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ABSTRACT

We introduce the concept of a wavefield-based amplitude variation with offset
(AVO) inversion scheme. With this approach we do not make use high-frequency
ray approximation or planar-reflector assumption used in most of the AVO in-
version algorithms. We illustrate a method to compute elastic images by simple
acoustic propagation of pressure waves, and demonstrate the equivalence with
those obtained by full elastic wavefield modeling.

INTRODUCTION

AVO inversion is a fundamental step in seismic exploration to quantitatively char-
acterize subsurface elastic properties (Foster et al., 2010). From the inverted phys-
ical parameters, reservoir analysis and simulations can be conducted (Simm et al.,
2014). Since the first discussion on AVO by Ostrander (1982), many techniques have
been proposed to perform AVO inversion (Hampson, 1991; Castagna, 1993). In re-
cent years, Bayesian non-linear and linearized AVO inversion applications have been
published (Buland and Omre, 2003; Rabben et al., 2008), thanks to the speedup of
computational resources.

Despite the capability of extensively exploring big model spaces in the context
of AVO characterization and inversion, most existing AVO schemes are affected by
the assumptions behind the full or linearized Zoeppritz equations (Aki and Richards,
2002). The first assumption is that a plane wave is impinging on an interface across
which elastic properties vary; and hence, that the incident wavefield can be decom-
posed into a superposition of plane waves. Secondly, the interface separating two
media has to be locally planar where the plane wave interacts with it. Considering
plane waves during AVO inversion inherently assumes the ray approximation. How-
ever, the ray approximation does not correctly account for the Fresnel zone of the
band-limited signals employed during a seismic experiment. The planar interface
assumption is critical, especially when dealing with complex subsurface geological
structures (Etgen et al., 2009), where the assumption breaks down. Therefore, given
our interest in characterization of deep and subsalt reservoirs it is necessary to develop
an AVO inversion approach that is not based on these assumptions.

We start by illustrating the mathematical background of the wavefield-based AVO
inversion scheme. We then describe the first step necessary to conduct such an AVO
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inversion, computing elastic images (i.e., the full waveform inversion (FWI) gradient)
using acoustically propagated wavefields. We proceed with this operation because we
are only interested in inverting the PP reflected energy. On a single reflector model
we demonstrate the equivalence of these images to those generated by a full elastic
FWI scheme. In our synthetic test the new approach is five times computationally
cheaper compared to the corresponding full elastic method.

WAVEFIELD-BASED AVO INVERSION

As shown by Innanen (2014) there exists a neat equivalence between linearized AVO
inversion and precritical reflection FWI based on Gauss-Newton Hessian inversion.
Innanen’s discussion is developed for non-constant density acoustic media; although
we do not show this connection for elastic reflectors, we expect it to hold for elastic
media as well. In addition, when the correct background model is used to perform
FWI we should obtain the correct reflectivity by a single Gauss-Newton step (Biondi
et al., 2015). Therefore, with a single Gauss-Newton inversion step for an elastic FWI
problem we expect the same result we would obtain by performing linearized AVO
inversion in the case of simple planar reflectors. However, in the former we are not
considering the same assumptions as in the latter.

The goal of both FWI and AVO inversion is to predict the amplitudes of the
recorded data with an elastic model. The primary difference is that FWI tries to
invert for all the scales of the model; whereas, in AVO inversion we are interested
in finding perturbations of the background model. We start with the usual FWI
amplitude-matching objective function defined as follows:

φ(m) =
1

2

(
dpre − dobs

)
=

1

2
(Rf(m)− dobs) , (1)

where dobs represents the recorded data, and dpre the predicted data, that is given
by a combination of the wavefield extraction operator R and the non-linear elastic
modeling operator f(m), in which m is the model vector that for the isotropic elastic
case can be parametrized in terms of first Lamé’s parameter λ, shear modulus µ,
and density ρ. The recorded data can be pressure or multicomponent data. As
previously mentioned, we are interested in performing a single Gauss-Newton step of
this non-linear problem. Therefore, our goal is to solve the following linear system:

HGN(m0)∆m = −∇φ(m0), (2)

where HGN(m0) and ∇φ(m0) represent the Gauss-Newton Hessian matrix and gradi-
ent of the objective function in equation 1, both evaluated at the background model
m0; ∆m is the elastic reflectivity that we wish to retrieve and should match the
one we would obtain by applying an AVO inversion algorithm. Despite the higher
computational cost of wavefield-based AVO inversion, we expect this new method to
correctly account for the Fresnel zone of influence of the transmitted signals when
dealing with complex subsurface geometry. Therefore, it will go beyond the approxi-
mations made in common AVO inversion methods.
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ELASTIC IMAGES FROM PRESSURE WAVES

In this section we show that we can compute an elastic FWI gradient using only
acoustically propagated P-waves when a smooth background is considered as start-
ing model. Therefore, we can save computational time because we do not have to
proceed with any full elastic propagation. Assuming that we are interested in only
inverting PP energy recorded at our receivers, we are able to compute the gradient
of the objective function defined in equation 1 using acoustically propagated wave-
fields. In fact, if our initial model does not contain sharp property contrasts we can
neglect the mode conversions and separate the propagation of P-wave and S-wave
modes from each other (Zhang and Weglein, 2009). When the spatial derivatives of
the background model are small (i.e., when the background model is smooth enough),
this approximation is valid because the nonlinear propagation operator can be diag-
onalized.

For our discussion, we use the velocity-stress formulation of the isotropic elastic
wave equation (Virieux, 1986). In this formulation the effect of recording data using
only hydrophones is that the data are given by the arithmetic average of the propa-
gated normal stress at the receiver positions. Alves (2015) shows how to implement
the adjoint Born operator in the velocity-stress formulation in order to compute the
gradient of equation 1. The imaging condition for each parameter of the λ, µ, and ρ
parametrization can be written as follows:

∇λφ = −
∫ t

0

(
∂vx,s

∂x
+

∂vz,s

∂z

)
(σxx,r + σzz,r) dt,

∇µφ = −
∫ t

0

2
∂vx,s

∂x
σxx,r + 2

∂vz,s

∂z
σzz,r +

(
∂vx,s

∂z
+

∂vz,s

∂x

)
σxz,r dt, (3)

∇ρφ =

∫ t

0

v̇x,svx,r + v̇z,svz,r dt,

where vx and vz are the wavefields of the particle velocities, σxx and σzz the normal
stress wavefields, and σxz the shear stress wavefield. In these equations the subscripts
s and r correspond to the source wavefields and the adjoint receiver wavefields, re-
spectively. Each kernel in equation 3 effectively represents an image of a given model
parameter. For brevity we have omitted the spatial and time dependence of the wave-
fields. The first two kernels can be rewritten in terms of elastic strain components,
yielding the following equations:

∇λφ = −
∫ t

0
(ε̇xx,s + ε̇zz,s) (εxx,r + εzz,r) (λ0 + 2µ0) dt, (4)

∇µφ = −2
∫ t

0
λ0 (ε̇xx,s + ε̇zz,s) (εxx,r + εzz,r)

+2µ0 (ε̇xx,sεxx,r + ε̇zz,sεzz,r + ε̇xz,sεxz,r) dt,

where λ0 and µ0 are the elastic parameters of the background model. It is interesting
that these two kernels have a term in common up to a scaling factor. However, the
shear modulus has a contribution from the shear strains that is not present in the λ
kernel that can separate the two parameters.
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As discussed at the beginning of this section, the propagation of P-wave and S-
wave modes can be separated in a slowly varying background model. Because we
are interested in matching the PP event amplitudes we can compute the necessary
source and receiver wavefields by propagating pressure fields. In fact, by knowing any
pressure wavefield p(x, z, t) we can easily compute the particle displacements u(x, z, t)
from:

u(x, z, t) =
1

ρ(x, z)

∫ t

τ=0

(∫ τ

0

∇p(x, z, τ ′)dτ ′
)

dτ, (5)

that represents the particle movements caused by a pressure exerted on a volume
element (Aki and Richards, 2002). From the particle displacements we can compute
the strain components generated by the propagating pressure wave as follows:

εxx(x, z, t) = ∂ux(x,z,t)
∂x

,

εzz(x, z, t) = ∂uz(x,z,t)
∂z

, (6)

εxz(x, z, t) = 1
2

(
∂ux(x,z,t)

∂z
+ ∂uz(x,z,t)

∂x

)
= ∂ux(x,z,t)

∂z
= ∂uz(x,z,t)

∂x
,

where the equalities in the shear strain follow from equation 5 and Schwartz’ theo-
rem. From the particle velocities and strain components of the source and receiver
wavefields we are able to compute the imaging conditions of equations 4. Now, the
only problem with equation 5 is that the receiver wavefield is computed backward in
time (Fichtner, 2010; Almomin, 2013; Biondi and O’Reilly, 2015). It is necessary to
perform the backward propagation and store the total adjoint wavefield in memory
to compute the particle displacements. This issue could limit the applicability of the
proposed method, but it can be resolved with a simple assumption. If we consider
that at the final propagation time tf the particles are at rest, we can write:

u(x, z, tf ) = 0 =
1

ρ(x, z)

∫ tf

τ=0

(∫ τ

0

∇p(x, z, τ ′)dτ ′
)

dτ ⇒∫ t

τ=tf

(∫ τ

tf

∇p(x, z, τ ′)dτ ′

)
dτ =

∫ t

τ=0

(∫ τ

0

∇p(x, z, τ ′)dτ ′
)

dτ, (7)

so we can integrate backward in time for the particle displacements. Therefore, we
can avoid storing the total adjoint wavefield in memory.

Equivalence of the elastic gradients: synthetic test

In this section we compare the elastic images obtained by cross-correlating acous-
tically propagated wavefields with the gradient computed using the full elastic op-
erators developed by Alves (2015). Figure 1 shows the model used to perform this
synthetic test where the background velocities are Vp = 2500 m/s, Vs = 1000 m/s
and a single interface is placed at 900 m. In the test we used 230 sources and 485
receivers evenly spaced by 14 m and 7 m, respectively. Figure 2 displays a single
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shot gather in which the recorded reflection presents a phase variation as the source-
receiver distance increases. By applying an elastic Born operator on this data we
obtain the elastic images shown in Figure 3(b). In Figure 3(a) we display the elastic
gradient computed by cross-correlating wavefields that have been propagated with
an acoustic propagator (Biondi and O’Reilly, 2015). The two elastic gradients are
equivalent besides negligible differences (i.e., five orders of magnitude smaller than
the energy of the images). The λ image differs from the µ image because we have
employed enough offset information so that the extra term in equation 4 is effectively
contributing. From a computational perspective the images on Figure 3(a) are five
times less computationally intensive compared to the images generated by full-elastic
wavefields.

(a) (b)

(c)

Figure 1: (a) First Lamé’s parameter, (b) shear modulus, and (c) density models with
a single interface. This model’s properties correspond to a background velocities and
density of Vp = 2500 m/s, Vs = 1000 m/s, and ρ = 2000 kg/m3. [ER]

CONCLUSIONS AND FUTURE RESEARCH DIRECTION

We have presented a new AVO inversion scheme based on wavefield propagations.
This new method does not require all the approximations that common AVO inversion
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Figure 2: Reflection data for a single shot generated by the elastic interface shown in
Figure 1. In this reflection, we have phase variations with offset that cause the wavelet
to have opposite polarity for small reflection angles compared to higher offsets. [CR]

(a)

(b)

Figure 3: Comparison between elastic images generated by acoustically propagated
wavefields and full elastic ones. (a) Elastic images from acoustic pressure waves. (b)
Elastic images from full elastic pressure waves. On the left column images for λ, in
the center images for µ, and on the right column images for ρ. Besides small difference
not detectable from the figure the gradients are equivalent. [CR]
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techniques usually include, such as ray approximation and flat reflection interfaces.
In this paper, we have shown how to perform the first step of this process: elastic
FWI gradient computation. For the purpose of inverting PP events only, we are able
to compute an elastic FWI gradient from acoustically propagated pressure fields. We
have compared full elastic images to ones computed by the proposed algorithm, and
shown their equivalence on a one-reflector model. In future reports, we will explore the
connection between FWI and AVO inversion. In particular, we want to understand the
relation between the linearized AVO equation and the Born approximation commonly
used in FWI. We will also compare inversion results from the AVO inversion and the
proposed method on simple layered models in which the two methods should provide
the same inversion results, as well as on complex subsurface models in which we
expect the approximations of common AVO inversion to be a limiting factor during
the inversion. In addition to this comparison, we will also explore the added value of
using a Gauss-Newton Hessian as opposed to a full Hessian matrix. We believe that
the second-order scattering information given by the full Hessian matrix can help us
to resolve complex interface geometries.
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