Linearized waveform inversion with (small)
velocity updates

Alejandro Cabrales-Vargas, Biondo Biondi, and Robert Clapp

ABSTRACT

Current implementations of linearized waveform inversion rely on an optimum
background model, and only allow updates in the short wavenumber component,
a.k.a. reflectivity. We attempt to take one step further allowing controlled per-
turbations in the background model. We propose constraining such perturbations
in such a way that we maximize the stacking power, therefore improving even
more the estimated reflectivity.

In this report we introduce theoretical insight about what we have called linearize
waveform inversion with velocity update.

INTRODUCTION

Reverse-time migration (RTM) (Baysal et al., 1983; Kosloff and Baysal, 1983; Gazdag
and Carrizo, 1986; McMechan, 1983) constitutes nowadays the best available tech-
nique to obtain images of the subsurface for petroleum exploration purposes. In
structurally complex areas, RT'M has proved its superiority above the most sophisti-
cated implementations of one-way wave equation migration that flourished since the
early 90s (e.g. Stoffa et al., 1990; Ristow and Riihl, 1994; Biondi, 2002), when RTM
was computationally unaffordable. Such one-way wave equation techniques aimed at
solving increasingly steep dips. On the other hand, RTM is based on the two-way
wave equation solution, which naturally accounts not only for 90° dips and beyond,
but also for wavepath trajectories difficult, if not impossible, to recover with the
one-way wave equation, such as prismatic waves, and even multiples (e.g. Liu et al.,
2011a, 2015; Wong et al., 2015).

There are, however, some numerical issues associated with the implementation
of RTM. The well known crosscorrelation imaging condition (Claerbout, 1971) pro-
duces low-wavenumber artifacts that contaminate the image, mainly in the presence
of strong velocity contrasts such as sediment-salt interfaces. Such artifacts arise from
crosscorrelations of the source and the receiver wavefields components propagating in
same directions, whereas the desired solution (corresponding to seismic reflections) is
made of corresponding wavefield components propagating in opposite directions. Con-
ventional high-pass filters are not capable of attenuating such noise without harming
the image. Proposed solutions consist of simple Laplacian low-cut filters, wavefield
separation (Liu et al., 2011b), and Poynting vectors (Yoon and Marfurt, 2006; Ren
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et al., 2013; Araujo et al., 2014). Another interesting approach was suggested by
Douma et al. (2010), who demonstrated that recasting the imaging conditions us-
ing the impedance sensitivity kernel is equivalent to conventional imaging conditions
followed by the Laplacian filter. Hence, such technique intrinsically boosts the high-
wavenumber components of the image. An equivalent reasoning was proposed by
Rocha et al. (2015a,b), through the so-called the energy norm imaging conditions.
Such solution allows the attenuation of direct waves, headwaves, and backscattering,
which are the main cause of the low-wavenumber artifacts.

Another, rather intrinsical RTM limitation (as a matter of fact, of any kind of
migration) is that it constitutes the first approximation to the inverse of the seismic
modeling experiment, the so-called adjoint operator (Claerbout, 2014). As a con-
sequence, conventional migration typically suffers of degradation in resolution and
incorrect seismic amplitudes. This situation has encouraged intense research in in-
version schemes aimed at obtaining more realistic estimations of the subsurface re-
flectivity. One product of such research is linearized waveform inversion (LWI), more
commonly known as least-squares migration (e.g. Nemeth et al., 1999; Duquet et al.,
2000; Ronen and Liner, 2000; Jiang and Schuster, 2003). This procedure consists of
minimizing a scalar function that quantifies the mismatch between synthetic data and
recorded data. Synthetic datasets are produced by applying the Born modeling ap-
prozimation to reflectivity models of the subsurface. Ideally, we would search for the
reflectivity model that corresponds to the minimum value of the mismatch function.
The optimization can be performed in the data space or in the model space, itera-
tively updating the reflectivity with the aid of optimization methods such as steepest
descent or conjugate gradients (Hestenes and Stiefel, 1952). In the data space the
procedure requires both the modeling operator and its adjoint. Such operators are
constituted by the Born modeling operator (or alternatively, one demigration opera-
tor), and the RTM operator, respectively. In the model space we apply the Hessian
operator, that can be constructed applying the modeling operator followed by the
adjoint operator to "spiky” perturbations in the model space. In both schemes it is
often necessary to include constraints in order to reject solutions corresponding either
to the model null space, or to overfitting undesired aspects of the data (e.g. unphysi-
cal events such as noise, or propagation modes not accounted for by our modeling and
adjoint operators). In the data space every iteration of LWI costs somewhat more
than two conventional migrations. Not surprisingly, the first LWI experiments were
carried out using comparatively cheaper Kirchhoff-based modeling (or demigration)
and migration algorithms. Only after RTM itself became affordable did least-squares
RTM (LSRTM) become subject of intense research (e.g. Ji, 2009; Dai et al., 2010;
Wong et al., 2011, among many others), although the original idea can be traced back
many years earlier (Ji, 1992). In order to tackle the intense computational burden
demanded by LSRTM, some techniques have been proposed such as source blending
and target oriented methods (Dai et al., 2013). Another relatively recent line of re-
search, instead of relying on traditional amplitude-matched-based LWI, is based on
the maximization of the correlation energy at zero lag , and is known as correlative
least-squares RTM (Zhan et al., 2015). The advantage of such technique is that phase
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matching does not require similar amplitudes between observed data and modeled
data, which are often difficult to match.

So far, LWI methods aim at improving the reflectivity estimation assuming that
the model parameters are optimum. Therefore, our motivation for this report is
envisioning an algorithm capable of performing LWI including a controlled velocity
perturbation. Such velocity perturbations are expected to be rather small to deserve
their incorporation into the velocity model, but significant enough to promote the
improvement of the image by maximizing the stacking power. The conception of
the method is a linear optimization scheme that updates two different aspects of the
model: a perturbation on the low-wavenumber component (related to background
velocity) and a perturbation on the high-wavenumber component (related to reflec-
tivity). Thereby, this procedure has different objective than full-waveform inversion
(FWI), which is built upon a non-linear optimization scheme that updates the model
parameters as one single entity.

This report is organized in three sections. We first make a brief review about basic
concepts of LWI and FWI. We then introduce two algorithms to implement LWI with
velocity updates. Then we compare the methods and discuss potential advantages
and disadvantages, including plausible strategies for practical implementation.

LINEARIZED WAVEFORM INVERSION VS. FULL
WAVEFORM INVERSION

In this section we offer a brief discussion about the differences between LWI and FWI
in a tutorial style.

Following the notation convention proposed by Barnier and Almomin (2014) we
characterize the subsurface by means of elastic parameters (e.g. slowness, density)
encompassed by the real variable m. We can split such variable in low-wavenumber
and high-wavenumber components:

m=D>b+r, (1)
which can be individually perturbed (Barnier and Almomin, 2014),
m = bg + Ab + rg + Ar, (2)

Full waveform inversion performs the minimization of the so-called misfit function,
® w7, which quantifies the mismatch between the recorded data, d,., and the modeled
data, d = £(m), in the least-squares sense:

Crwr(m) = || £(m) — d.[f3. (3)

Here £(m) represents the full wave propagation operator. In the case of a constant-
density acoustic medium, m usually represent the slowness squared, thereby £(m) is
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given as

£(m) [m% — Vﬂ u(x,t) = s(x,1)

d(x,,t) = u(x = x,, 1)

(4)

The first term of Equation 4 represents the solution of the acoustic wave equation in a
subsurface medium characterized by the slowness squared function m, which consti-
tutes the model parameter. The second term represents the wavefield sampled at the
receivers positions. The subsurface medium is excited by external forces represented
by the source function s(x,t).

The operator £(m) is non-linear respect to m, but it is linear respect to the source
function, s(x,t), and respect to the wavefield, u(x,t). As consequence, one can ”de-
couple” the operator from u and s, but not from m, which is what we want to invert
for. Hence, because of such non-linearity the FWI misfit function is non-quadratic,
thus it generally encompasses local minima besides the desired global minimum. For
such reason current implementations of FWI rely on initial models that are close to
the global minimum. FWTI is popularly implemented using the non-linear conjugate
gradient method and the Newton-Raphson method.

Meanwhile, linearized waveform inversion consists of realizations of the wave equa-
tion keeping the background model, my = by+Ab-+r, unchanged. We only invert for
the perturbation of the reflectivity, Ar, employing the Born approximation (Barnier
and Almomin, 2014). We usually linearize the modeling operator around ro = 0 by
smoothing the background model (Barnier and Almomin, 2014). Such assumption of
smooth background model typically corresponds to attenuation or removal of direct
arrivals and diving waves applied to the recorded data. Thus, the LWI misfit function
is giving as

Cpwr(m) = [[L(mg)Ar — [d, — £(my)] |3 (5)
where £(mg) constitutes the modeled data obtined using the background model, my,
thus containing no reflections but direct arrivals and diving waves to be subtracted
from the recorded data, d, (in practice, "surgical” filters are designed to remove such
seismic events). L(mg)Ar constitutes the Born modeling operator, defined as

5?2
Myzs — V2 uy(x,t) = s(x,t)

L(my)Ar(x,t) : d” d%ug(x, 1) 6

(mo) Ar(x, 1) {mow — VQ} u(x,t) = Ar(x, t)—at2 (6)

d(x,,t) = u(x = x,, 1)

In the first term of Equation 6 we obtain the source wavefield, ug, by solving the
acoustic wave equation as in Equation 4, but with the smooth background model,
my. We then compute in the second term the scattered wavefield, u, which is the
product of the interaction of the source wavefield with the perturbation in the re-
flectivity. Finally, we sample the scattered wavefield at the receiver locations. Born
operator L(mg)Ar is linear respect to the perturbation of the reflectivity, Ar, which
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constitutes the seismic image. This linearity is easy to understand if we recall that
the source term of the wave propagation operator is linear respect to the source. In
2

0°u
fact, the product Ar(x, t)—20 constitutes a secondary source term that produces the

scattered wavefield, u. The linearity of LWI implies that the misfit function (Equa-
tion 5) is quadratic, suggesting that there is a global minimum that potentially could
be reached, applying iterative solvers like steepest descent and conjugate gradient. In
practice, the huge volumes of typical seismic data make too expensive go beyond a
couple of tens iterations. Even if we could afford more iterations, noise in the data
and the existance of model and data null spaces would prevent significant progress.

Going back to our proposal, the premise behind LWI with velocity update comes
from the fact that the full FWI Hessian can be represented as the sum of two compo-
nents (Biondi et al., 2015): the Gauss-Newton Hessian, Hgy, and the " wave-equation
migration velocity analysis” (WEMVA) Hessian, Hy,, or simply WEMVA operator,
W. The Gauss-Newton Hessian constitutes the product of the so-called Jacobian ma-
trix by its adjoint. In the general case the Jacobian matrix, J(m), for a generic model,
m, is obtained by deriving the synthetic wavefield respect to the model parameters
and evaluating at the current model:

Ju(m)

am m=mecyrr

J (mcurr) ==

, (7)

where the synthetic wavefield, u(m), corresponds either to full wave propagation or
Born approximation (Equations 4 and 6, respectively). In the case of LWI, from
Equation 5 the Jacobian is given as

Jm=Ar) =1L, (8)

where L is the matrix representation of the linear Born modeling operator, L(m).
Hence, the corresponding Gaussian-Newton Hessian is given as

Hoy =L7L, (9)

The WEMVA part of the Hessian, W, it is only applicable to FWI because requires
the second derivative of the synthetic wavefield respect to the model parameters,
which is clearly zero in the case of LWI. This operator is composed of two parts
(Biondi et al., 2015): the source side, Wy, which is given by the correlation of the
source wavefield with the receiver scattered wavefield, and the receiver side, W,.,
which is the correlation of the receiver wavefield with the source scattered wavefield.
The term scattered wavefield refers to the interaction of the corresponding wavefields
with an image or model perturbation. The main difference of conventional WEMVA
respect to FWI related WEMVA is that in the latter, both the receiver wavefield and
the receiver scattered wavefield are applied to the data residuals (Ad = d,, — d,)
instead to the recorded data, d,.

So far, current implementations of LWI work exclusively with the corresponding
Gauss-Newton Hessian (Equation 9). We propose to include model (velocity) updates
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in the process, basing upon the incorporation of the WEMVA Hessian to the conven-
tional LWI misfit function (Equation 5). In this report we do not consider another
possible alternative: begin with the FWI misfit function (Equation 3) and simplify
from there. Such possibility is a topic for future research.

ALGORITHM PROPOSED

In this section we present an algorithm conceived to perform LWI updating the re-
flectivity model, Ar, per usual, but allowing a controlled variation of the background
model, Ab.

Let us consider the following optimization problem:

CD(AI', Ab7 bo) = %HHGN(b())AI'—f-Hw(bo)Ab— Arng”% — % [Hw(bo)Ab—f—Arng]Q

(10)
Here, Ar,,;, represents the image obtained by conventional RTM. Equation 10 is
interpreted as the search for the optimal perturbation of reflectivity (Ar) and per-
turbation in the background slowness (Ab), given a seismic experiment realization
performed on an acoustic medium of spatially variable, but fixed smooth background
slowness, bg. The resulting reflectivity obtained from HgyAr + Hy Ab is expected
to fit the conventionally RTM migrated image (first term of the righthand side).
Such optimization is subject to the condition that the perturbation in the image con-
tributed by Hy Ab, when added to the migrated image, yields a maximum in terms
of stacking power (second term). The minus sign signifies that we perform the maxi-
mization of stacking power by minimizing negative value of the function. We control
this constraint with the parameter \.

Let us simplify Equation 10 by dropping the explicit dependence on by, and
substitute W for Hyy:

1
®(Ar, Ab) = §||HGNAr + WAD — Ar,,;,|3 — %HWAb + Ar|1* (11)

In the first term we can express the Hessian components as a matrix product,

Ar

:| — Armig||§ — %[WAb + Armig]Q. (12)

The corresponding fitting functions (Claerbout, 2014) are

[Hon W] kﬁ] — Ar,,;, ~ 0

~AWAD — AAT,,;; ~ 0

We can re-cast the fitting functions as a matrix operation,

HGN W Ar . Armig (13)
0 —AW| |Ab| |[Mry,|’
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which defines our forward modeling operator. The corresponding adjoint operator is
defined by taking the transpose of the big matrix in Equation 13,

Ab| ~ |WT AW | [AAr,, |

Now [AF Ab]” constitutes the first estimation of the perturbations in reflectivity
and background model. Equations 13 and 14 constitute the elements to set an iter-
ative solution scheme, such as linear conjugate gradients, to solve LWI with velocity
updates.

DISCUSSION: IMPLEMENTATION AND FUTURE
WORK

Figure 1 shows a flowchart with the implementation of LWI with velocity updates
using the conjugate gradient method. The objective is to analyze which elements can

be possibly recycle or precomputed, and which ones have to be computed "on the
fly”.

Precompute Al /L. = Arpg @
S(x,t) £o™2 = Mg
7 @ git, = HTEen 5T
R(x,t) @ ghr = HTEA . g5° = WT(£1 — ) SRT m
Wi Laet) (o35 ey 550/
H = Hgy

Precompute
Aryig = (SIR)

S: Source wavefield
q:" — Hb2 + Whi® Receiver wavefield .
q:rz _ —)\whﬁh 8S: Source scattered wavefield
SR: Receiver scattered wavefield
= @ Arpg: Migrated image
I Ary: Estim. perturb. in reflectivity
forh = £ + aqh” Aryy; = Ary + oahd" Ab,: Estim. perturb. in background model
fiorh = £ + aqg? Aby; = Aby + oh H: Gauss-Newton Hessian
L Ww: WEMVA operator
fy: Residual
i: Gradient
hy: Search direction in model space
Qg Search direction in data space

Figure 1: Flowchart of the conjugate gradient method applied to LWI with velocity
updates
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