth (z) and distance (x), respectively,
plus a 48-point haloing zone for the tapering boundary conditions. Grid spacing is
∆x = ∆z = 20 m. The slowness square of the upper and lower layers are 2.5 ×
10−7 s2/m2 (2000 m/s) and 1.6× 10−7 s2/m2 (2500 m/s), respectively. The Gaussian
anomaly (Figure 2) has a minimum value of −2.3 × 10−8 s2/m2. It is added to the
first layer. For this experimental setup, the initial slowness squared model consists
of the two-layer model without the anomaly (Figure 3). This model corresponds to
the most background model, b0, whereas the anomaly constitutes the perturbation
of the background model, ∆b.

We obtained synthetic data by non-linear modeling using the true model and
a constant model (the latter consists of the slowness of the upper layer only), and
subtracted them to remove direct waves and only preserve reflections. The acquisition
geometry consists of 31 sources spaced every 300 m with the first source at x = 0.
Every source corresponds to 481 receivers spaced every 20 m. Source and receivers
lie at the surface, z = 0.

We obtained the migrated image, ∆rmig, by applying RTM to the data with
the initial model (Figure 4). The Gauss-Newton Hessian and WEMVA Hessian are
calculated with the most background model, b0. For the experiments shown in this
report we only use the diagonal of the Gauss-Newton Hessian matrix, yielding a
correction in the amplitude but not a resolution increase.

Figure 1: Slowness squared model with Gaussian anomaly. This model constitutes
the real model [ER].
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Figure 2: Slowness squared perturbation, ∆b: Gaussian anomaly [ER].

Figure 3: Slowness squared model without Gaussian anomaly. This model constitutes
the most background model, b0 [ER].
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Figure 4: RTM image, ∆rmig [CR].

In the following plots we compare the LWI reflectivity (left panels) with the
LWIVU reflectivity (right panels), and the true slowness squared perturbation (left
panels) with the LWIVU perturbation (right panels), for different λ values. We
obtained the LWI result in model space according to Equation 4, which becomes
Φ(∆r) = 1

2
‖HGN∆r−∆rmig‖22 with the notation used in the theoretical section. For

better appreciation we zoomed in on the reflectivity panels. We applied no clippling
to the reflectivity panels. In the slowness squared perturbations panels we clipped to
the minimum of the true anomaly. All the examples were run for 10 iterations, unless
otherwise specified.

Figure 5 shows the reflectivity comparison for λ = 0, i.e., without stacking power
maximization. Note the amplitude gap at the center of the reflector in both panels
caused by the incorrect slowness model. The excess in slowness square when ignor-
ing the anomaly is too small to produce kinematic errors (e.g., pull-ups), thus only
amplitudes are affected. Two linear events cross at the center of the reflector gap.
They are the smearing effect of conventional migration, and off-diagonal elements of
the Gauss-Newton Hessian are needed to collapse such artifacts. LWIVU with λ = 0
did not recover the amplitude at the gap. Moreover, the perturbation in slowness
squared is updated with the wrong polarity (positive) (Figure 6). The corresponding

“improved” migrated image, ∆̂rmig, has the gap reinforced, and the reflectivity is
fitted to such undesired image.
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Figure 7 shows the reflectivity comparison for λ = 0.5. The results are very similar
to the previous case. However, the perturbation in slowness squared (Figure 8) is less
positive than that of λ = 0 (Figure 6).

Figure 9 shows the reflectivity comparison for λ = 1.0. There is still no appar-
ent change with respect to the previous cases, but the slowness squared perturbation
flipped the sign and became negative (Figure 10). Imposing stacking power maxi-
mization pushes the perturbation of the image to fill the gap in the migrated image,
which demands a negative ∆b. The reflectivity is fitted to this improved migrated
image. Yet, 10 iterations are not enough to match the true slowness squared with
λ = 1.0, then the improved migrated image does not have the gap filled, and as
a consequence, neither does the reflectivity. Thus, we extended the inversion to 16
iterations. Note in Figure 11 that the gap previously observed in the right panel of
Figure 9 has been healed. The shaded zone still observed at the reflector center can
be the crossing linear events. The background in slowness squared in Figure 12 now
satisfactorily resembles the true perturbation.

Figure 13 shows the reflectivity comparison for λ = 1.5. The time the gap has been
healed, and the overall amplitude is increased. However, the perturbation appears to
be slightly surpassing the true anomaly (Figure 14). Note the increase in amplitude
of the subsamplig artifacts in the shallow part and the reflector leaking into the
perturbation image. They appear not to be influencing the reflectivity. Using less
iterations we can better fit the perturbation in slowness and reduce the artifacts, but
then the gap is not completely healed.

Figure 15 shows the reflectivity comparison for λ = 2.5. The gap is eliminated,
but the amplitude appears to be over-corrected (note the bias towards positive values
in the scalebar). As expected, ∆b surpasses the true slowness (Figure 16) further
than λ = 1.5. Better results are obtained at the eighth iteration (Figure 17, note
the unbiased scalebar), although ∆b remains overestimated (Figure 18). Despite the
over-correction, the overall amplitude decreased compared to λ = 1.5. The artifacts
in ∆b increased with respect to λ = 1.5 in both cases.

Finally, Figure 19 and Figure 20 are the comparisons of reflectivity and perturba-
tion in slowness squared using λ = 5.0. The gap is over-corrected, whereas the am-
plitude significantly diminishes further away from the reflector center. In addition,
the perturbation in slowness squared has been laterally compressed. The positive
surrounding halo, the subsampling artifacts, and the leaked reflector are exacerbated
compared to lower λ values. The reflectivity amplitudes can be impacted by such
effects. The energy imaging condition (Rocha et al., 2016) can potentially attenu-
ate the leaked reflectivity, whereas the subsampling artifacts can be attenuated by
addressing the model null space.
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Figure 5: Reflectivity comparison, λ = 0. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 6: Perturbation in slowness squared, λ = 0. Left: True anomaly; Right:
LWIVU perturbation [CR].

SEP–165



Cabrales et al. 13 LWIVU Theory & Results

Figure 7: Reflectivity comparison, λ = 0.5. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 8: Perturbation in slowness squared, λ = 0.5. Left: True anomaly; Right:
LWIVU perturbation [CR].
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Figure 9: Reflectivity comparison, λ = 1.0. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 10: Perturbation in slowness squared, λ = 1.0. Left: True anomaly; Right:
LWIVU perturbation [CR].
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Figure 11: Reflectivity comparison, λ = 1.0. Left: LWI reflectivity; Right: LWIVU
reflectivity. The number of iterations was increased to 16 [CR].

Figure 12: Perturbation in slowness squared, λ = 1.0. Left: True anomaly; Right:
LWIVU perturbation. The number of iterations was increased to 16 [CR].
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Figure 13: Reflectivity comparison, λ = 1.5. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 14: Perturbation in slowness squared, λ = 1.5. Left: True anomaly; Right:
LWIVU perturbation [CR].
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Figure 15: Reflectivity comparison, λ = 2.5. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 16: Perturbation in slowness squared, λ = 2.5. Left: True anomaly; Right:
LWIVU perturbation [CR].
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Figure 17: Reflectivity comparison, λ = 2.5, at 8 iterations. Left: LWI reflectivity;
Right: LWIVU reflectivity [CR].

Figure 18: Perturbation in slowness squared, λ = 2.5, at 8 iterations. Left: True
anomaly; Right: LWIVU perturbation [CR].
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Figure 19: Reflectivity comparison, λ = 5. Left: LWI reflectivity; Right: LWIVU
reflectivity [CR].

Figure 20: Perturbation in slowness squared, λ = 5. Left: True anomaly; Right:
LWIVU perturbation [CR].
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COMPUTATIONAL COST OF LWIVU

LWIVU demands more wavefield propagations than LWI because of the inclusion
of WEMVA into the process. We compare LWI and LWIVU flowcharts to quantify
them. The optimization scheme is the conjugate directions method (Appendix A). We
assume reversible propagations by using random boundary conditions (Clapp, 2009,
2010), which massively reduce storage demand at the cost of extra-propagations. The
arrows accompanying the source/receiver wavefield symbols signify forward propaga-
tion (right-pointing arrow) and backward propagation (left-pointing arrow) in time.

Figure 21 shows a flowchart of LWI performed in data space (in model space
is trivial; LWI is virtually instantaneous once the Gauss-Newton Hessian has been
pre-computed). We perform source wavefield and residual wavefield backward prop-
agations in order to compute the gradient each iteration. In other words, the adjoint
of Born modeling or RTM (a forward propagation of the source wavefield is required
before the iterative scheme). Subsequent projection of the gradient into data space
requires Born modeling. Thus, we perform forward propagation of the source wave-
field and the source scattered wavefield, using the gradient as entry for reflectivity.
The total number of propagations is 1+4niter, where niter is the number of iterations.

Figure 22 shows a flowchart of LWIVU. We precompute the Gauss-Newton Hes-
sian, e.g., using point-spread functions (Fletcher et al., 2016), and apply it on demand.
Now the gradient consists of two members: one relates to the reflectivity and the other
relates to the perturbation of the background model (see Appendix A for details). The
former consists of applying the Gauss-Newton Hessian to the appropriate residual,
not requiring wavefield propagations. The latter consists of applying the WEMVA
Hessian to a linear combination of the residuals. Here WEMVA requires four back-
ward wavefield propagations of the source wavefield and the receiver wavefield, among
the souce scattered wavefield and the receiver scattered wavefield, using the residuals
as entries for perturbations in the image (constituting the adjoing of WEMVA). For
the projection of the gradient into data space we apply WEMVA again. We forward
propagate the source wavefield and the receiver wavefield, among the source scattered
wavefield and the receiver scattered wavefield using the appropriate member of the
gradient as entry for perturbations of the background model (constituting forward
WEMVA). Accounting for the initial forward propagation of the source wavefield,
the total number of propagations is 1 + 8niter, i.e. twice as much as in LWIVU, and
excluding pre-computation of the Gauss-Newton Hessian.

From this analysis we recognize the computational demands as the main caveat of
LWIVU. Nonetheless, we envision a situation where this method can be applicable.
In reservoir characterization, it can be advantageous to perform LWI in model space
in order to take advantage of amplitude variations with enhanced resolution, for bet-
ter identification of oil-targets. We typically use small seismic volumes encompassing
only the oil field of interest, so expensive iterative-based imaging methods become af-
fordable. In case of small velocity errors impacting the amplitudes, we can implement
LWIVU to rectify the reflectivity, without re-computing the Gauss-Newton Hessian.

SEP–165



Cabrales et al. 21 LWIVU Theory & Results

𝑘
=
𝑛 𝑖𝑡

𝑒𝑟

𝚫𝐫
0
=
0;

𝐟 0
=
−𝐝

0

N
O

YE
S

𝐟 𝑘+
1
=
𝐟 𝑘
+
δ𝐟

𝑘+
1

𝚫𝐫
𝑘+

1
=
𝚫𝐫

𝑘
+
δ𝚫

𝐫 𝑘
+1 Fi
na

l
𝚫𝐫

𝐱

L:
B

or
n 

m
od

el
in

g 
op

er
at

or
L’:

RT
M

 o
pe

ra
to

r
𝐒:

So
ur

ce
 w

av
ef

ie
ld

𝐑:
R

ec
ei

ve
r w

av
ef

ie
ld

δ𝐒
𝐠:

So
ur

ce
 sc

at
te

re
d 

w
av

ef
ie

ld
 (i

n 
gr

ad
.)

𝐑 𝐟
:

R
es

id
ua

l w
av

ef
ie

ld

𝚫𝐫
𝑘:

Pe
rtu

rb
. i

n 
re

fle
ct

iv
ity

 (r
ef

l. 
im

ag
e)

δ𝚫
𝐫 𝑘

:
Pe

rtu
rb

. i
n 

re
fle

ct
iv

ity
 u

pd
at

e
𝐟 𝑘

:
R

es
id

ua
l

δ𝐟
𝑘:

R
es

id
ua

l u
pd

at
e

𝐠 𝑘
:

G
ra

di
en

t
𝐆 𝑘

:
G

ra
di

en
t p

ro
je

ct
io

n 
on

to
 d

at
a 

sp
ac

e
α&

β:
Sc

al
ar

 st
ep

s

𝑘
=
0

𝐠 𝑘
=
𝐋′ 𝐟

𝑘;
   

𝐆 𝑘
=
𝐋𝐠

𝑘

𝑘
=
𝑘+

1

C
om

pu
te
α&

 β

•
In

iti
al

iz
at

io
n:

 
O

ne
 S

fw
d-

pr
op

.
•

Ea
ch

 it
er

at
io

n:
 

O
ne

 S
bw

d-
pr

op
.; 

on
e 
R
f
bw

d-
pr

op
.

O
ne

 S
fw

d-
pr

op
.; 

on
e 
δS

g
fw

d-
pr

op
.

TO
TA

L 
N

o.
 P

R
O

PA
G

AT
IO

N
S:

 4
n i
te
r+

1

δ𝚫
𝐫 𝑘

+1
=
α𝐠

𝑘
+
βδ
𝚫𝐫

𝑘
δ𝐟

𝑘+
1
=
α𝐆

𝑘
+
βδ
𝐟 𝑘

𝐒
𝐱,
𝑡

←
𝐑 𝐟

𝐱,
𝑡

𝐒
𝐱,
𝑡→

δ𝐒
𝐠
𝐱,
𝑡

𝐒
𝐱,
𝑡

→

Figure 21: Flowchart of LWI in data space [NR].
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Figure 22: Flowchart of LWIVU [NR].
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CONCLUSIONS

We revisited the LWIVU theory to make the improved image (after stacking power
maximization) the target image for the reflectivity estimation. The synthetic ex-
amples demonstrate the potential of this method to correct amplitude inaccuracies
derived from the cumulative effect of velocity (or slowness) errors. The main dis-
advantage is the computational demands, which are about twice compared to LWI,
besides requiring the pre-computation of the Gauss-Newton Hessian. However, we
foresee the applicability of LWIVU in detailed exploration works, such as reservoir
characterization, where accurately addressing amplitude variations is vital for identi-
fication and delimitation of oil-bearing rock facies.
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APPENDIX A: THE CONJUGATE DIRECTIONS
METHOD AND LWIVU

The software that implements the gradient-based optimization is based on the conju-
gate directions method (Claerbout, 2014), a “cousin” of the more popular conjugate
gradient method (Hestenes and Stiefel, 1952). In this Appendix I illustrate its imple-
mentation directly with LWIVU.

I initialize the method with an starting model. In linear problems it is often
practical to set this model to zero. The model space consists of the perturbation of
reflectivity and perturbation of the background, so the initial model is[

∆r0

∆b0

]
=

[
0
0

]
. (A-1)

Then I compute the first residual, f0, by using the fitting goals in Equation 25 evalu-
ated at the initial model:

f0 =

[
f∆r1
0

f∆r2
0

]
=

[
HGN∆r0 −HW ∆b0 −∆rmig

λ(HW ∆b0 + ∆rmig)

]
=

[
−∆rmig

λ∆rmig

]
(A-2)

The data space is the conventionally-migrated image space. Thus, the two compo-
nents of the residual, f∆r1

0 and f∆r2
0 , constitute migrated-like images.

Now I can set forth the iterative process, calculating the gradient at iteration k
using the adjoind operator (Equation 28),

gk =

[
g∆r

k

g∆b
k

]
=

[
H′GN 0
−H′W −λH′W

] [
f∆r1
k

f∆r2
k

]
(A-3)
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and then projecting such gradient onto the data space using the forward operator
(Equation 30),

Gk =

[
G∆r1

k

G∆r2
k

]
=

[
HGN −HW

0 −λHW

] [
g∆r

k

g∆b
k

]
. (A-4)

What follows next is determining the model update and the residual update. They
are given respectively by[

δ∆rk+1

δ∆bk+1

]
= α

[
g∆r

k

g∆b
k

]
+ β

[
δ∆rk

δ∆bk

]
(A-5)

and [
δf∆r1

k+1

δf∆r2
k+1

]
= α

[
G∆r1

k

G∆r2
k

]
+ β

[
δf∆r1

k

δf∆r2
k

]
, (A-6)

where α and β are parameters that define the search plane that minimizes the new
residual (Claerbout, 2014). Finally, I update the model and the residual:[

∆rk+1

∆bk+1

]
=

[
∆rk

∆bk

]
+

[
δ∆rk+1

δ∆bk+1

]
, (A-7)

[
f∆r1
k+1

f∆r2
k+1

]
=

[
f∆r1
k

f∆r2
k

]
+

[
δf∆r1

k+1

δf∆r2
k+1

]
, (A-8)

and proceed with the next iteration.

APPENDIX B: WEMVA INVERSION USING STACKING
POWER MAXIMIZATION

In this Appendix I derive the WEMVA inversion process using the maximization
of the stacking power as a focusing operator. This derivation is important to have
a better understanding of how LWIVU was derived, for maximizing a function via
minimizing its negation is tricky. Thus, I explain with special thoroughness through
this section.

The general expression for the WEMVA misfit function is (Biondi, 2006)

Φ(s2) =
1

2
‖∆rmig(s2)− F

[
∆rmig(s2)

]
‖22, (B-1)

where s2 is the slowness squared field or background model, and F is a focusing
operator applied to the migrated image. For the sake of consistency I keep the
notation for the migrated image, ∆rmig, the same as in the theoretical section.

The focusing operator enforces the correction of the migrated image without chang-
ing the background model. Such corrected image will become the target image that
the inversion process fits, now updating the background model. There are several
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focusing operators. The most popular are perhaps the differential semblance opti-
mization (DSO) (Symes and Carazzone, 1991) and the maximization of the stacking
power. The former enforces focusing by flattening the angle-domain common-image
gathers (ADCIG), whereas the latter seeks for maximum power of the stack section,
presumably occurring when offset-domain common-image gathers (ODCIG) focus,
an it is equivalent to flattening ADCIG. Maximazing the stacking power is known
to suffer from cycle skipping when velocity errors are big, but in LWIVU we assume
that velocity inaccuracies are rather small, therefore it becomes applicable.

Maximization of the stacking power is achieved using F = I + S as a focusing
operator, where I is the identity operator and S is the stacking operator. Substituting
into Equation B-1, we obtain

Φ(s2) =
1

2
‖∆rmig(s2)−

[
∆rmig(s2) + S∆rmig(s2)

]
‖22 =

1

2
‖ − S∆rmig(s2)

]
‖22 (B-2)

The minus sign is lost if we simply perform the algebra, yielding an ordinary mini-
mization. In order to achieve the maximization we move the negative sign out of the
absolute value (e.g. Tang, 2011a),

Φ(s2) =
1

2
‖∆rmig(s2)−

[
∆rmig(s2) + S∆rmig(s2)

]
‖22 = −1

2
‖S∆rmig(s2)

]
‖22 (B-3)

In the case of zero subsurface offset, the stacking operator becomes the identity op-
erator, thus

Φ(s2) = −1

2
‖∆rmig(s2)

]
‖22 (B-4)

We can linearize this problem by assuming that s2 = s2
0 + ∆s2, where s2

0 is the initial
slowness squared model (analogous to the most background model), and ∆s2 is a
perturbation in such initial model. Thus, I can expand the migrated image around
s2
0, with s2 = s2

0 + ∆s2 for a small perturbation ∆s2,

∆rmig(s2) ≈∆rmig(s2
0) +

[
∂∆rmig(s2)

∂s2
|s2=s2

0

]
∆s2 = ∆rmig(s2

0) + W∆s2, (B-5)

where ∆rmig(s2
0) is the image migrated with s2

0, and The derivative in Equation B-7
constitutes the WEMVA operator, W (equivalent to the WEMVA Hessian, HW ).
Note from the expansion in Equation B-5 that the forward WEMVA operator consti-
tutes a linear operator that relates perturbations in the background slowness squared
to perturbations in the image:

∆rmig(s2)−∆rmig(s2
0) = ∆(∆rmig) ≈W∆s2. (B-6)

Now I obtain the gradient of the misfit function (Equation B-4),

∇Φ(s2) = −
[
∂∆rmig(s2)

∂s2

∣∣∣∣
s2=s2

0

]′
[∆rmig(s2

0) + W∆s2]

= −W′[∆rmig(s2
0) + W∆s2], (B-7)
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Finally, I can initialize the conjugate directions method by setting the initial model
and the initial residual, the latter evaluating the fitting goal on the initial model (see
Appendix A),

∆s2
0 = 0; f0 = ∆rmig(s2

0) + W∆s2
0 = ∆rmig(s2

0). (B-8)

The gradient is defined with the negative of adjoint operator (Equation B-7) applied
to the residuals,

gk = −W′fk. (B-9)

and it is projected onto the data space with the negative of the forward operator

Gk = −Wgk. (B-10)

Note that the negative signs accompanying the forward and the adjoint WEMVA
operators in Equations B-9 and B-10 are also utilized in the WEMVA Hessian for the
LWIVU operator (see Appendix A).
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