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ABSTRACT

Current implementations of linearized waveform inversion rely on an optimum
background model, and only allow updating the high wavenumber component,
a.k.a. reflectivity. We attempt to take one step further allowing controlled per-
turbations in the background model. We propose constraining such perturbations
in a way that maximizes the stacking power, therefore improving the estimated
reflectivity even further. We introduce theoretical insight about what we have
called linearized waveform inversion with velocity updating.

INTRODUCTION

Reverse-time migration (RTM) (Baysal et al., 1983; Kosloff and Baysal, 1983; Gazdag
and Carrizo, 1986; McMechan, 1983) constitutes the best available technique to image
the subsurface for petroleum exploration purposes. RT'M performance is superior than
sophisticated implementations of one-way wave equation migration that flourished
since the early 90s (e.g. Stoffa et al., 1990; Ristow and Riihl, 1994; Biondi, 2002).
Such solutions aimed at solving steep dipping events. RT'M is based on the two-way
wave equation solution, which accounts not only for 90° dipping events and beyond,
but also for wavepath trajectories that are difficult, if not impossible, to recover with
one-way wave equation migration, such as prismatic waves, and even multiples (e.g.
Liu et al., 2011, 2015; Wong et al., 2015).

There is an intrinsical limitation of RTM and seismic migration in general. It
constitutes the first approximation to the inverse of the seismic modeling experiment,
the so-called adjoint operator (Claerbout, 2014). As a consequence, the migration
image typically suffers from degradation in resolution and incorrect seismic ampli-
tudes, becoming a “blurred” version of the reflectivity image. The main reason is the
limited, irregular, and/or sparse acquisition coverage. Intense research has been de-
voted to producing realistic estimations of the subsurface reflectivity. One product of
such research is linearized waveform inversion (LWI), more commonly known as least-
squares migration (e.g. Nemeth et al., 1999; Duquet et al., 2000; Ronen and Liner,
2000; Jiang and Schuster, 2003). This procedure consists of minimizing a scalar misfit
function that quantifies the mismatch between synthetic data and recorded data, in
the least-squares sense. Synthetic data are produced by applying the Born modeling
operator to reflectivity models of the subsurface. We aim at finding the reflectivity
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model that minimizes the misfit function. We usually perform a gradient-based opti-
mization scheme (Hestenes and Stiefel, 1952) in the data space or in the model space,
iteratively updating the reflectivity. In the data space we need the modeling operator
(Born operator) and the adjoint (RTM). In the model space we need the Hessian op-
erator, which can be constructed by applying the modeling operator followed by the
adjoint operator to “spiky” perturbations in the model space. It is often necessary to
include constraints in both schemes, in order to reject solutions from either the model
null space, or from the overfitting of undesired events of the data (e.g. unphysical
events such as noise, or propagation modes not accounted for by our modeling and
adjoint operators). In the data space every iteration of LWI costs somewhat more
than two conventional migrations, and in the model space every iteration cost one
computation of the Hessian. Not surprisingly, the first implementations of LWI used
comparatively cheap Kirchhoff-based algorithms. Only after RTM itself became af-
fordable did least-squares RTM (LSRTM) become subject of research (e.g. Ji, 2009;
Dai et al., 2010; Wong et al., 2011, among many others), although the original idea
can be traced back many years earlier (Ji, 1992). Some techniques have been pro-
posed to tackle the intense computational burden demanded by LWI, such as source
blending and target oriented methods (Dai et al., 2013).

So far, LWI methods aim at improving the reflectivity estimation assuming that
the model parameters (particularly velocity) are optimum. Therefore, the motivation
for this report is envisioning an algorithm capable of performing LWI including con-
trolled velocity perturbations. Such velocity perturbations are expected to be rather
small to deserve their incorporation into the velocity model, but significant enough
to promote the improvement of the image by maximizing the stacking power. The
method is conceptualized as a linear optimization scheme that updates two aspects
of the model: a perturbation on the low-wavenumber component (related to back-
ground velocity) and a perturbation on the high-wavenumber component (related to
reflectivity). In contrast, full-waveform inversion (FWI) is built upon a non-linear
optimization scheme that updates the model parameters as a single entity.

This report is organized in three sections. We first make a brief review about basic
concepts of LWI and FWI. We then introduce an algorithm to implement LWI with
velocity updating using the conjugate gradient method. Finally, we analyze strategies
for practical implementation, and discuss potential issues and challenges.

LINEARIZED WAVEFORM INVERSION VS. FULL
WAVEFORM INVERSION

In this section we offer a brief discussion about the differences between LWI and FWI.

Following the notation convention proposed by Barnier and Almomin (2014),
we characterize the subsurface using model parameters (e.g. slowness, density) en-
compassed by the real variable vector m. We can split such a variable into low-
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wavenumber and high-wavenumber components,
m=>b+r,
which can be individually perturbed (Barnier and Almomin, 2014),
m = by + Ab +rg + Ar.

Full waveform inversion performs the minimization of a misfit function ® gy that
quantifies the mismatch between the recorded data, d,, and the modeled data, d =
£(m), in the least-squares sense:

Cpwi(m) = || £(m) — d.[f3. (1)

Here £(m) represents the full wave propagation operator. In the case of a constant-
density acoustic medium, m usually represents slowness squared. Therefore, £(m) is
given by

rna—2 — VQ} u(x,t) = s(x,t)
atQ Y Y

£(m) = u(x =x,,1)

(2)

The first term of Equation 2 represents the solution of the acoustic wave equation in
a subsurface medium with slowness squared m, excited by the source function s(x,t).
The second term samples the wavefield at the receivers positions, X,..

The operator £(m) is non-linear with respect to the model parameters, although
it is linear with respect to the source (Barnier and Almomin, 2014). The non-linearity
of FWI with respect m makes the misfit function non-quadratic, hence it generally
has a global minimum and several local minima. For such reason, current implemen-
tations of FWI rely on initial models that are assumed to be close enough to the
global minimum. FWTI is popularly implemented using non-linear conjugate gradient
methods and Newton-Raphson methods.

On the other hand, in linearized waveform inversion we keep the background
model fixed: myg = by + Ab + ry. Then we invert for the perturbation of the
reflectivity, Ar, using the Born approximation, which consists of the linearization of
the modeling operator around ry [See Barnier and Almomin (2014) for mathematical
details]. Setting ro = 0 is equivalent to smoothing the background model (Barnier
and Almomin, 2014). In the data domain, such smoothing corresponds to removal
of direct arrivals and diving waves from the recorded data. Thus, the LWI misfit
function is giving by

Crwr(m) = || L(mo)Ar — [d, — £(mo)] |3 (3)

where £(my) represents the synthetic data obtained using the background model,
mg. These data contains no reflections, just direct arrivals and diving waves. They
are subtracted from the recorded data, d, (in practice, “surgical” filters are designed
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to remove such seismic events). L(my) constitutes the Born modeling operator, which
operates on the reflectivity, Ar, as follows:

92
moﬁ — V2 uo(X, t) = S(X, t)

0? 0%ug(x, t) 4
{moﬁ — Vﬂ u(x,t) = Ar(x, t)T (4)

L(my)Ar(x,t) = u(x = x,,1).

ug represents the source wavefield, u represents the scattered wavefield, which uses
the source wavefield interacting with the perturbation in reflectivity as a source term.
This operator is linear with respect to Ar(a.k.a the seismic image), so the LWI misfit
function (Equation 3) is quadratic. There is only one global minimum, although not
necessarily a unique solution. The reason is because the limited bandwidth of the
data implies the presence of a model null space, that we normally reduce with model
regularization. Using gradient-based iterative solvers one could theoretically reach
the minimum after enough iterations. In practice, seismic data are huge, allowing
just few tens of iterations. Even if we could afford more iterations, the data null
space would prevent fitting exactly the data (Aster et al., 2013). Fortunately, we do
not have to fit the data exactly in order to get useful results.

The premise behind LWI with velocity updating is that the full FWI Hessian can
be expressed as the sum of two components (Biondi et al., 2015): the Gauss-Newton
Hessian, Hgy, and the “wave-equation migration velocity analysis” (WEMVA) Hes-
sian, Hy/, or simply WEMVA operator, W. In FWI the Gauss-Newton Hessian
constitutes the product of a Jacobian matriz, J(m), pre-multiplied by its adjoint.
The Jacobian matrix is obtained by deriving the synthetic wavefield with respect to
the model parameters, and evaluating the matrix at the current model.

In the case of LWI, from Equation 3 the Jacobian matrix becomes simply
J(Ar) =L,

where L is the matrix representation of the linear Born modeling operator, L(my).
Hence, the corresponding Gaussian-Newton Hessian is given by

Hey = L7L. (5)

The WEMVA component of the full Hessian, W, requires the derivative of Jacobian
with respect to the model parameters, so it is zero in the case of LWI. For such reason,
conventional LWI works exclusively with the Gauss-Newton Hessian (Equation 5).
We propose the inclusion of model (velocity) updates in the process by incorporating
WEMVA to the LWI misfit function (Equation 3). In this report we do not derive
LWI with velocity updating from FWI. Such derivation is an objective for future
research.
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ALGORITHM FOR LWI WITH VELOCITY UPDATING

In this section we present an algorithm to perform LWI that updates the reflectivity
model, Ar, and allows controlled updates of the background model, Ab.

Let us consider the following optimization problem:

(6)
Ar,,;, represents the RT'M image. Minimizing Equation 6 is interpreted as the search
of the optimal perturbation of reflectivity, Ar, and perturbation in the background
slowness, Ab. The smooth background slowness, bg, is fixed respect to the opti-
mization, but spatially variable. The reflectivity obtained from HgyAr + Hy Ab is
expected to fit the RTM image. The optimization is subject to the condition that
the perturbation in the image contributed by Hy Ab, when added to the migrated
image, maximizes the stacking power (second term). This is enforced by minimiz-
ing the negative value of the second term of ®. We control this constraint with the
parameter \.

Let us simplify Equation 6 by dropping the explicit dependence on by, and sub-
stitute W for Hyy:

1 A
®(Ar, Ab) = §||HGNAr + WADb — Ar,,;,|5 — §||WAb + Arpls (7)

In the first term we can express the Hessian components as a matrix product,

Ar

v(ar,Ab) = 31 [Hox W] | o

A
| - Al JIwWab+ ArlE ()

The corresponding fitting functions (Claerbout, 2014) are

A
[Hon W] { Al‘;] — Ar, ~ 0

“AWAD — AAr,,;, & 0

We can re-cast the fitting functions as a matrix operation,

Hoey W Ar| | Arng (9)
0 —AW| [Ab| 7 |AAr,|’
which defines our forward modeling operator. The corresponding adjoint operator is
defined by taking the transpose of the big matrix in Equation 9,

AF]  [HLy 0 ][ Aru, (10)
AD) T |WT W7 | M\Ar,, |-

Now [AF Ab]” constitutes the first estimation of the perturbations in reflectivity
and background model. Equations 9 and 10 constitute the main elements to set an
iterative solution scheme.
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DISCUSSION: IMPLEMENTATION AND POTENTIAL
ISSUES

Figure 1 shows a flowchart with the implementation of LWI with velocity updating
using the conjugate gradient method. It follows the classic implementation of an
augmented system (e.g. Nemeth et al., 1999). The objective is to analyze which ele-
ments could be recycled or precomputed (in trapezoid boxes), and which ones have
to be computed “on the fly” (rectangular boxes). The former are simply supplied to
processes (thick arrows), whereas the later are calculated just before they get into
processes (thin arrows). Quantities in the model space (gradient, g, and correspond-
ing search direction, H) have one component related to Ar and another related to
Ab. Quantities in the data space (residual, f , and corresponding search direction, q)
have two components related to perturbations in reflectivity, but the first one in turn
relates to the Gauss-Newton Hessian (I will henceforth refer to it as “the Hessian”),
and the second relates to WEMVA. Such components are distinguished throughout
using corresponding superindices. The data space is comprised of the “migration”
space, or to be more precise, the “blurred image” space (Hu et al., 2001). The model
space consists of the estimated reflectivity domain, and the estimated perturbation
in the background model domain. Finally, although the Hessian and the WEMVA
operators are symmetric, I distinguish between “forward” and “adjoint” operations
for the sake of convenience.

The flowchart shows that every iteration of the conjugate gradient method de-
mands two applications of the Hessian and two applications of WEMVA. For big-
scale problems it is convenient to precompute the Hessian (or some of its elements)
and then supply it as needed. In the case of WEMVA, the source wavefield, and the
receiver wavefield could be in principle precomputed and stored, for they only act
upon the background model, by. However, the source and receiver scattered wave-
fields operate either on Ab (48 and dR for W) or Ar (6S” and 6R” for WT), which
are updated every iteration. As a consequence, such scattered wavefields must be
recalculated twice every iteration.

In practice, the precomputation and storage of the Hessian is difficult because of
the huge number of elements it contains. The simplest approach is the computation
of the diagonal elements only. Inverting the diagonal of the Hessian has the property
of correcting the amplitudes of the image. The inclusion of the off-diagonal elements
additionally corrects for the smearing effect related to sparse and/or irregular data
acquisition. Totally neglecting the off-diagonal elements of the Hessian contradicts
our original intention to recover a more accurate and crisp image by including velocity
updates. Two possible solutions can be 1) computing only some off-diagonal elements,
and 2) computing point spread functions sparsely around the space domain, and
interpolate as required (Fletcher et al., 2016).

The precomputation of the source and the receiver wavefields has practical issues.
The storage of the entire set of time frames is computationally overwhelming at
the industrial scale. A much better alternative is to implement random boundary
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Figure 1: Flowchart of the conjugate gradient method applied to LWI with velocity

updating. [NR]
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conditions (Clapp, 2009, 2010), thus reducing the storage to two time frames per
wavefield. This is in fact a tremendous reduction in storage. However, one needs to
recompute the source and receiver wavefields for each iteration.

FUTURE WORK

So far, we have proposed LWI with velocity updating as an ad hoc solution. We
still need a formal mathematical derivation from a more general case, such as FWI.
Numerical implementation of the algorithm in simple, comprenhensible models consti-
tutes a must. Finally, we need to find an optimal convergence criterion, which would
very likely contemplate both the perturbation on the reflectivity and the perturbation
on the background model.
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