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Abstract

Compaction in reservoir overburden can impact production facilities and lead to a

significant risk of well-bore failures. Prevalent practice of time-lapse seismic pro-

cessing of 4D data above compacting reservoirs relies on picking time displacements

and converting them into estimated velocity changes and subsurface deformation.

This approach relies on prior data equalization, and requires a significant amount

of manual interpretation and quality control. In this thesis I develop methods for

automatic detection of production-induced subsurface velocity changes from seismic

data, and computational techniques of subsurface characterization from measurable

surface deformation.

In the first part of my work I describe a time-lapse inversion technique based

on a simultaneous regularized full-waveform inversion of multiple surveys. I provide

a theoretical foundation of the proposed method, and analyze its sensitivity to a

realistic 1-2% velocity deformation in the overburden. The method is applied in a

study of overburden dilation above the Gulf of Mexico Genesis field and achieves a

stable recovery of “blocky” negative velocity anomalies above compacting reservoirs.

I propose a multi-scale extension of the method for recovering both long and short-

wavelength velocity changes.

In the second part I describe a geomechanical model of overburden deformation

in response to fluid extraction or injection. I provide a method for inverting pore

pressure changes from noisy and sparse measurements of surface deformation. The

method is applied to estimating the efficiency of Cyclic Steam Stimulation (CSS) of

a heavy oil reservoir. Inverted subsurface pore pressure changes indicate a significant
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heterogeneity of the propagating steam fronts. The method is extended to a study of

sharp contrasts in reservoir attributes by using a new splitting algorithm for solving

large-scale constrained regularized optimization problems.
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Preface

The electronic version of this report1 makes the included programs and applications

available to the reader. The markings ER, CR, and NR are promises by the author

about the reproducibility of each figure result. Reproducibility is a way of organizing

computational research that allows both the author and the reader of a publication

to verify the reported results. Reproducibility facilitates the transfer of knowledge

within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the

paper. The author claims that you can reproduce such a figure from the pro-

grams, parameters, and makefiles included in the electronic document. The

data must either be included in the electronic distribution, be easily available

to all researchers (e.g., SEG-EAGE data sets), or be available in the SEP data

library2. We assume you have a UNIX workstation with Fortran, Fortran90/95,

Fortran 2003/2008, C, C++, X-Windows system and the software download-

able from our website (SEP makerules, SEPScons, SEPlib, and the SEP latex

package), or other free software such as SU. Before the publication of the elec-

tronic document, someone other than the author tests the author’s claim by

destroying and rebuilding all ER figures. Some ER figures may not be repro-

ducible by outsiders because they depend on data sets that are too large to

distribute, or data that we do not have permission to redistribute but are in

the SEP data library, or that the rules depend on commercial packages such as

1http://sepwww.stanford.edu/private/docs/sep160
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
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Matlab or Mathematica.

CR denotes Conditional Reproducibility. The author certifies that the commands

are in place to reproduce the figure if certain resources are available. The pri-

mary reasons for the CR designation is that the processing requires 20 minutes

or more.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their

figures as NR except for figures that are used solely for motivation, comparison,

or illustration of the theory, such as: artist drawings, scannings, or figures taken

from SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to Linux 2.6 (using the Intel Fortran 9*/200* com-

piler), but the code should be portable to other architectures. Reader’s suggestions are

welcome. For more information on reproducing SEP’s electronic documents, please

visit http://sepwww.stanford.edu/research/redoc/.

I use special notation for important statements and optional material.

�
Important points or statements that I would like to emphasize appear in

sections like this one.

F Optional material that can be skipped at first reading is marked as shown here and typed in a script-size

font.
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Part I

Seismic time-lapse analysis
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Chapter 1

Introduction and overview of part I

“Off we go!”

Yuri Gagarin

3



4 CHAPTER 1. INTRODUCTION AND OVERVIEW I

This first chapter provides a summary of research presented in Part I of the thesis

related to seismic imaging applications. I begin with a conceptual description of

time-lapse inverse theory and its relation with traditional seismic inversion methods.

A brief overview of physical mechanisms of production-induced subsurface model

change is followed by a summary of the existing time-lapse seismic techniques based

on full-waveform inversion, and an overview of the subsequent Part I chapters.
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A UNIFIED APPROACH TO INVERSE TIME-LAPSE

ANALYSIS

This work is dedicated to developing a systematic theory for solving time-lapse in-

version problems that I subsequently refer to as time-lapse inverse theory . The term

“time-lapse” relates to separate observations of physical phenomena taken at discrete

time intervals. Inverse time-lapse theory concerns itself with estimating or inverting

changes in the underlying physical models from such discrete observations.

Problems of time-lapse or “4D” seismic imaging and reservoir geomechanics that

arise in the Petroleum industry provide important applications for the developed the-

ory, and are the primary target of my work as an applied geophysicist. However,

many fundamental concepts, constructs and ideas that I have developed in the course

of this study, as well some mathematical, algorithmic and computational byproducts

of this research, are applicable beyond the limits of exploration seismology and reser-

voir geomechanics. I envisage ubiquitous applications of these concepts to diverse

problems of acoustic and electromagnetic inverse scattering, imaging sciences and

large-scale numerical optimization. While exploration geophysicists are the primary

and key audience of this work, I have attempted to make my narrative accessible to

specialists in applied mathematics and mathematical physics. Although a consider-

able part of this work is dedicated to providing a robust and systematic theoretical

background for the proposed inversion techniques, I have structured the material in

such a way that a motivated practitioner can go straight to the examples and case

studies, as well as the nuts and bolts of specific algorithms as required for immediate

practical application.

If we think of seismic time-lapse analysis as an estimation of changes in sub-

surface model parameters1 that occurred between two separate seismic experiments,

the “inverse time-lapse theory” can be simply regarded as a subset of the inverse

acoustic scattering theory. Indeed, classical scattering theory addresses the problem

1as a result of petroleum production, fluid injection or environmental phenomena
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of estimating properties of a “scatterer”—a perturbation in the background model—

from incident and scattered wavefields. If production-induced subsurface changes are

regarded as a scatterer, then the 4D analysis simply becomes a problem of inverse

scattering theory. If so, why develop a new “time-lapse” inverse theory?

The answer is quite simple. In practical time-lapse applications of applied geo-

physics and beyond, the background model is not known accurately. Moreover, errors

in our best estimates of the background model can be of the same magnitude as, or

even exceed, the time-lapse effects that we seek to estimate. Is it even possible to es-

timate time-lapse changes when their magnitudes can be easily masked by the effects

of measurement noise or errors in the background model? The main product of this

research is a systematic theory of inverting small (and spatially bounded) time-lapses

changes from noisy and limited observations. The proposed “time-lapse inverse the-

ory” differs from direct inverse theory by placing emphasis on accurate estimation of

relative model changes while ignoring errors in the background and perturbed models.

I provide a toolkit of robust inversion techniques for accurate inversion of time-lapse

changes, and demonstrate them on a series of synthetic and field-data examples.

�

The proposed “time-lapse inverse theory” differs from direct inverse theory

by placing emphasis on accurate estimation of relative model changes while

ignoring errors in the background and perturbed models.

SEISMIC TIME-LAPSE ANALYSIS

At this point it is worthwhile to remind the reader of some key physical mechanisms

that relate fluid production/injection or environmental changes to changes in the

reservoir or overburden rock properties. First and the most obvious effect is the ef-

fect of fluid substitution, when water or other fluids replace produced hydrocarbons,

or gas is released out of liquid hydrocarbons below the bubble point (Johnston, 2013).
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Fluid substitution changes the density and bulk modulus of the saturated rock, but

to a first order does not affect the shear modulus (Nur, 1982; Mavko et al., 2009).

As a result, fluid substitution may significantly alter the acoustic, or pressure, wave

propagation velocities within a hydrocarbon reservoir undergoing production or injec-

tion, but has a much smaller effect on the shear wave propagation velocity. Changes

in velocity contrasts at the reservoir cap rock or trap affect reflectivity and translate

into detectable changes in the amplitude of seismic signal and amplitude-versus-offset

(AVO) signatures (Dvorkin et al., 2014). Velocity changes within the reservoir and

in the overburden as a result of fluid migration2, if sufficiently large in magnitude

and spatial extent, yield detectable time shifts of seismic signals. If elastic proper-

ties of the rock frame, porosity and fluid saturations before and after productions

are known, the effect of fluid substitution (a change in saturation) on the subsurface

velocities can be accurately predicted3 using the Gassman equation (Mavko et al.,

2009; Dvorkin et al., 2014). Acoustic velocity and rock density increase as a result of

water substituting for oil or gas, and decrease as a result of gas replacing oil or water.

Shear wave velocities are relatively unaffected. Acoustic velocity changes resulting

from fluid substitution may be significant and reach hundreds of meters per second,

even for relatively small changes in fluid saturation, such as a mere 3% increase in

gas saturation (Nur, 1982).

Changes in reservoir rock properties as a result of stress changes induced by pro-

duction is another important mechanism producing time-lapse effects (Holt et al.,

2005). It should be noted that velocity dependence on the confining stress and pore

(fluid) pressure does not lend itself to easy analytical treatment and often exhibits

hysteresis4. For compacting reservoirs and overburdens undergoing dilation above

compacting reservoirs, it is more convenient to relate velocity and travel-time changes

to strain—i.e., deformation. Unlike the effects of fluid substitution that are accurately

quantifiable using the Gassman equation, the existing velocity-strain relations are em-

pirical such as the R-factor method (Hatchell and Bourne, 2005; Herwanger, 2008). In

2e.g., fluids escaping from the reservoir
3to a first order
4i.e., dependence on the stress path
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the absence of counteracting effects, acoustic and shear velocities, and rock density in-

crease within a compacting reservoir, with an increasing effective stress and dropping

pore pressure. Both acoustic and shear wave velocities typically decrease in a reservoir

under water injection, with a decreasing effective stress and increasing pore pressure

(Zoback, 2010). In a dilating, or stretching, overburden, rock density, acoustic and

shear velocities decrease. Changes in acoustic velocity due to compaction or dilation

are assumed proportional to strain and typically peak at 1-3% of the unperturbed

velocity magnitude, reaching tens of meters per second.

Of course, time-lapse velocity changes are not limited to the effects of changing

stress and fluids. Thermal and chemical processes play an important role in en-

hanced oil recovery (EOR) and result in significant induced changes of hydrocarbon

fluid and reservoir rock properties (Nur et al., 1984; Johnston, 2013). However, re-

gardless of what caused subsurface velocity changes, at the resolution limit of current

seismic imaging methods, production-induced velocity changes can be classified as

either short-wavelength “spiky” velocity model changes on a reservoir level, or long-

wavelength “blocky” changes—typically within the overburden or underburden—that

can be geometrically extensive but smaller in magnitude.

�

At seismic resolution, subsurface velocity changes can be classified as ei-

ther short-wavelength “spiky”, occurring on a reservoir level, and long-

wavelength “blocky”, affecting large areas of the overburden. Automated

image-difference techniques exist for recovering reservoir-level changes. The

main objective of Part I of this thesis is to develop an automated method

for recovering long-wavelength overburden effects, and propose a multi-scale

extension of the method.
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TIME-LAPSE FULL-WAVEFORM INVERSION

Detectability of changes in the subsurface properties induced by production was pre-

dicted in rock physics literature, and a time-lapse seismic method for the detection of

fluid substitution effects in reservoir rocks was proposed by Nur (1982), leading to a

systematic use of imaging attributes for predicting changes in the subsurface fluid pa-

rameters (Lumley, 1995). Prevalent practices of time-lapse seismic processing rely on

picking time displacements and changes in reflectivity amplitudes between migrated

baseline and monitor images, and converting them into impedance changes and sub-

surface deformation (Johnston, 2013). This approach requires a significant amount

of manual interpretation and quality control. An alternative approach is based on

using the high-resolution power of full-waveform inversion (Sirgue et al., 2010a) to

reconstruct production-induced changes from wide-offset seismic acquisitions (Routh

et al., 2012; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013; Mahar-

ramov and Biondi, 2014c; Yang et al., 2014). However, while potentially reducing the

amount of manual interpretation, time-lapse FWI is sensitive to repeatability issues

(Asnaashari et al., 2012), with both coherent and incoherent noise potentially mask-

ing important production-induced changes. A linearized joint inversion technique for

time-lapse imaging that is more robust to repeatability issues was previously pro-

posed by Ayeni (2011). In chapter 3 of this thesis I describe a joint time-lapse FWI

(Maharramov and Biondi, 2013, 2014c) that addresses repeatability issues by jointly

inverting multiple survey vintages with a model-difference regularization. This joint

inversion approach is then extended to include edge-preserving total-variation (TV)

model-difference regularization (Maharramov and Biondi, 2014e; Maharramov et al.,

2015b). The new method is shown to achieve a dramatic improvement over alterna-

tive techniques by significantly reducing oscillatory artifacts in the recovered “blocky”

model difference.
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PART I OVERVIEW

Chapter 2 describes a time-lapse scattering theory that provides a theoretical foun-

dation for the proposed joint regularized time-lapse FWI techniques operating on

different scales. Chapter 3 describes the actual joint FWI methods and algorithms,

and presents the results of synthetic experiments. Chapter 4 presents a sensitiv-

ity analysis of recovering small-magnitude long-wavelength velocity anomalies using

a phase-only joint time-lapse FWI, and provides further synthetic experiments. In

addition to recovering long-wavelength “blocky” changes in the overburden, I demon-

strate a simultaneous recovery of production effects in both overburden and reservoir

using a “cartoon + texture” model decomposition technique (Meyer, 2001; Mahar-

ramov and Biondi, 2015a). In chapter 5, the TV-regularized simultaneous inversion

technique is applied to the Gulf of Mexico Genesis Field data, and is demonstrated

to achieve a stable recovery of production-induced subsurface velocity changes (Ma-

harramov et al., 2015a).



Chapter 2

Time-lapse scattering theory

“The beginning of wisdom is to call

things by their right names.”

Confucius

11
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“Time-lapse inverse scattering theory” introduced in this chapter focuses on re-

covering changes in a physical model without accurate knowledge of the model back-

ground. More specifically, I study the feasibility of recovering low and high-wavenumber

components of model perturbation using the traditional Born and Rytov scattering

approximations, and establish a connection between the Rytov approximation and

phase-only full-waveform inversion (FWI). I provide a theoretical justification for ap-

plying a regularized simultaneous time-lapse FWI to problems of applied seismology.

I discuss the method’s sensitivity to realistic production effects in seismic data, and

its stability with respect to inaccurate starting models.
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ACOUSTIC SCATTERING

In this chapter I define a “time-lapse inverse scattering theory” as a study of the

effects that slowness perturbations have on acoustic wave propagation, and the inver-

sion of a slowness perturbation from scattered wavefields without accurate knowledge

of the background (unperturbed) slowness. I study different asymptotic representa-

tions of wavefields scattered by short and long-wavelength perturbations, and describe

implications for the choice of a numerical method for inverting the perturbations. A

theoretical sensitivity analysis of inversion accuracy to errors in the background model

is followed by the description of a solution algorithm. This algorithm forms a basis

for the numerical methods described in chapter 3.

Assuming a known background slowness s(x),x ∈ R31 and a slowness perturbation

δs(x), the total wavefield component u(x) for frequency ω satisfies the Helmholtz

equation [
∆ + ω2(s(x) + δs(x))2

]
u(x) = −f(x), x ∈ D ⊂ R3, (2.1)

where f(x) is the seismic source component for frequency ω. The total wavefield is

the sum of the incident and scattered wavefields

u(x) = uI(x) + uS(x), (2.2)

where the incident wavefield uI satisfies the Helmoholtz equation with the unper-

turbed slowness: [
∆ + ω2s2(x)

]
uI(x) = −f(x). (2.3)

Note that for the well-posedness of (2.1) and (2.3) we need to impose an additional

condition on the solution, such as the Sommerfeld radiation condition for a homoge-

neous medium (Colton and Kress, 1998). Physically, such a condition requires that

the total field be outgoing at infinity. We will assume that equations (2.1) and (2.3)

are solved in a domain D ⊂ R3, and absorbing boundary conditions (Engquist and

1acoustic slowness is the reciprocal of acoustic velocity
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Majda, 1977) are applied along the domain boundary, ensuring an outgoing propa-

gation of the wavefields.

For time-lapse problems we consider slowness perturbations δs(x) with a support

wholly contained in the interior of D. If G(x,y) is Green’s function for the unper-

turbed Helmholtz equation (2.3) in D and absorbing boundary conditions on ∂D,

then equation (2.1) is equivalent to the Lippmann-Schwinger integral equation

uS(x,y) = ω2

∫
D

G(x,y)
[
(s(y) + δs(y))2 − s2(y)

]
[uI(y) + uS(y)] dy, (2.4)

or, equivalently,

uS(x,y) = ω2

∫
supp δs

G(x,y)
[
(s(y) + δs(y))2 − s2(y)

]
[uI(y) + uS(y)] dy. (2.5)

The expression in the first square brackets is a perturbation of the “slowness squared”

denoted from now on as δs2. Note that

δs2(x) = (s(x) + δs(x))2 − s2(x) = 2s(x)δs(x) + [δs(x)]2 ≈ 2s(x)δs(x). (2.6)

The incident wavefield uI(x) in (2.4),(2.5) is assumed known.

Our modeling of the scattered wavefield does not rely on solving (2.5) but re-

quires solving the Helmholtz equation in the entire modeling domain. However, here

we briefly discuss potential advantages of solving the Lippmann-Schwinger equation

instead of the Helmholtz equation. Three advantages of solving (2.5) for time-lapse

problems instead of solving (2.1) with absorbing boundary conditions are immediately

evident. First, it suffices to solve the Lippmann-Schwinger equation in the domain of

support of δs that in practical applications is much smaller that D (e.g., compaction

effects are limited to reservoirs and reservoir overburden and underburden). After a

discretization, (2.5) becomes a system of linear equations with a dense modeling op-

erator, and the dimension of the model space is determined by the size of supp δs over

the computational grid. Second, a solution to (2.5) automatically satisfies absorbing



15

boundary conditions along ∂D because the unperturbed Green’s function G(x,y) al-

ready satisfies those conditions. Third, once the scattered field is computed inside

the support of δs, equation (2.5) can be used to compute its values outside of the

perturbation—e.g., at surface receivers.

However, discretization of (2.5)2 is a dense linear system, and its numerical prop-

erties are highly dependent on the spectral content (smoothness) of δs (Duan and

Rokhlin, 2009). “Sparsifying” preconditioners for (2.5) are an area of active research

(see Ying (2015) for homogeneous backgrounds) and merit an investigation as a po-

tentially useful technique for forward modeling of scattered wavefields for spatially

bounded perturbations. Another challenge of using (2.5) is that it explicitly contains

a Green’s function for problem (2.3). However, spatial boundedness of one of the ar-

guments allows practical application of precomputed Green’s functions (Etgen, 2012).

In (2.5) both source and receiver arguments belong to the support of perturbation

δs, making use of precomputed Green’s functions feasible for compact targets. Com-

putation of the scattered wavefield uS(x) outside of supp δs can be computationally

equally efficient as wavefield measurements are made only at receiver locations.

BORN SERIES

Assuming that δs2 = O(ε) where ε is the characteristic magnitude of a model pertur-

bation, and formally representing the scattered wavefield as a Born scattering series

uS(x) = u
(1)
S (x) + u

(2)
S (x) + . . . , (2.7)

where

u
(k)
S (x) = O(εk), k = 1, 2, . . . , (2.8)

2using quadratures similar to Duan and Rokhlin (2009) for handling singularities at x = y
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we obtain

u
(1)
S (x) = ω2

∫
supp δs

G(x,y)δs2(y)uI(y)dy,

u
(i+1)
S (x) = ω2

∫
supp δs

G(x,y)δs2(y)u
(i)
S (y)dy, i = 0, 1, . . .

(2.9)

Equations (2.9) will help us analyze the strengths of the Born series (2.7) in relat-

ing the diffracted wavefield uS(x) to δs(x) for short-wavelength model perturbations,

and its limitations for long-wavelength model perturbations. Assuming without a loss

of generality, a homogeneous background s(x) = s0, and a constant finite δs, for a

3D medium we have

G(x,y) =
exp(iωs0|x− y|)

4π|x− y|
. (2.10)

An incident plane wave propagating along axis x = x1 is given by

uI(x) = exp(iωs0x). (2.11)

For a perturbation in a sufficiently small domain far from receiver locations,

sup |(supp δs)| � |x| , (2.12)

the denominator of (2.10) is asymptotically a constant factor if y ∈ supp δs, and from

(2.9) and (2.6) we obtain

u
(1)
S (x, 0, 0) ≈ δs2 · ω2

4π |x− x0|

∫
suppδs∩R1

exp(iωs0(x− y1)) exp(iωs0y
1)dy1

=
L · δs2 · ω2

4π |x− x0|
exp(iωs0x) ≈ L · s0 · δs · ω2

2π |x− x0|
exp(iωs0x)

(2.13)

where

L = |suppδs ∩ R1(x)|, x0 ∈ suppδs ∩ R1(x), (2.14)

is length of the model perturbation along axis R1(x), and x0 is an arbitrary point
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within the support of δs. Note that (2.12) means that

|x0| � |x| , L� |x| . (2.15)

The second inequality in (2.15) can be understood as a “spikiness” of the model

perturbation as it is concentrated in a relatively small subset, compared to the char-

acteristic model dimensions, such as the distance from a source of the incident wave

(i.e., a subsurface reflector) to a surface receiver.

Equation (2.13) means that the first-order Born scattering under our assumptions

only accounts the amplitude effects but not the phase of the scattered wavefield. In-

deed, phase changes (and time delays) accumulate in (2.7) through the effect of the

denominator in (2.10), requiring progressively many terms to account for a phase delay

or advance in the scattered (transmitted) wavefield. However, transmission through

a constant perturbation δs of length L would cause a phase change proportional to

Lδs, therefore any technique based on the truncated Born scattering would be subop-

timal for relating long-wavelength, or “blocky”, velocity perturbations to measured

scattered wavefields. This is a well-known limitation of diffraction tomography (Wu

and Toksöz, 1987) that is inherited by any full-waveform inversion using the stan-

dard time-domain L2 misfit function (Fichtner, 2011). On the other hand, the Born

series is a very good scattering approximation for small-wavelength large-amplitude

perturbations as, again, demonstrated by equation (2.13): such perturbations have a

first-order effect on amplitude of the scattered wavefield.

RYTOV SERIES

The Rytov scattering series (Rytov et al., 1989; Ishimaru, 1978; Woodward, 1989)

is based on an asymptotic phase expansion of the scattered wavefield and linearly

relates phase changes with magnitudes of the slowness change to a first order, as does

the initial approximation of full-waveform inversion of phase misfits (Fichtner, 2011).

To demonstrate that, let us again study the propagation of a planar incident wave

(2.11) through a perturbation δs. Under the Rytov scattering series we represent the
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sum of the incident and scattered wavefields as

uI(x) + uS(x) = exp
[
φ(0)(x) + φ(1)(x) + φ(2)(x) + . . .

]
, (2.16)

where

φ(k)(x) = O
(
εk
)
, k = 0, 1, 2, . . . , (2.17)

and ε is again the characteristic magnitude of the perturbation. Note that in (2.16)

phase terms φ(k)(x) may have both nonzero real and imaginary parts, with the real

parts determining solution amplitude. Substituting (2.16),(2.17) into (2.1) and as-

suming that

uI(x) = exp
[
φ(0)(x)

]
, (2.18)

after grouping together the terms of the same order of magnitude we obtain:

∆φ(0)(x) + |∇φ(0)(x)|2 + ω2s2(x) = −f(x), (2.19)

and

∆φ(1)(x) + 2〈∇φ(0)(x), φ(1)(x)〉 + |∇φ(1)(x)|2 + ω2δs2(x) = 0, (2.20)

where only the first two terms of the Rytov series (2.16) are used. Assuming, for sim-

plicity but without loss of generality, a constant background s0 and a constant finite

perturbation δs, the phase change for a transmitted plane wave traveling through

a perturbation δs of characteristic dimension L is approximately proportional to

Lδs2/(2s0) ≈ Lδs. Indeed, the plane-wave solution (2.11) satisfies (2.19) outside

of supp f . Assuming a heterogeneity along the axis x only, hence

φ(1)(x) = φ(1)(x),

we obtain

d2

dx2
φ(1)(x) +

[
d

dx
φ(1)(x)

]2

+ 2iωs0
d

dx
φ(1)(x) + ω2δs2(x) = 0. (2.21)
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If slowness perturbations are small in magnitude

|δs| � 1 ⇒
∣∣∣∣δs2

s0

∣∣∣∣ � 1, (2.22)

we can drop the second term in (2.21) as it is of order O (ε2) to obtain

d2

dx2
φ(1)(x) + 2iωs0

d

dx
φ(1)(x) + ω2δs2(x) = 0. (2.23)

Furthermore, assuming that the perturbed phase is slowly changing in space, we can

drop the first term to obtain the following equation that governs a strictly imaginary

phase3

φ(1)(x) ≈ iω

∫ x

−∞

δs2(η)

2s0

dη = iω

∫
supp δs

δs2(η)

2s0

dη

≈ iω

∫
supp δs

2s0δs(η)

2s0

dη = iω

∫
supp δs

δs(η)dη.

(2.24)

Note that the discarded term in (2.23) contributes to the real phase component and

thus accounts for amplitude effects. Let us now analyze the order of magnitude of

amplitude effects that can be estimated by solving the full equation (2.23). Solving

the linear equation with constant coefficients, we obtain

d

dx
φ(1)(x) = −ω2

∫ x

−∞
e−2iωs0(x−η)δs2(η)dη, (2.25)

and after integration by parts,

d

dx
φ(1)(x) = − ω2

2iωs0

∫ x

−∞
δs2(η)de−2iωs0(x−η)

=
iω

2s0

δs2(x) − iω

2s0

∫ x

−∞
e−2iωs0(x−η)

[
δs2(η)

]′
dη

=
iω

2s0

δs2(x) − 1

4s2
0

[
δs2(x)

]′

3thus producing a phase-only Rytov approximation
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+
1

4s2
0

∫ x

−∞
e−2iωs0(x−η)

[
δs2(η)

]′′
dη

=
iω

2s0

δs2(x) −
+∞∑
k=1

iω

2s0 (2iωs0)k
[
δs2(x)

](k)
,

(2.26)

where we assume that the derivatives of squared slowness perturbation ultimately

become negligible, [δs2](k) ∼ 0. The first term in the right-hand side of (2.26) yields

the first-order phase-shift of (2.24) after integration. The odd terms of the series

in (2.26) are phases with nonzero real parts and contribute to the amplitude of the

scattered wave. Note that significant oscillations of model perturbation δs2 may result

in large spikes of the slowness derivative and thus affect the scattered amplitude. On

the other hand, oscillatory model perturbations with zero average have negligible

effect on the phase and, by extension, travel time of the scattered wave—see (2.24).

SLOWNESS INVERSION

We can now see that the phase-only Rytov approximation is applicable when the

slowness perturbations are sufficiently small (2.22) and slowly varying in space, but

possibly spread over a finite domain. The Born approximation, on the other hand,

works best for perturbations within small domains, or scattered diffractors (compare

with Slaney et al. (1984)). Indeed, the Rytov approximation with a strictly imaginary

phase is equivalent to transmission travel-time analysis: the integral in (2.24) simply

yields the travel-time delay as a result of a slowness perturbation δs.

It should be noted that while the requirement of perturbation “spikiness” (2.15) is

critical for the accuracy of the Born approximation, the requirement of “blockiness”

and small variation of the slowness perturbation is not required for the accuracy of

the Rytov approximation with a full complex phase. Indeed, solving the second-order

ordinary differential equation (2.23) in (2.26) accounts for both amplitude and phase

effects of perturbation oscillations. However, in the absence of significant perturbation

oscillations there is a simple linear relationship between the slowness perturbation and

phase change (time-shift) (2.24) that matches the linearized travel-time tomography
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approximation.

For blocky model changes affecting primarily travel-times, such as those due to

the effects of overburden dilation, a method that inverts a slowness perturbations

from the observed phase change (time-shift) may adequately resolve the perturbation

without using amplitude information. For inverting such blocky model perturbations,

in the absence of reliable amplitude information in the observed data, I propose to

use a phase-only full-waveform inversion:

‖exp iarg dm − exp iarg u(mm)‖2
2 → min, (2.27)

where arg in (2.27) stands for the complex argument; dm and u are single-frequency

components of the observed and predicted datasets, mm is the “monitor”4 slowness

model. We seek a slowness perturbation

δs = mm − mb, (2.28)

that minimizes the quadratic misfit of the observed and predicted wavefield phases

(2.27). In (2.28), mb is a known “baseline”5 model (see chapter 3).

The first iteration of the frequency-domain FWI with a phase-only misfit function

is equivalent to the linear phase-only Rytov inverse scattering approximation of model

updates. Subsequent iterations take into account the nonlinearity of the phase as a

function of slowness. The optimization problem (2.27) is solved in the frequency

domain.

If amplitude information in the observed wavefield measurements is accurate,

and our wave propagation is dynamically accurate6, then we can use “phase-plus-

amplitude” frequency-domain full-waveform inversion,

‖dm − u(mm)‖2
2 → min . (2.29)

4post-production, or after subsurface changes occurred
5pre-production, or before subsurface changes occurred
6i.e., produces accurate amplitudes
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A slowness perturbation (2.28) is nonzero only in the areas affected by production.

Other a priori information may be available about δs such as its “spikiness” (changes

within the reservoir) and “blockiness” (stretching of the overburden). We can combine

the objective functions (2.27) and (2.29) with a regularization or penalty term that

promotes desirable features and penalizes undesirable ones:

‖exp iarg dm − exp iarg u(mm)‖2
2 + P(mm − mb) → min, (2.30)

and

‖dm − u(mm)‖2
2 + P(mm − mb) → min . (2.31)

where P is some penalty function of δs (see chapter 3).

The phase-only inversion (2.27) or (2.30) has the advantage of not using the po-

tentially unreliable dynamic wavefield information. Another significant advantage of

the phase-only inversion is that in time-lapse problems of inverting long-wavelength

small-magnitude model perturbations, Rytov inverse scattering and phase-only FWI

are less sensitive to errors in the background model. For significant phase changes,

phase wraps around the wavelength when exceeding it. Fitting peaks and trough of

the modeled and observed scattered wavefields (ignoring the amplitude information)

then results in an ambiguity of the total phase change: the phase change can be re-

solved only within an integer multiple of the incident wavelength. This results in the

well-known phenomenon of cycle skipping in FWI: unless the FWI starting slowness

model is accurate within the wavelength of the incident wave, the model cannot be

resolved from signal phase information alone.

However, for time-lapse problems the phase change due to a compact velocity

anomaly of a sufficiently small magnitude is only a fraction of the wavelength. In-

deed, after translating to the time domain, time shifts due to dilation in overburden

peak at about 10 ms (Rickett et al., 2006; Maharramov and Biondi, 2015b; Mahar-

ramov et al., 2015a)—i.e., about a third of the period for a 30 Hz signal (see chap-

ter 5). Therefore, phase changes (equivalently, time delays) of scattered wavefields for

small-magnitude long-wavelength perturbations that are of interest for us can still be
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translated into slowness changes using (2.24) if there is sufficient illumination of the

anomaly. Moreover, those slowness changes are accurate to a first order regardless of

errors in the background slowness. However, errors in the background velocity model

will result in errors in the estimated velocity perturbation. For a slowness s and the

corresponding velocity model v, we have:

δs = δ

(
1

v

)
≈ −δv

v2
. (2.32)

If vR and vW and the right and wrong velocity models and δs is a slowness perturbation

estimated using phase fitting, then

δvW = −δsv2
W = −δsv2

R

(
vW
vR

)2

= δvR

(
vW
vR

)2

, (2.33)

where δvR and δvW are velocity perturbations estimated for the correct and wrong

background velocity models, respectively. Equation (2.33) means that even with a

wrong background velocity a qualitative information on the magnitude of velocity

perturbation can still be extracted from the scattered wavefield. Note that location

of the perturbation is determined by the illumination pattern of incident wavefields.

Poor target illumination results in the ambiguity of the characteristic dimension L

of the anomaly versus the perturbation magnitude δs as the two enter into (2.24) as

a product. For example, lack of reflectors above the velocity anomaly results in an

ambiguous vertical extent of the anomaly.

Note that our reliance on (2.24) requires transmission of the incident wave through

the anomaly. For reflection seismic data, this implies that the baseline model in (2.27)

contains a model contrast at an approximately correct position of actual reflectors

below and above the perturbation zone. In the presence of diving-wave7 signal this

requirement is not necessary.

7refracted
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�

Phase-only full-waveform inversion (2.27) may produce a qualitatively ac-

curate estimate of blocky, non-oscillatory production-induced model changes

even when starting from a wrong baseline model. However, if using reflection

seismic data, the baseline model should have slowness contrasts to generate

synthetic reflections around the anomaly.

ALGORITHM

The regularized FWI (2.30) and (2.31) requires that the baseline and monitor mod-

els be close in some norm. Both models may contain errors and artifacts due to

insufficient or noisy data, numerical errors, or insufficient solver iterations. While

imposing a penalty P(δs) promotes similarity of the monitor model to the baseline

model, and penalizes unwanted differences, cross-equalization of the two models can

be more efficient if both models are allowed to change.

�

Simultaneously inverting both baseline and monitor models with a model-

difference regularization promotes cross-equalization of the two models, with

a better constrained model filling in the gaps in the other model. A model-

difference regularization is chosen in such a way as to promote desirable

features in the model difference while penalizing the undesirable ones.

To implement a practical time-lapse inversion method using phase-only FWI, we

can invert two models (unperturbed baseline and perturbed monitor) simultaneously,

imposing a model-difference regularization. The latter is required to create a common

“background” model for both inversions making the application of (2.24) possible.



25

Note that baseline and monitor inversions may still cycle-skip, but another advantage

of imposing a model-difference regularization is that the two models can be forced

to be either equally accurate or equally inaccurate for wavelengths greater than the

characteristic wavelength of the inverted perturbation.

For blocky, long-wavelength anomalies I suggest imposing blockiness-promoting

total variation regularization (Maharramov and Biondi, 2014e), while for the recovery

of short-wavelength features I use an L2 Tikhonov model-difference regularization

(Maharramov and Biondi, 2013), as described in more detail in the next chapter.
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Chapter 3

Simultaneous time-lapse

full-waveform inversion

“Each problem that I solved became

a rule which served afterwards to

solve other problems.”

Rene Descartes

27
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In this chapter I describe a technique for reconstructing subsurface velocity model

changes from time-lapse seismic data using full-waveform inversion (FWI) that imple-

ments the algorithm outlined in chapter 2. The technique is based on simultaneously

inverting multiple survey vintages, with a model difference regularization using a va-

riety of norms, including the total variation (TV) seminorm. I compare this new

joint inversion method with existing techniques, and demonstrate successful recovery

of production-induced model changes from noisy synthetic data.
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TIME-LAPSE FULL-WAVEFORM INVERSION

Full-waveform inversion may be defined as solving the following optimization problem

(Tarantola, 1984; Virieux and Operto, 2009)

‖d− u(m)‖2
2 → min, (3.1)

where d denotes observation data, u is the solution of a forward-modeling problem

D(m)u = φ, (3.2)

where D is the forward-modeling operator that depends on a model vector m as a

parameter, and φ is a source. The minimization problem (3.1) is solved with respect

to either both the model m and source φ or just the model. In the frequency-domain

formulation of the acoustic waveform inversion, the forward-modeling equation (3.2)

becomes

− ω2u− v2(x1, . . . , xn)∆u = φ(ω, x1, . . . , xn), (3.3)

where ω is a temporal frequency, n is the problem dimension, and v is the acoustic

wave propagation velocity. Values of the slowness s = 1/v at all the points of the

modeling domain constitute the model parameter vector m. The direct problem (3.3)

can be solved in either frequency or time domain (Virieux and Operto, 2009). The

inverse problem (3.1) is typically solved using a multiscale approach, working from

low to high frequencies, supplying the output of each frequency inversion to the next

step (Fichtner, 2011).

FWI applications in time-lapse problems seek to recover induced changes in the

subsurface model using multiple datasets from different acquisition vintages. For two

surveys sufficiently separated in time, I call such datasets (and the associated models)

baseline and monitor.

Time-lapse FWI can be conducted by separately inverting the baseline and mon-

itor models (parallel difference), or by inverting them sequentially with, e.g., the
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baseline supplied as a starting model for the monitor inversion (sequential differ-

ence). Another alternative is to apply the double-difference method, with a baseline

model inversion followed by a monitor inversion that solves the following optimization

problem,

‖ (um − ub)− (dm − db) ‖2
2 → min, (3.4)

by changing the monitor model (Watanabe et al., 2004; Denli and Huang, 2009; Zheng

et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The subscripts in equation

(3.4) denote the baseline and monitor surveys, and d denotes the observed data. For

a phase-only inversion, in all of the subsequent equations the modeled and observed

data differences should be replaced with the corresponding “phase differences”

u − d =⇒ exp iarg u − exp iarg d, (3.5)

where arg is the complex argument function of frequency domain wavefields. Note

that unlike the traditional phase-only inversion (Fichtner, 2011), we evaluate exponent

of the phase to avoid phase discontinuity1.

JOINT TIME-LAPSE FULL-WAVEFORM INVERSION

In all of these techniques, optimization is conducted with respect to one model at a

time, albeit of different vintages at different stages of the inversion. Implementing

the algorithm of chapter 2, I propose to invert for the baseline and monitor models

simultaneously by solving either one of the following two optimization problems:

α‖ub − db‖2
2 + β‖um − dm‖2

2 + (3.6)

γ‖ (um − ub)− (dm − db) ‖2
2 + (3.7)

α1‖WbRb(mb −mPRIOR
b )‖2

2 + (3.8)

β1‖WmRm(mm −mPRIOR
m )‖2

2 + (3.9)

δ‖WR(mm −mb −∆mPRIOR)‖2
2 → min, (3.10)

1effectively normalizing the wavefield by its amplitude



31

or

α‖ub − db‖2
2 + β‖um − dm‖2

2 + (3.11)

γ‖ (um − ub)− (dm − db) ‖2
2 + (3.12)

α1‖WbRb(mb −mPRIOR
b )‖1 + (3.13)

β1‖WmRm(mm −mPRIOR
m )‖1 + (3.14)

δ‖WR(mm −mb −∆mPRIOR)‖1 → min, (3.15)

with respect to both the baseline and monitor models mb and mm. Problem (3.6-

3.10) describes time-lapse FWI with an L2 regularization of the individual models

(3.8,3.9) and model difference (3.10) (Maharramov and Biondi, 2014d). The second

formulation (3.11–3.15) involves an L1-regularization of the individual models and

their difference (Maharramov and Biondi, 2014e; Maharramov et al., 2015b). The

terms (3.11) correspond to separate baseline and monitor inversions, the term (3.12) is

the optional double difference term, the terms (3.13) and (3.14) are optional separate

baseline and monitor inversion regularization terms (Aster et al., 2011), and the

term (3.15) represents regularization of the model difference. In (3.13–3.15), R and

W denote regularization and weighting operators respectively, with the subscript

denoting the survey vintage where applicable. If R is the gradient magnitude operator

Rf(x, y, z) =
√
f 2
x + f 2

y + f 2
z , (3.16)

then (3.13–3.15) become total-variation (TV) seminorms . The latter case is of partic-

ular interest in this work as the minimization of the L1 norm of gradient may promote

“blockiness” of the model-difference, potentially reducing oscillatory artifacts (Rudin

et al., 1992; Aster et al., 2011).

A joint inversion approach has been applied earlier to the linearized waveform

inversion (Ayeni and Biondi, 2012). In Maharramov and Biondi (2013, 2014d,b),

a simultaneous full-waveform inversion problem (3.6,3.10) was studied with a single

model difference L2 regularization term (3.10).
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An implementation of the proposed simultaneous inversion algorithm requires

solving a nonlinear optimization problem with twice the data and model dimensions

of problems (3.1) and (3.4). The model difference regularization weights W and, op-

tionally, the prior ∆mPRIOR may be obtained from prior geomechanical information.

For example, a rough estimate of production-induced velocity changes can be ob-

tained from time shifts (Hatchell and Bourne, 2005; Barkved and Kristiansen, 2005)

and used to map subsurface regions of expected production-induced perturbation and

optionally provide a difference prior. However, successfully solving the L1-regularized

problem (3.11-3.12) is less sensitive to choice of the weighting operator W. For ex-

ample, I show below that the TV-regularization using (3.16) with W = 1 recovers

non-oscillatory components of the model difference, while the L2 approach would

result in either smoothing or uniform reduction of the model difference.

In addition to the fully simultaneous inversion, Maharramov and Biondi (2013,

2014d) proposed and tested a cross-updating technique that offers a simple but re-

markably effective approximation to minimizing the objective function that involves

only the terms (3.6) and (3.10), while obviating the difference regularization and

weighting operators R and W. This technique consists of one standard run of the

sequential difference algorithm, followed by a second run with the inverted monitor

model supplied as the starting model for the second baseline inversion,

mINIT →baseline inversion→ monitor inversion→

baseline inversion→ monitor inversion,
(3.17)

and computing the difference of the latest inverted monitor and baseline models.

Process (3.17) can be considered as an approximation to minimizing (3.6) and (3.10)

because non-repeatable footprints of both inversions are propagated to both models,

canceling out in the difference. Both the simultaneous inversion and cross-updating

minimize the model difference by tackling model artifacts that are in the null space

of the Fréchet derivative of the forward modeling operators. The joint inversion

minimizes the effect of such artifacts on the model difference by either minimizing

the model difference term (3.10) in the simultaneous inversion, or by propagating
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these artifacts to both models in cross-updating (3.17). Note that this process is

not guaranteed to improve the results of the baseline and monitor model inversions

but is only proposed for improving the model difference. Maharramov and Biondi

(2014d,b) demonstrated a significant improvement of model difference recovery by

both the L2-regularized target-oriented simultaneous inversion and cross-updating

compared to the parallel, sequential and double difference techniques. The simul-

taneous inversion and cross-updating yielded qualitatively similar results within the

inversion target. The simultaneous inversion allows a hybrid approach with a non-zero

double-difference term—e.g., (3.7) that was studied by Maharramov et al. (2015c) but

is not further discussed in this thesis.

SIMULTANEOUS INVERSION AND CROSS-UPDATING

In this section I will demonstrate the simultaneous inversion (3.6,3.10) and cross-

updating (3.17) methods, and compare them with earlier time-lapse FWI techniques.

Marmousi velocity model, specified on a 384×122 grid with a 24 m grid spacing is

used as a baseline. Production-induced velocity changes are modeled as a negative

−250 m/s perturbation at about 4.5 km inline 800 m depth, and a positive 300 m/s

perturbation at 6.5 km inline, 1 km depth shown in Figure 3.1. While I invert the

whole Marmousi model, only model differences for the section between the approxi-

mate inline coordinates 3.6 km and 7.2 km to the depth of approximately 1.6 km are

shown here. The inversion is carried out in the frequency domain for

3.0, 3.6, 4.3, 5.1, 6.2, 7.5, 9.0, 10.8, 12.8, and 15.5 Hz,

where the frequencies are chosen based on the estimated offset to depth range of the

data (Sirgue and Pratt, 2004). The baseline acquisition has 192 shots at a depth of

16 m with a 48 m spacing, and 381 receivers at a depth of 15 m with a 24 m spacing.

The minimum offset is 48 m. The source function is a Ricker wavelet centered at 10.1

Hz. Absorbing boundary conditions are applied along the entire model boundary,

including the surface (thus suppressing multiples). A smoothed true model is used as

a starting model for the initial baseline inversion (and for the initial monitor inversion
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Figure 3.1: True velocity difference consists of a negative (−200 m/s) perturbation
at about 4.5 km inline 800 m depth, and a positive (300 m/s) perturbation at 6.5 km

inline, 1 km depth. [ER] jfwi/. truediff

in the parallel difference). The smoothing is performed using a triangular filter with a

20-sample half-window in both vertical and horizontal directions. Random Gaussian

noise is added to the noise-free synthetic data to produce noisy data sets with 14 dB

and 7 dB signal-to-noise ratios. Noisy monitor data sets are generated for the model

perturbation of Figure 3.1, using the same acquisition geometry and source wavelet.

Results of model difference inversion from the 14 dB and 7 dB synthetic data sets us-

ing various methods are shown in Figures 3.2 and 3.3, respectively. The simultaneous

inversion objective function contains only terms (3.6) and (3.10) with no difference

prior, i.e., ∆mPRIOR = 0. The model-difference regularization weights W in (3.10)

are set to 1 outside approximately .5 km from the centers of the velocity anomalies

(Figure 3.1), tapering to zero within a smaller radius of the anomalies. The two terms

in (3.6) are of the same magnitude and therefore α and β are set to 1. Parameter δ is

chosen constant at 10−5 but can be different for different acquisition source and geom-

etry parameters. The result of the initial baseline inversion is supplied as a starting

model for both mb and mm in the simultaneous inversion. In all the inversions, up

to 10 iterations of the nonlinear conjugate gradients algorithm (Nocedal and Wright,

2006) are performed for each frequency. Neither regularization nor model priors are

used in single-model inversions (i.e., in the cross-updating, parallel, sequential, and

double difference methods).

The results of applying cross-updating to the two noisy data sets are shown on

Figures 3.2c and 3.3c, respectively. The corresponding simultaneous inversion results
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are shown on Figures 3.2d and 3.3d. Since the problem (3.1) is nonlinear, supplying

the result of the highest frequency inversion back to the lowest frequency and repeat-

ing the whole inversion cycle for all frequencies may result in achieving a better data

misfit. In repeated cycles, lower-frequency inversions usually terminate earlier but

higher frequencies still deliver model updates. For an objective comparison of the

joint inversion with the parallel, sequential and double-difference methods, the effects

of insufficient iteration count are reduced by performing an extra cycle of baseline

and monitor inversion in each of the latter methods (we can call this approach “iter-

ated” parallel, sequential and double difference). The results of applying the iterated

parallel difference to the two noisy data sets are shown on Figures 3.2a and 3.3a. The

results for the iterated sequential difference are shown on Figures 3.2b and 3.3b. The

double-difference inversions are shown on Figures 3.2e and 3.3e. The double differ-

ence method yields the worst results for noisy data, and this is consistent with earlier

tests of the method on noisy data (Asnaashari et al., 2012). The sequential difference

delivers consistent improvement over the parallel difference, while the cross-updating

delivers a significant improvement over the sequential method. The simultaneous in-

version and cross-updating appear to yield similar results where W ≈ 0. The results

of inverting the model difference from the noise-free synthetic are not shown as all

the methods perform well in this case. Joint inversion, either by cross-updating or

simultaneous inversion, demonstrates robustness with regard to uncorrelated noise in

the data.

Cross-updating keeps the baseline and monitor data spaces separate, and the

method is robust with respect to changes in acquisition geometry and source parame-

ters between surveys. Figure 3.4 demonstrates cross-updating with different surveys.

The monitor survey in this case has shot positions shifted by 24 m to the right, with

shot and receiver depths now changed to 12 and 20 m, respectively. The new monitor

Ricker source peak frequency is changed to 12.1 Hz. To isolate the effects of survey

acquisition changes from the effects of random noise, the model difference is inverted

from a clean synthetic. The result of Figure 3.4, in good agreement with the true per-

turbation of Figure 3.1, demonstrates the robustness of cross-updating with respect

to non-random survey repeatability issues.
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The new simultaneous inversion and cross-updating techniques provide robust

alternatives to the existing time-lapse FWI methods. Applying the cross-updating

method to synthetic data sets with variable amount of noise achieved a significant

reduction of artifacts in the model difference compared to the parallel, sequential,

and double difference methods. However, choosing the weighting operator W in the

simultaneous inversion has to be controlled by prior knowledge of where production-

-induced velocity changes are likely to occur. A constant weight W with an L2

model-difference regularization term (3.10) may result in an excessive penalization

and smoothing of production-induced effects, destroying the blockiness of the model

difference. In the next section we described a TV regularization approach that ad-

dresses this issue. The cross-updating method offers an attractive alternative to the

regularized simultaneous inversion as it does not require additional regularization

parameters.

In addition to achieving better results than the double difference method for noisy

synthetics, cross-updating is less sensitive to repeatability issues that are due to differ-

ences in acquisition geometry and sources. The latter may require a cross-equalization

of different data vintages (Ayeni and Biondi, 2012) prior to double differencing while

the simultaneous inversion and cross-updating do not require data cross-equalization

as these methods operate in the model space.

TOTAL-VARIATION MODEL-DIFFERENCE

REGULARIZATION

In this section I will demonstrate the simultaneous time-lapse FWI with a total-

variation model-difference regularization applied to noisy synthetic data.

As in the previous section, the same background Marmousi velocity model is

used as a baseline. Production-induced velocity changes are modeled as a negative

−200 m/s perturbation at about 4.5 km inline 800 m depth, and a positive 300

m/s perturbation at 6.5 km inline, 1 km depth, illustrated in Figure 3.7. While the

whole Marmousi model is inverted, only model differences for the section between
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Figure 3.2: Model difference inverted from a 14 dB SNR synthetic with matching
baseline and monitor acquisition geometries using (a) iterated parallel difference;
(b) iterated sequential difference; (c) cross-updating; (d) regularized simultaneous

inversion; (e) iterated double difference. [CR] jfwi/. n2
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Figure 3.3: Model difference inverted from a 7 dB SNR synthetic with matching
baseline and monitor acquisition geometries using (a) iterated parallel difference;
(b) iterated sequential difference; (c) cross-updating; (d) regularized simultaneous

inversion; (e) iterated double difference. [CR] jfwi/. n4
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Figure 3.4: Model difference inverted from a clean synthetic for different baseline and
monitor acquisition geometries and sources. [CR] jfwi/. repeatx

Figure 3.5: Target area of the baseline model inverted from a clean synthetic. [CR]

jfwi/. zcleanbase

the approximate inline coordinates 3.5 km and 7 km to the depth of approximately

1.7 km are shown here. The inversion is carried out in the frequency domain for 3.0,

3.6, 4.3, 5.1, 6.2, 7.5, 9.0, 10.8, 12.8, and 15.5 Hz, where the frequencies are chosen

based on the estimated offset to depth range of the data (Sirgue and Pratt, 2004).

The baseline acquisition has 192 shots at a depth of 16 m with a 48 m spacing, and

381 receivers at a depth of 15 m with a 24 m spacing. The minimum offset is 48 m.

The source function is a Ricker wavelet centered at 10.1 Hz. Absorbing boundary

conditions are applied along the entire model boundary, including the surface (thus

suppressing multiples). A smoothed true model is used as a starting model for the

initial baseline inversion. The smoothing is performed using a triangular filter with

a 20-sample half-window in both vertical and horizontal directions.

Random Gaussian noise is added to the noise-free synthetic data to produce a

noisy dataset with 7 dB signal-to-noise ratio. The results of baseline model inversion

from the clean and 7 dB SNR synthetic data are shown in Figures 3.5 and 3.6.
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Figure 3.6: Target area of the baseline model inverted from a 7 dB SNR synthetic.
In both cases the baseline model is reconstructed reasonably well, however, errors
due to noise are comparable in magnitude to production-induced effects. [CR]

jfwi/. zn4base

The noisy monitor dataset is generated for the model perturbation of Figure 3.7,

using the same acquisition geometry and source wavelet. Results for model difference

inversion from the 7 dB SNR synthetic datasets using various methods are shown in

Figures 3.8, 3.9, and3.10. The model-difference regularization weights W in (3.15)

are set to 1 everywhere in the modeling domain. The two terms in (3.11) are of

the same magnitude and therefore α and β are set to 1. Parameter δ is set here to

10−6 but can be varied for different acquisition source and geometry parameters. The

result of the initial baseline inversion is supplied as a starting model for both mb and

mm in the simultaneous inversion.

Figure 3.7: True velocity differences consist of a negative (−200 m/s) perturbation
at about 4.5 km inline 800 m depth and a positive (300 m/s) perturbation at 6.5 km

inline, 1 km depth. [CR] jfwi/. z4true

In all the inversions, up to 10 iterations of the nonlinear conjugate gradients al-

gorithm (Nocedal and Wright, 2006) are performed for each frequency. However,
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because the L1 component (3.15) of the objective function is not smooth, differen-

tiation of (3.16) may result in an overflow where the gradient magnitude is very

small. To avoid this, we use gradient smoothing similar to “Iteratively Re-weighted

Least Squares” (Aster et al., 2011): whenever the gradient magnitude (3.16) is be-

low some threshold value ε, division by (3.16) is substituted with division by ε. The

threshold ε = 10−5 was chosen in our experiments to be less than |∆v/v2|, with v

as the baseline model velocity within the target area, and ∆v as a lower bound on

production-induced velocity changes. Note that alternative solution techniques such

as ADMM (see appendix B) for TV-regularized problems can be employed in TV-

regularized (time-lapse) FWI (Maharramov and Biondi, 2014a) where a fixed small

ε-thresholding may adversely impact convergence. In appendix B, I describe a new

computationally efficient technique for solving large-scale L1 − TV regularized prob-

lems (“Compressive Conjugate Directions”).

Figure 3.8: Model difference inverted using iterated sequential difference. [CR]

jfwi/. zn4seqdiff

The result of applying iterated sequential difference (Maharramov and Biondi,

2014c) to the two datasets is shown in Figure 3.8. The corresponding cross-updating

and TV-regularized simultaneous inversion results are shown in Figure 3.9,3.10. While

cross-updating demonstrates certain robustness with regard to uncorrelated noise

in the data and computational artifacts (note the quantitative improvement of the

recovered difference magnitudes in Figure 3.9 compared with Figure 3.8), the TV-

regularized simultaneous inversion (Figure 3.10) achieves a significant further im-

provement by reducing oscillatory artifacts and honoring the blocky nature of the

model difference. Note, however, that imposing a model-difference regularization

results in underestimated magnitudes of velocity perturbations. Maharramov and
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Biondi (2015a) discuss a mathematical technique for improving amplitude recovery

of TV-regularized inversion by using a “cartoon+texture” model decomposition tech-

nique (Meyer, 2001).

Figure 3.9: Model difference recovered using cross-updating. [CR] jfwi/. zn4x

The new TV-regularized simultaneous inversion technique is a more robust further

development of the joint inversion methods described in the previous section. Use

of TV regularization in the simultaneous inversion allows robust recovery of blocky

production-induced changes, and penalizes unwanted model oscillations that may

mask useful production-induced changes.

Figure 3.10: Model difference recovered using the simultaneous inversion with a TV-
regularized model difference. Note the higher accuracy and stability to random noise
of the TV-regularized simultaneous inversion. [CR] jfwi/. zn4tv
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Examples of time-lapse inversion that I provided in chapter 3 demonstrate appli-

cations of time-lapse FWI with model-difference regularization to inverting velocity

changes from both phase and amplitude information. Large acquisition offsets com-

pared to target depth meant that our data had both reflected and diving-wave energy.

This chapter is dedicated to applications of a phase-only simultaneous FWI with a

model-difference regularization to reflection-only seismic data, and studying its sensi-

tivity to the wrong baseline and monitor starting models. Additionally, I demonstrate

an application the multi-model technique of Maharramov and Biondi (2015a) to si-

multaneously inverting the effects of overburden dilation and reservoir compaction.
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APPLICATION TO REFLECTION DATA

Why do we need a special chapter dedicated specifically to phase-only time-lapse FWI

of reflection data? Examples in chapter 3 involved phase and amplitude full-waveform

inversion using both reflection and refraction data, making the inversion very well-

constrained and utilizing the full high-resolution power of FWI. Many important

examples of time-lapse applications indeed involve similar inversion targets, and it

was originally expected that applications like that would be the primary target of the

developed joint time-lapse FWI technique.

However, the field time-lapse data obtained by Stanford Exploration Project for

applying and testing my method forced me to change the original plan. Survey and

target parameters of the field data precluded use of diving waves. Uncertainty in the

starting model meant that sensitivity to inaccurate starting models and cycle skipping

could be an issue. It was at this time that I developed the theory of chapter 2, aiming

to adapt my inversion technique to the challenging dataset in hand. The theory

demonstrated a sensitivity of phase-only inversion to small-magnitude blocky velocity

changes in the overburden that were of particular interest for the field data in question,

see (2.24). Qualitative accuracy of the inversion for wrong FWI starting models was

established as well, see (2.33). The purpose of this chapter is to provide numerical

corroboration of the theoretical findings of chapter 3, and lay the groundwork for field

data analysis presented in chapter 5.

SYNTHETIC MODEL

Chapter 3 has demonstrated effective recovery of blocky velocity anomalies from

long-offset acquisitions in the presence of noise and repeatability issues—see also

Maharramov and Biondi (2014e,c). In this chapter I demonstrate the recovery of

blocky anomalies in the more challenging case of phase-only inversion of reflection-

only synthetic data. Conceptually our synthetic example is similar to the field data

studied in chapter 5 and Maharramov and Biondi (2015b); Maharramov et al. (2015a).
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Figure 4.1: The true base-
line model. A flat reflector
model to study the sensitivity
of FWI of short-offset reflection
data to small velocity perturba-
tion in the overburden. [ER]

sensitivity/. 5truebase

As a baseline model I use the flat reflector model of Figure 4.1. The target

reflector (reservoir) is located at a depth of 3900 m, the monitor (perturbed) model

has two velocity anomalies—a positive +300 m/s change due to compaction and

fluid substitution within the reservoir, and a blocky negative velocity change in the

overburden above the reservoir, peaking at −50 m/s (see Figure 4.2). No physical

reflector movement is prescribed.

Figure 4.2: The true model dif-
ference is a combination of a posi-
tive +300 m/s velocity change in a
target reflector at a depth of 3900
m, and a negative velocity change
in the overburden above the re-
flector, peaking at −50 m/s. In
this chapter I investigate the sen-
sitivity of simultaneous time-lapse
FWI to small-magnitude blocky
velocity changes in the overbur-
den. [ER] sensitivity/. 5truediff

For generating synthetic data I used a towed streamer acquisition geometry with

a maximum offset of 5 km. Note that the relatively small maximum offset to target

depth ratio for the model of Figure 4.1 means the target is illuminated only by

reflection data. Figure 4.3 shows common-midpoint gathers above the center of the
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target reservoir for the baseline (blue) and monitor (red) surveys. Signals that travel

vertically through the anomaly are delayed the most, while larger-offset reflections

are delayed less as they largely bypass the anomaly. Reflections above the anomaly

show no time shift.

Figure 4.3: Time shifts observed
in common-midpoint gathers cen-
tered above the target reservoir
(blue is baseline, red is monitor).
Travel times of the monitor near-
offset reflections traveling through
the negative velocity anomaly of
Figure 4.2 are slightly delayed.
[CR] sensitivity/. 5timeshifts

Figure 4.3 represents a typical overburden dilation effect on arrival times: timeshifts

accumulate with distance traveled through the low-velocity anomaly, peaking at small

but tangible delays to the order ∼ 10ms near the reservoir top (Johnston, 2013;

Hatchell and Bourne, 2005).

TIME-LAPSE INVERSION FROM REFLECTION DATA

The results of parallel difference and cross-updating (see chapter 3) are shown in Fig-

ures 4.4 and 4.5. Note that neither method succeeds in recovering the blocky anomaly.
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The FWI starting model used in these experiments was produced by smoothing the

true model using a 1920 m smoothing window.

Figure 4.4: The parallel differ-
ence method fails to resolve the
long-wavelength velocity changes
of Figure 4.2, and produces neg-
ative short-wavelength artifacts
around the target reflector. [CR]

sensitivity/. 5pardiff

The result of simultaneous inversion with a total-variation model-difference reg-

ularization (3.11,3.15) is shown in Figure 4.6. The result is qualitatively accurate

although peak magnitudes are underestimated due to regularization, as discussed in

chapter 3 and by Meyer (2001); Maharramov and Biondi (2015a).

Figure 4.5: The cross-updated
FWI method cross-equalizes
the baseline and monitor model
but still fails to resolve the
long-wavelength overburden
changes of Figure 4.2. [CR]

sensitivity/. 5xdiff

To assess effectiveness of the inversion, in Figures 4.12(a) and 4.13(b) I show mon-

itor images migrated using the true monitor and true baseline models, respectively.

Note that the overestimated velocities in the overburden result in a downward reflec-

tor shift in Figure 4.13(b). However, migrating the monitor data using the sum of the

baseline model and the inverted blocky anomaly of Figure 4.6 results in the image of

Figure 4.13(a): the downward shift of reflectors in the overburden is now significantly
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reduced.

Figure 4.6: Simultaneous FWI
with a total-variation model-
difference regularization resolves
the long-wavelength overbur-
den changes of Figure 4.2, but
underestimates the maximum
change, depending on the reg-
ularization strength. [CR]

sensitivity/. 5tvinverted

To recover the short-wavelength changes within the reservoir, I supplied the re-

sult of Figure 4.6 as a model-difference prior to inversion (3.6,3.10), with a Tikhonov

regularization of the model difference. Note that the resulting model features both

long and short-wavelength velocity perturbations. And again, the reservoir pertur-

bation is underestimated due to the strong regularization. Note the leakage of a

small-amplitude velocity anomaly below the reservoir. This is the result of a lack of

strong reflectors below the reservoir— see Figure 4.3.

Figure 4.7: Simultaneous FWI
using Tikhonov model-difference
regularization with the long-
wavelength inversion of Figure 4.6
supplied as a prior. Note that
such a multiscale approach can
now resolve the short-wavelength
positive-velocity changes of
Figure 4.2. Strong Tikhonov
regularization results in un-
derestimated velocity changes
within the reservoir but correctly
locates the anomalies. [CR]

sensitivity/. 30multi
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SENSITIVITY TO CYCLE-SKIPPING

Time-lapse scattering theory predicts that a qualitatively accurate inversion of blocky

anomalies from phase information can be achieved despite inaccurate FWI starting

models—see (2.33). Here I study the method’s sensitivity to starting models and

cycle-skipping by inverting two isolated anomalies shown in Figure 4.8. I chose a

more challenging test than the previous model of Figure 4.2 to make it more sensitive

to the accuracy of our inversion: inversion artifacts may not only distort each anomaly

but also violate their separation.

Figure 4.8: True model difference for demonstrating the inversion of multiple over-
burden anomalies. [ER] sensitivity/. twoanom

Figure 4.9 demonstrates the recovery of two separate overburden anomalies when

the FWI starting velocity is a smoothed true velocity produced using a 1920 m

smoothing window. As before, the inversion is in good agreement with the true dif-

ference. Here I invert only for the blocky component, ignoring the spiky component

within the reservoir that is caused by fluid substitution and compaction.

The result of starting FWI from a wrong velocity (that contains a wrong high-

wavenumber component) is shown in Figure 4.10. I deliberately used a weak reg-

ularization parameter for model-difference regularization to demonstrate the effect

of diverging baseline and monitor models on the inverted model difference. Either

one or both of the baseline and monitor inversions cycle-skipped, and the models
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Figure 4.9: Inversion of the two long-wavelength overburden anomalies of Figure 4.8
using simultaneous time-lapse FWI with a total-variation model-difference regular-
ization. [CR] sensitivity/. twoanominv

diverged from each other sufficiently far to contaminate the model difference with

strong artifacts. The artifacts almost completely masked one of the anomalies and

contaminated areas not affected by production with false positives.

Figure 4.11 shows the result of using a stronger TV regularization, as prescribed by

chapter 2. By choosing a stronger model-difference regularization, we ensure a greater

conformity between the two models, that the two models cycle-skip “in synchrony”.

As a result, we are still able to qualitatively recover the anomalies, although with

strongly underestimated velocities—compare with equation (2.33).

Note that magnitude of the slowness change is underestimated as a result of the

stronger model-difference regularization in (3.15). Adopting the recommendations of

Meyer (2001); Maharramov and Biondi (2015a) can alleviate this problem so that

slowness magnitudes can be inverted more accurately. However, because of (2.33),

the wrong velocity background would still result in a quantitatively wrong velocity

perturbation. Travel-time delays can be translated into accurate slowness changes

even for wrong backgrounds as shown in (2.24)1 but a quantitatively accurate estimate

1so long as the reflected signal is present in both predicted baseline and monitor data and differs
by less than 2π/ω.
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Figure 4.10: Inversion of the two long-wavelength overburden anomalies of Fig-
ure 4.8 starting from a wrong initial model and using weak regularization (a small
regularization parameter). FWI cycle skipped, and the baseline and monitor in-
versions diverged, contaminating the difference with cycle-skipping artifacts. [CR]

sensitivity/. twoanombadweak

Figure 4.11: Inversion of the two long-wavelength overburden anomalies of Fig-
ure 4.8 starting from the same bad initial model but using a stronger regularization
(a larger regularization parameter). FWI still cycle skipped, however, the strong
model-difference regularization kept baseline and monitor within the characteristic
wavelength of the overburden anomalies. The resulting model difference inversion is
qualitatively accurate (compare with Figure 4.9), albeit stronger regularization has re-

sulted in underestimated velocity magnitudes. [CR] sensitivity/. twoanombadstrong
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of the velocity difference still requires knowledge of accurate background velocity.

Numerical experiments have born out the theoretical predictions of chapter 2 with

regard to the sensitivity of phase-only time-lapse full-waveform inversion of reflection

data to realistic production-induced time-shifts, and the method’s stability with re-

gard to inaccurate FWI starting models. In the next chapter I apply the method to

field data for a reservoir where production was associated with a significant overbur-

den dilation and reflection travel-time changes.
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(a) (b)

Figure 4.12: (a) True monitor image. (b) Monitor migrated using the baseline velocity
model. Note that overestimated velocity in the overburden results in a downward
reflector shift in the right image. [CR] sensitivity/. montrueimg,monwithbase
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(a) (b)

Figure 4.13: (a) Monitor image migrated using the sum of the baseline model and
inverted model difference of Figure 4.6. (b) Monitor migrated using the baseline
velocity model. Note that reflector shift in the overburden has been significantly
reduced in the left image. [CR] sensitivity/. improved,monwithbase
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Chapter 5

Case study: Gulf of Mexico

Genesis Field

“I pass with relief from the tossing

sea of Cause and Theory to the firm

ground of Result and Fact.”

Winston Churchill
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This chapter presents a field data application of the method developed in chap-

ters 2–4. Using phase-only simultaneous FWI with a total-variation model-difference

regularization, I invert long-wavelength small-magnitude subsurface velocity changes

induced by reservoir compaction at the Genesis field. I identify negative velocity

changes associated with overburden dilation and demonstrate that the results are

stable with respect to the amount of regularization applied. The results are consis-

tent with well measurements and earlier estimates of time strain in the overburden.
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GENESIS FIELD

The Genesis Field, operated by Chevron, is located 150 miles southwest of New

Orleans in the Green Canyon area of the central Gulf of Mexico, in approximately

770-830 m of water (Magesan et al., 2005). Oil was found in several late Pliocene

through early Pleistocene deep-water reservoirs. Most of the field’s oil and gas reserves

are in the early Pleistocene Neb 1, Neb 2, and Neb 3 reservoirs that are the primary

subject of this study (see Figure 5.1).

Figure 5.1: The Genesis field (from Magesan et al. (2005)). [NR] genesis/. map2

First oil production began in January 1999. A 3D seismic survey was shot in 1990,

and a time-lapse 3D survey was shot in October 2002 with the aim of improving field

management (Hudson et al., 2005; Magesan et al., 2005). Cumulative production from

the field at the time of the monitor survey was more than 57 MMBO, 89 MMCFG,

and 19 MMBW (Hudson et al., 2005).

In addition to fluid substitution effects, producing reservoirs compact, thereby

increasing the depth to the top of the reservoirs and causing overburden dilation

(Johnston, 2013). A time-lapse study performed by Chevron (Hudson et al., 2005)

indicated significant apparent kinematic differences in the Pleistocene reservoir inter-

val. Time shifts were observed both for the producing reservoirs and Illinoisan wet
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Figure 5.2: A north-south inline section of the baseline Genesis image produced by
Chevron (vertical axis two-way travel time in seconds, horizontal axis inline meters).

[NR] genesis/. cvxbase

Figure 5.3: Monitor and baseline image-difference obtained from the 3D time-
migration images provided by Chevron which corresponds to the inline section of
Figure 5.2. Production-induced changes stand out at approximately 3.5 s (wet Illi-
noisan sands) and 4 s two-way travel times—stacked Neb 1, 2, and 3 reservoirs. [NR]

genesis/. cvxdiff
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sands above Neb 1 (see Figure 5.4). Kinematic differences were attributed to a time

shift caused by subsidence at the top of the uppermost reservoir, subsidence of the

overburden, and overburden dilation (Hudson et al., 2005).

Figure 5.4: Production-induced changes resulted in measurable time-shifts between
the surveys. Shown here are time-shifts between the baseline (blue) and monitor (red)

common-offset gathers, 1074 m offset. [CR] genesis/. 6timeshifts

Processing parameters for the baseline and monitor surveys and subsequent time-

lapse processing by Chevron were described by Magesan et al. (2005). The baseline

survey had a maximum offset of 5 km, and the monitor survey had a maximum offset

of 7.3 km. Both surveys used a bin size of 12.5 m by 37 m. For the purpose of time-

lapse analysis, the acquired data had been subjected to pre-processing and imaging

steps that included data equalization, spherical divergence correction, source and

receiver statics, global phase rotation, time shift, amplitude scaling, global spectral

matching, and cross-equalization (Magesan et al., 2005).

These pre-processed data were used by Chevron in Kirchhoff time migration of

the baseline and monitor surveys to produce 3D images. A single inline section of

the baseline image is shown in Figure 5.2. The corresponding monitor and baseline

image difference is shown in Figure 5.3. As noted by Hudson et al. (2005), the image

difference is contributed to by time shifts at the Illinoisan sands (upper event) and

Neb 1 (lower event) in Figure 5.3—compare with Figure 1 of Hudson et al. (2005).
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Figure 5.5: Inverted baseline velocity model (m/s). FWI resolved fine model features
and oriented them along the dip structure of the image in Figure 5.2 (vertical axis

depth meters). [CR] genesis/. 6base

2D INVERSION

The purpose of this experiment was to see whether joint regularized time-lapse FWI

could resolve some of the production-induced model differences, thus providing addi-

tional insight into reservoir depletion patterns and optimal infill drilling strategies. As

my first processing step, I performed separate baseline and monitor 2D full-waveform

inversion of a single inline section. I extracted single north-south inlines correspond-

ing to the image in Figure 5.2 from both surveys and sorted them into shot gathers

with a minimum offset of 350 m and a maximum offset of 4,700 m. This provided

1,264 shots per survey with up to 175 receivers per shot. A frequency-domain 2D

FWI (Sirgue et al., 2008, 2010b) was conducted over the frequency range of 3–30.7 Hz.

Frequency spacings were selected using the technique of Sirgue and Pratt (2004). As

noted above, the data provided to Stanford Exploration Project had undergone am-

plitude pre-processing that included a spherical divergence correction. Furthermore,

accurate handling of the amplitudes in 2D FWI of 3D field data requires a 3D-to-2D

data transformation (Auer et al., 2013). Because the data exhibited significant time-

shifts at the reservoir level (Hudson et al., 2005) that can be readily observed even at

large offsets (see Figure 5.4), I decided to use a “phase-only” inversion and ignored

amplitude information in the data (Fichtner, 2011).
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The result of baseline inversion is shown in Figure 5.5. To build a starting model

for the FWI, I converted Chevron’s RMS time-migration velocity model to an interval

velocity using the Dix equation, and smoothed the result using a triangular filter

with a 41-sample window. Observe that FWI succeeded in resolving fine features,

and oriented them consistently along the dip structure of the time-migrated image in

Figure 5.2. Close-up views of the model area covering both the Illinoisan sands and

the reservoirs are shown in Figures 5.7(a) and 5.7(c).

The result of parallel differencing is shown in Figure 5.6(a). Although significant

model changes appear to be concentrated around the target area, this result is not

interpretable, neither qualitatively nor quantitatively, because it is contaminated with

oscillatory artifacts and it overestimates the magnitudes of velocity perturbations.

This result is consistent with my earlier assessment of conventional time-lapse FWI

techniques tested on synthetic data—see chapter 3 and (Maharramov and Biondi,

2014c; Maharramov et al., 2015b).

Next, I computed the simultaneous, TV-regularized time-lapse full-waveform in-

version formulation (3.11,3.15). I set α = β = 1 and carried out multiple experiments

with the value of the regularization parameter δ ranging from δ = 100 to δ = 1000.

The weighting operator W was set to 1 inside the larger target area shown in Fig-

ures 5.6(a) through 5.7(b), and tapered off to zero outside.

The results of inverting the model difference for δ = 100, 500 and 1000 are shown

in Figures 5.6(b), 5.6(c), and 5.6(d), respectively. Gradual increase of the regulariza-

tion parameter results in the removal of most model differences with the exception

of a negative velocity perturbation in the overburden, peaking at approximately 3.6

km and 3.9 km depth (see Figures 5.7(b) and 5.7(d)). Such perturbations are consis-

tent with overburden dilation due to the compaction of stacked reservoirs, with more

significant dilation in the wet Illinoisan sands than the surrounding shales (Rickett

et al., 2007). The zone of negative velocity change appears to extend upward into the

overburden in a direction roughly orthogonal to the reservoir dip—see Figure 5.6(d).

Two negative velocity changes at approximately 10 and 11.5 km inline persist with
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increasing regularization, and may represent dilation effects associated with the pro-

duction from deeper reservoirs—compare with Figure 3 of Rickett et al. (2007).

Figure 5.8 plots the inverted velocity change against difference of the RTM-

migrated monitor and baseline images. Migration was conducted using the same

(starting FWI) velocity for both baseline and monitor. The image difference is

strongest at a 3.6 km depth, corresponding to the Illinoisan sands, and about 3.9

km—the overburden above Neb 1.

The estimated maximum negative velocity change of −45 m/s above the stacked

reservoirs is consistent with the earlier estimates of time strain in the overburden

(Rickett et al., 2007). Indeed, local time strain, physical strain and partial velocity

change are related by the equation (Hatchell and Bourne, 2005)

dτ

dt
≈ ∆t

t
=

∆z

z
− ∆v

v
, (5.1)

where τ, t, z, and v denote the observed time shift, vertical travel time, depth, and

velocity. Assuming, following Hatchell and Bourne (2005), that

∆v

v
= −R∆z

z
, (5.2)

where the factor R is estimated to be 6 ± 2 for the Genesis overburden (Hodgson

et al., 2007), we obtain

∆v

v
= − R

R + 1

∆t

t
≈ −∆t

t
≈ −dτ

dt
. (5.3)

Maximum time strains in the Genesis overburden are estimated to be around +2%

(Rickett et al., 2007), yielding the maximum negative velocity change of

∆v ≈ −.02× 2800 m/s = −56 m/s, (5.4)

where the estimated P-wave velocity of 2800 m/s at a 3.6 km depth was taken from

the output of FWI.
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(a) (b)

(c) (d)

Figure 5.6: (a) Parallel difference and joint inversion results for (b) δ = 100, (c)
δ = 500, and (d) δ = 1000 in the target area. The parallel difference result is
not interpretable because of the presence of artifacts. Increasing the regularization
parameter δ results in gradual removal of most model differences except the neg-
ative velocity change in the overburden, peaking around the Illinoisan sands and
near the top of the stacked reservoirs—see Figures 5.7(a) through 5.7(d). [CR]

genesis/. 6pardiff,diff100,diff500,diff1000



66 CHAPTER 5. GENESIS CASE STUDY

(a) (b)

(c) (d)

Figure 5.7: (a) Baseline target area and (b) estimated model difference for δ = 1000.
Close-up of (c) baseline target area and (b) estimated model difference for δ = 1000.

[CR] genesis/. baselargetarget,sdiff1000,basetarget,difftarget

Figure 5.8: Inverted velocity difference interleaved with migrated image difference for
baseline and monitor. The strongest image differences correspond to the top of Neb 1
reservoir and the Illinoisan sands above. Peaks of negative velocity change correlate
with the overburden above the reservoir and the sands. [CR] genesis/. interleaved
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GLOBAL AND 3D INVERSION

Figure 5.9 shows production well trajectories at the time of the monitor survey. Three

wells, 205A18, 205A2, and 161A12STO3BP01 in blocks 205 and 161 (see Figure 5.1)

have undergone failures. Note that the well paths of 205A18 and 161A12STO3BP01

have a significant curvature—see Figure 5.14(a)—that may have contributed to their

failure. The 2D inversion described in the previous section was conducted along

the constant crossline section shown in Figure 5.9, sufficiently close to wells 205A18,

205A2, and 205A8STO1 as to be a useful indicator of deformation associated with

production from these wells.

Figure 5.9: Trajectories of the Genesis production wells at the time of the mon-
itor survey. Failed wells are shown in red, block 205 wells are plotted blue,
block 160 wells are plotted magenta, and block 161 wells are plotted black. [CR]

genesis/. cropGCwells4045
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Figure 5.10 plots the local (target-oriented) inversion of velocity changes discussed

in the previous section1 against the projection of well paths. Figure 5.11 plots a global

inversion result, i.e. with the mask W ≡ 1 in (3.15), and using the same starting

velocity as in the previous section.

Figure 5.10: Local (target-oriented) inversion described in the previous section plotted
against a projection of well paths. Wells plotted in red are known to have failed. [CR]

genesis/. croplocal

The starting FWI model used in the targeted inversion of the previous section

was constructed from the RMS velocity by inverting the Dix formula and assuming

strictly vertical wave propagation. I have improved the starting model by invert-

ing the Dix relationship along curved raypaths2. The resulting time-lapse inversion

is shown in Figure 5.12. Note the improved match between the negative velocity

anomaly and locations of the two failed wells closest to the plane of the inversion.

Well 205A8STO1, which is close to the inversion plane, was previously associated with

1conducted in a 6 × 2 km window of the target reservoir
2A similar method is described by Cameron et al. (2007).
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significant time-strains (Rickett et al., 2007), and the new inversion indicates velocity

changes associated with potential deformations above the well path and higher at a

depth of approximately 2.5 km—compare with Figure 4 of Rickett et al. (2007).

Figure 5.11: Global velocity change inversion plotted against a projection of well
paths. [CR] genesis/. cropglobal

Wells 160A4 and 160A5 in block 160 deviate the most from the inversion plane,

see Figure 5.9. However, significant volumes of production from that area indicate

that the anomalies at 10000 m and 12000 m inline coordinates in Figure 5.12 may

have contributions from 3D projection of overburden anomalies associated with those

wells.

To truly understand the spatial correlation of overburden dilation with 3D well

paths requires a 3D inversion. However, matching the quality of my 2D inversion

in a 3D experiment was not computationally feasible with resources available to me.

To conduct a viable 3D experiment that could still offer a valuable insight into the

heterogeneity and spatial distribution of production-induced overburden changes, I

conducted two experiments. First, I conducted a full 3D FWI inversion using only

60 shots. This included conducting full-waveform inversion of monitor and base-

line models, followed by cross-updating and feeding the results into the simultaneous

time-lapse FWI with a TV model-difference regularization (3.11,3.15). Only kine-

matic information was used in the inversion. The 60 shots were arranged in 12 lines

of 5 shots each, with a shot spacing of 800 m, and line spacing of 300 m. The inversion
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Figure 5.12: Global velocity change inversion using an improved starting model,
plotted against a projection of well paths. This result appears to be in a better
agreement with the trajectories of the failed wells closest to the 2D inversion plane.
[CR] genesis/. cropalternativeglobal

was carried out as before in the frequency domain for 3–30.7 Hz, within a compu-

tational grid of 5208 m inline x 3600 m crossline x 4500 m depth. Of course, the

extreme sparsity of shots along the crossline direction results in a shot aliasing and

lack of continuity of inversion results along the crossline axis. Presence of reflections

from around the target area3 is a prerequisite for the time-lapse method of chapter 2.

Poor resolution of reflectors around the anomaly results in the absence of a common

reference for detecting phase-shifts and translating them into slowness changes using

(2.24). Therefore, results of a 60-shot 3D experiment should be expected to suffer from

long-wavelength oscillatory artifacts that may not be remedied by the total-variation

regularization. However, partial reconstruction of model changes, even if contami-

nated by oscillatory artifacts, may reveal some patterns in the spatial distribution of

the anomalies.

Figure 5.13 show the results of the 60-shot 3D experiment, plotting negative ve-

locity changes in the overburden exceeding −50 m/s. While the results are contam-

inated by oscillatory artifacts, we can note the concentrations of negative anomalies

around the well paths 205A18, 205A2, 205A14, around the curving bend of well

3or diving ways transmitted through it
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161A12STO3BP01, and on the well path of well 160A5. However, lack of spatial

continuity and spurious artifacts render these 3D results unfit for independent inter-

pretation.

Figure 5.13: Velocity changes exceeding negative 50 m/s estimated by the 3D phase-

only simultaneous FWI using only 60 shots. [CR] genesis/. crop3DGCwells50

To obtain more reliable spatial results without the cost of a massive 3D exper-

iment, I conducted a “2.5D” inversion. In this experiment I have carried out 35

independent 2D inversions over parallel constant-crossline 2D sections of 4025 m in-

line x 4500 m depth. The crossline step is 55 m, and the entire experiment covers a

crossline distance of 1870 m, see Figure 5.14(a). Each independent 2D inversion uses

120 shots spread over 3 km. The maximum offset is 4025 m as offsets in the data

exceed model dimensions.

Results of the 2.5D inversion experiment are shown in Figures 5.14(a), 5.15(a),
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(a) (b)

Figure 5.14: Inversion of velocity changes in excess of -30 m/s in the overburden
using (a) 4200-shot 2.5D experiment (b) 60-shot 3D experiment. Approximate depth

of 3550 m. [CR] genesis/. slice143,tslice149
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5.16(a), 5.17(a). The corresponding results of the 60-shot 3D experiment are shown

side-by-side in Figures 5.14(b), 5.15(b), 5.16(b), 5.17(b). One notable feature of the

new results is their continuity and consistency both along the crossline axis and in

depth, despite the fact that we do not impose any regularization in the crossline

direction, indicating the stability of our 2.5D inversion method.

Wells 205A8STO1, 205A17STO01, 160A5 fall outside of the computational do-

main of the 2.5D inversion. For the remaining wells, with the exception of 161A3,

the 2.5D inversion results indicate plausible and stable anomalies that can be associ-

ated with their operation—compare with Figure 4 of Rickett et al. (2007). A closer

inspection of production and logging data from well 161A3 is required to understand

the absence of negative velocity anomalies there.

DISCUSSION AND PERSPECTIVES

Simultaneous time-lapse FWI with a total-variation difference regularization can

achieve robust estimation of velocity changes in the overburden that are induced

by reservoir compaction and overburden dilation. The method preserves the blocky

nature of model difference while penalizing unwanted oscillations.

Application of the method to large-scale 3D time-lapse problems generally requires

major computational resources. Indeed, in my experiments separate monitor and

baseline full-waveform inversions were followed by two more cross-updating inversions,

and solution of the simultaneous FWI (3.6,3.10) or (3.11,3.15). The latter is roughly

equivalent to the cost of two FWI’s, hence the total cost may reach 6 times the

computational cost of a single FWI. However, in practical problems the cost can go

down dramatically for a number of reasons:

1. The results of baseline and monitor inversions may be already available, obvi-

ating two initial inversions.

2. Cross-updating may require fewer solver iterations as it starts form a good

starting model.
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(a) (b)

Figure 5.15: Inversion of velocity changes in excess of -30 m/s in the overburden
using (a) 4200-shot 2.5D experiment (b) 60-shot 3D experiment. Approximate depth

of 3650 m. [CR] genesis/. slice147,tslice153
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(a) (b)

Figure 5.16: Inversion of a velocity change in the overburden using (a) 4200-shot
2.5D experiment (b) 60-shot 3D experiment. Approximate depth of 3750 m. [CR]

genesis/. slice151,tslice157
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(a) (b)

Figure 5.17: Inversion of velocity changes in excess of -30 m/s in the overburden
using (a) 4200-shot 2.5D experiment (b) 60-shot 3D experiment. Approximate depth

of 3875 m. [CR] genesis/. slice156,tslice163
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3. If baseline and monitor models are sufficiently close, we may avoid optimiz-

ing (3.6,3.10) or (3.11,3.15) by simultaneously inverting both the baseline and

monitor, but instead fix one of the models and effectively use it as a prior in a

regularization term (3.10) or (3.15)—see chapter 2 for a discussion of a single

versus multiple model optimization.

4. 2.5D inversion can be a useful substitute for 3D time-lapse inversion, especially

for simple geology (small dips and few out-of-plane reflections). In addition to

providing a cost-effective alternative to the full 3D inversion, the 2.5D method

provides a quality control of time-lapse data and problem parameters by ex-

pecting consistency of inversion results across multiple 2D sections.

5. In a kinematic (phase-only) inversion, we can substitute the two-way model-

ing of wave propagation with a one way propagator by applying one pass of

downward extrapolation and a few passes of upward extrapolation from a few

reference reflectors above and below the anomaly.

6. The inadequacy of a sparse shot coverage and shot aliasing are issues inherent

to FWI, not the time-lapse algorithm. Time-lapse FWI requires presence of

reflectors around the target anomaly, and if such reflectors have already been

delineated by other methods, and reflections are generated in the synthetic data,

the time-lapse method may succeed in resolving a blocky anomaly even using

just a few well-positioned shots.

�

Items 5 and 6 open up interesting possibilities for a drastic reduction of the

computational cost of 3D time-lapse FWI. However, further analysis and

experimentation are needed to justify and substantiate these concepts.
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Part II

Geomechanical time-lapse analysis
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Chapter 6

Relating surface deformation to

pressure change

“We must not think of the things

we could do with, but only of the

things that we can’t do without.”

Jerome K. Jerome

81
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Observable surface deformation associated with fluid injection and withdrawal pro-

vide a valuable insight into subsurface processes. Inversion of induced reservoir pore

pressure changes from deformation measurements is a potentially powerful reservoir

monitoring tool if the issues of measurement noise, uncertainty in model parametriza-

tion and numerical accuracy and stability can be resolved. In this chapter I describe a

method for inverting pore pressure change from measurements of surface deformation

for a poroelastostatic reservoir model. I propose numerical optimization and regu-

larization techniques for reservoir characterization from incomplete and noisy data.

Methods of this chapter are the basis of applications to synthetic and field data in

the subsequent chapters of Part II.
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INTRODUCTION

Surface and subsurface deformation are important and often easily measurable indica-

tor of production-induced changes in reservoir parameters. The theory of quasistatic

poroelastic deformation provides a framework for quantitative assessment of surface

and subsurface deformation as a result of pore pressure changes (Rice and Cleary,

1976; Segall, 1985) and is based on Biot’s theory of fluid-infiltrated porous media

(Biot, 1941). Computational techniques exist (Vasco et al., 2000; Du and Olson,

2001; Hodgson et al., 2007) for numerically solving the inverse problem of inverting

pore pressure from deformation based on the linear theory of poroelasticity. The

main emphasis of my work is the development and analysis of regularization meth-

ods and optimization constraints for the resulting inverse problems that allow us to

achieve successful characterization of the subsurface changes from noisy and limited

deformation measurements.

Realistic reservoir depletion and flooding exhibit asymmetric patterns that might

be indicative of a complex reservoir geometry as well as spatial heterogeneity of the

reservoir permeability. In particular, differences in production-related pressure change

across multiple wells can help identify reservoir compartmentalization (Zoback, 2010)

and guide the drilling of subsequent production wells or affect the choice of production-

enhancement techniques. In the general case of an arbitrary linear poroelastic medium,

change in the pore pressure is intricately interconnected with the change in the stress

field, and accurate modeling of the effects of changing pore pressure requires solving

a system of governing equations in a half-space (Wang, 2000; Segall, 2010). Solving a

boundary-value problem for such a system of equations governing both stress evolu-

tion and fluid flow is challenging—as much due to uncertainty of the subsurface model

parameters as due to the sheer analytical complexity of these coupled equations. The

importance of studying the fully-coupled poroelastic models cannot be overestimated

as the coupled model is often the key to explaining counterintuitive behaviour of

some real-world poroelastic models. In this work I expand on previous studies of the

effects of pore pressure change on the strain and stress fields (Segall, 1992; Segall

et al., 1994) by adopting an intermediate “semi-coupled” approach between the fully
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coupled simulation and uncoupled analytical solutions—see also (Maharramov, 2012;

Maharramov and Zoback, 2014, 2015). First, I assume that a pore pressure drop is

known within the reservoir and is an arbitrary function of the reservoir coordinates—

i.e., I assume partial fluid-to-solid coupling—and use the analytical expression for

the elastostatic Green’s tensor due to a concentrated center of dilatation in half-

space (Segall, 2010; Mindlin, 1936) to numerically compute the displacement due to

the pore pressure change. Next, I use the obtained numerical operator in an inversion

problem, fitting a pore pressure drop to a known displacement and subsidence profile.

Finally, I demonstrate an extension of the method for layered and weakly laterally

heterogeneous.

Numerical modeling of deformation due to changing pore pressure is one of the

key problems of reservoir geomechanics (Zoback, 2010). Reservoir depletion has

been demonstrated to have appreciable effect on stress both inside and outside of

the producing reservoir (Zoback, 2010),(Geertsma, 1973),(Segall, 1992),(Segall et al.,

1994),(Zoback and Zinke, 2002),(Segall and Fitzgerald, 1998). While some simpli-

fying assumptions with regard to reservoir geometry (e.g., an infinitely wide and

thin horizontal layer) yield a simple law for the horizontal stress change with the

pressure decline within the reservoir (Zoback, 2010),(Segall and Fitzgerald, 1998)),

estimating induced stress-field changes around the reservoir requires more elaborate

models of reservoir depletion (Geertsma, 1973),(Segall, 1992). Simple disk-shaped

and radially-symmetric reservoir shapes proved adequate for many simple situations,

but compartmentalization and heterogeneous permeability inside realistic reservoirs

point to a departure of the pore pressure decline from simple axisymmetric patterns

(Zoback, 2010). Compartmentalization with impermeable barriers still allows for the

application of a radially-symmetric pore pressure change law to individual reservoir

compartments. However, a fully heterogeneous pore pressure drop can account for

the effects of partial permeability or complex spatial geometry. Advanced optimiza-

tion and regularization techniques for inverting highly heterogeneous pore pressure

changes that I develop in Part II can provide efficient non-invasive methods of reser-

voir characterization.
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POROELASTIC DEFORMATION

I begin by formulating a closed system of four equations that describes a homogeneous

quasi-static linear poroelastic medium (Segall, 2010):

µ∇2ui +
µ

1− 2ν

∂2uj
∂xi∂xj

= α
∂p

∂xi
− fi = 0, i = 1, 2, 3 (6.1)

and

Sα
∂p

∂t
− κ

η
∇2p = −α ∂

∂t
(∇ · u)) . (6.2)

In the above equations ui, i = 1, 2, 3 is a spatially-distributed displacement vector

field, p is the pore pressure change, fi is a differential body-force distribution, µ, ν,

α, κ, and η are the shear modulus, Poisson’s ratio, Biot coefficient, permeability, and

fluid viscosity, respectively. The storage coefficient Sα is a known function of medium

parameters (Segall, 2010):

Sα =
3α(1− 2ν)(1− αB)

2µB(1 + ν)
, (6.3)

where B in equation 6.3 is Skempton’s pore pressure coefficient—the ratio of the

induced pore pressure change to the mean normal stress for undrained loading condi-

tions. Note that the subsurface stress is absent from equations 6.1 and 6.2 but can be

computed using constitutive laws after these equations have been solved. Also note

that the displacement and pore pressure in these equations are relative to a refer-

ence state, not the total values. The equilibrium equation 6.1 and flow equation 6.2

are fully coupled and are obtained from combining the constitutive laws for a poro-

elastic medium with quasi-static field equations. The equations are “quasi-static” in

the sense that the stress field is assumed to be in a state of static equilibrium even

though changes of the pore pressure in time induce changes of the stress field. We can

think of this as a “slow-change” asymptotic approximation, both in time and space.

The most mathematically rigorous way of computing the displacement field and

associated pore pressure change is to solve a boundary-value problem for equations

6.1 and 6.2 with known data (e.g., known pressure evolution within existing wells,
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measured earth displacements or estimated stresses) used as boundary or initial con-

ditions. However, even in the simplest case of a homogeneous medium, analytical

solutions of such boundary-value problems are very challenging. Uncoupling equa-

tions 6.1 and 6.2, where permissible, could result in more tractable problems, both

analytically and numerically. For example, assuming a known pore pressure change,

we can solve equation 6.1 for the displacement field ui, using α∂p/∂xi in the right-

hand side as a “body force” distribution (Geertsma, 1973; Segall, 1992).

I use the elastostatic Green’s tensor gki (x, y, z, ξ, η, ζ) for the pure elastic equilib-

rium equation in the left-hand side of equation 6.1 to compute the displacement ui

as

ui =− α
∫
V

gki
∂p

∂xk
=

=α

∫
V

∂gki (x, y, z, ξ, η, ζ)

∂xk
p(ξ, η, ζ)dξdηdζ,

(6.4)

assuming fi = 0 (including body forces is trivial). The elastostatic tensor has the

meaning of the displacement along axis i at point (x, y, z) due to a concentrated force

along axis k at point (ξ, η, ζ) (Wang, 2000; Segall, 2010). From equation 6.4 we can

see that the divergence of the elastostatic tensor has the meaning of deformation due

to a concentrated dilatational force.

In order to apply equation 6.4 to practical reservoir models and computation of

surface displacements, the corresponding Green’s function should be constructed for

a half-space with a free-surface boundary condition imposed on its bounding plane

(Segall, 2010). In homogeneous medium experiments, we use the analytical expression

for the Green’s function obtained by Mindlin (Mindlin, 1936)—see appendix D.

FORWARD AND INVERSE PROBLEMS

We can use operator 6.4 for forward-modeling the displacement field from a specified

pressure change. Note that equation 6.4 describes a non-stationary convolutional in-

tegral operator for a homogeneous medium. The convolution is non-stationary due
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to the presence of z + ζ in the elastostatic Green’s tensor. Integration along the hor-

izontal axes can be accelerated by applying the operator in the wavenumber domain.

However, integration along the vertical axis should still be carried out separately for

different values of z, hence the integration kernel is effectively four-dimensional. As-

suming the reservoir to be thin in comparison with its lateral extents, widely true

in practice, we can replace the vertical integral with a mean value of the integrand

times the reservoir thickness:

ui(x, y, z) = α

∫
V

h(ξ, η)
∂gki (x, y, z, ξ, η, S(ξ, η))

∂xk
×

p(ξ, η, S(ξ, η))dξdη,

(6.5)

where S(ξ, η) is the middle surface of the reservoir and h(ξ, η) is the reservoir depth.

For a non-flat reservoir, gki effectively depends not only on differences x− ξ and y− η
but on integration variables as well.

By modeling subsidence using equation 6.5, we are able to fully account for the

asymmetric nature of the depletion pattern by using the most general form of Green’s

tensor for a homogeneous half-space. In that respect, our approach represents an

advancement of the purely analytical techniques for axisymmetric reservoirs presented

by Geertsma (1973) and Segall et al. (1994), and is similar to the method used by

Hodgson et al. (2007).

Denoting the operator in the right-hand side of equation 6.5 as A, the problem

of recovering the pore pressure change from specified displacements can be cast as a

least-squares minimization problem (Aster et al., 2011):

‖Ap− u‖2
L2
→ min. (6.6)

Operator 6.5 uses Mindlin’s analytical expressions for elastostatic Green’s tensor

which assumes homogeneity of the medium. However, by using a gradient-based

optimization solver that only requires the application of the modeling operator A

and its adjoint A∗ we obviate the need to use an explicit analytical representation for
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the operator, and can substitute it with a more computationally intensive deforma-

tion modeling operator for a heterogeneous medium, as described in the next section.

In practical applications, problem 6.6 is often mixed-determined (Aster et al., 2011),

meaning that the deformation data u cannot be fit exactly due to measurement noise

and unaccounted physical effects, and the data are insufficient to uniquely resolve the

pressure change p over the entire computational domain—i.e., problem 6.6 does not

have a unique solution. I address the non-uniqueness using Tikhonov regularization

(Tikhonov and Arsenin, 1977; Aster et al., 2011) by adding a term penalizing spatial

pressure oscillations:

‖Ap− u‖2
L2

+ ε‖∆p‖2
L2
→ min, (6.7)

where ∆ is the Laplace operator, and ε is an empirically chosen regularization pa-

rameter. We assume that the pressure change is always non-negative and, to avoid

hydraulic fracturing, does not exceed the minimum in-situ stress (Zoback, 2010). This

results in the following inequality constraints on the pressure change:

0 ≤ p ≤ pmax. (6.8)

I solve problem 6.7,6.8 using an interior point method (Nocedal and Wright, 2006).

In Chapter 8, I study the problem of inverting pressure contrasts that are due

impenetrable barriers or other heterogeneities in the permeability. For such problems,

where recovering large contrasts is more important than recovering small oscillatory

features, I solve the regularized problem

‖Ap− u‖2
L2

+ ε‖|∇p|‖L1 → min, (6.9)

where the regularization term in the right-hand side of (6.9) is the L1 norm of the gra-

dient norm, or the total-variation seminorm of pressure change. Such regularization

penalizes oscillations while promoting the “blockiness” of the inverted function—

compare with Chapter 3, equation (3.15). Note that for pressure inversion we still

need to minimize (6.9) subject to the constraint (6.8), resulting a rather challeng-

ing problem of constrained optimization with a non-smooth objective function. In
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appendix C, I propose a computationally efficient numerical optimization method

for solving problems of constrained total-variation minimization that I apply later in

Chapter 8.

HETEROGENEOUS MODELS

For mild heterogeneity, when the medium parameters slowly change in space, asymp-

totic methods similar to Maslov (1990) can be used to account for the first-order

effects of the heterogeneity. However, such an approach is inherently limited to mod-

erate heterogeneity. Lateral heterogenity of medium parameters is subject to con-

siderable uncertainty, while layered models are of particularly high importance as a

dominant stratigraphy. We therefore focus on modeling displacements for a vertically

heterogeneous and horizontally slowly-varying medium. Rather than trying to solve

a heterogeneous analogue of system 6.1,6.2, we will assume that one or all compo-

nents of the displacement at a fixed depth z = zmax immediately above the reservoir

are known a priori. For example, we may use operator 6.5 to model displacements

near the reservoir where the effect of the spatial heterogeneity of elastic parameters

is limited. With displacements at z = zmax and free-surface boundary conditions

at z = 0, the problem of modeling subsurface displacements is reduced to solving a

boundary-value problem for the elastostatic system:

µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2µν

1− 2ν

∂uk
∂xk

δij =σij,

∂σij
∂xj

=0,

(6.10)

where indices run from 1 to 3, σij denote the stress tensor components, summation is

carried out on repeating indices and the body-force distribution is zero. The boundary

conditions used with system 6.10 are the following:(
∂ui
∂x3

+
∂u3

∂xi

)
+

2ν

1− 2ν

∂uk
∂xk

δi3|z=z0 =0,

ui(x, y, zR) =si(x, y),

(6.11)
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where si(x, y), i = 1, 2, 3 describe a known displacement field at a fixed depth. Al-

though system 6.10 is comprised of purely elastostatic equations, it allows us to

model fluid-to-solid coupling via the boundary condition at z = zR that can be ap-

proximately computed using operator 6.5. For a laterally-homogeneous medium—or

under the assumption of slow lateral varying coefficients that commute with differen-

tiation to the first order (Maslov, 1976)—equations 6.10 can be Fourier-transformed

in x1, x2, and the resulting system discretized in depth:

v1(z + ∆z)− v1(z −∆z)

2∆z
= v4(z),

v2(z + ∆z)− v2(z −∆z)

2∆z
= v5(z),

v3(z + ∆z)− v3(z −∆z)

2∆z
= v6(z),

µ(z + ∆z)v4(z + ∆z)− µ(z −∆z)v4(z −∆z)

2∆z
=

−(k2
x + k2

y +
k2
x

1− 2ν(z)
)µ(z)v1(z)−

kxky
1− 2ν(z)

µ(z)v2(z) +
ikx

1− 2ν(z)
µ(z)v6(z),

(6.12)

µ(z + ∆z)v5(z + ∆z)− µ(z −∆z)v5(z −∆z)

2∆z
=

−
(
k2
x + k2

y +
k2
y

1− 2ν(z)

)
µ(z)v2(z)−

kxky
1− 2ν(z)

µ(z)v1(z) +
iky

1− 2ν(z)
µ(z)v6(z),

µ(z + ∆z)v6(z + ∆z)− µ(z −∆z)v6(z −∆z)

2∆z
=

1

1 + 1
1−2ν(z)

[
−(k2

x + k2
y)v3(z) +

ikx
1− 2ν(z)

v4(z)+

iky
1− 2ν(z)

v5(z)

]
,

(6.13)

where kx, ky are the horizontal wavenumbers and ∆z is a depth step, v1,2,3 are Fourier-

transforms of the three displacement components u1,2,3 and v4,5,6 are the z-derivatives

of v1,2,3. At the boundaries z = 0 and z = zR, the central differences should be
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replaced with backward and forward differences (Iserles, 2008), and the boundary

conditions 6.11 Fourier-transformed in a similar manner. In combination with the

Fourier-transformed boundary conditions the above system is reduced to indepen-

dent 6Nz × 6Nz linear systems for finding vi(∆zj), i = 1, . . . , 6, j = 1, . . . , Nz for each

wavenumber pair kx, ky, where Nz is the number of depth steps. Solution of the above

system is efficiently parallelized, with individual 6Nz × 6Nz sparse systems solved in-

dependently. Furthermore, each of the systems is banded with the bandwidth of 13

elements and therefore can be solved in a linear time and memory O(Nz) (Trefethen

and Bau III, 1997). Although depth-varying models are common in geomechanical

applications, and the diffusive nature of induced deformation favors slowly-varying

models, practical applications exist where a strong lateral heterogeneity should be

taken into account. The widely accepted approach to tackling such problems consists

in applying the finite elements method (Iserles, 2008) to the coupled poroelastic sys-

tem (Kosloff et al., 1980). While finite elements can handle arbitrary spatial hetero-

geneity, the main disadvantage of this approach is the computational cost associated

with solving a potentially very large system of linear equations with a very sparse but

generally unstructured matrix.
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Chapter 7

Reservoir monitoring by inverting

pore pressure changes from surface

deformation

“What covers you discovers you.”

Miguel de Cervantes Saavedra
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Temperature and pressure changes associated with cyclic steam simulation (CSS)

used in heavy oil production from sands can cause significant subsurface deformation.

Inversion of induced reservoir pore pressure changes from deformation measurements,

when feasible, may provides a powerful non-invasive reservoir monitoring tool. In this

chapter, I apply the technique developed in Chapter 6 to estimating pore pressure

change from tilt measurements at a heavy oil reservoir undergoing CSS. I achieve a

stable inversion of the reservoir pore pressure change from sparse and noisy surface

tilt measurements using constrained regularized optimization. The results provide an

insight into the heterogeneity of reservoir stimulation and can potentially help with

optimizing well locations and stimulation protocols.
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CYCLIC STEAM STIMULATION

In this work, we apply the methodology and computational framework of Chapter 6,

previously applied by Maharramov (2012) to pore pressure inversion in a conventional

gas reservoir, to estimating pore pressure changes from surface tilt measurements over

a heavy oil reservoir undergoing cyclic steam simulation described by Walters and

Zoback (2013). Cyclic steam stimulation (CSS) is used to reduce the viscosity of heavy

oils so that the oil will flow to production wells. This is achieved by injecting high-

temperature steam into the formation during an injection period that typically lasts a

few weeks or months. This is followed by a “soaking” period during which viscosity of

the oil is dramatically reduced due to heat from the steam (Hinkle and Batzle, 2006).

Usually the same wells are used for injection and production. Because oil recovery is

dependent on effective injection, it is very important to understand and monitor the

steam front. This should allow for the appropriate determination of steam paths and

the effects of reservoir heterogeneity on steam injection and production. This work

is part of an interdisciplinary study of a heavy oil reservoir undergoing cyclic steam

stimulation (Walters and Zoback, 2013). Steam was injected in two cycles, with the

first injection in Cycle 1 running from November 2007 through January 2008. Surface

tilt measurements were collected from 30 surface tilt stations during Cycle 1 only. No

tilt measurements were collected during the following cycle, and this work focuses

only on estimating the pore pressure change in the reservoir during Cycle 1.

Cycle 1 steam injection ran in two overlapping phases: Phase 1 ran from the

beginning of the injection through mid-December, and Phase 2 overlapped with Phase

1 and ran through the beginning of January. During Phase 1, steam was injected in

the western part of the reservoir, followed by injection in the eastern part in Phase 2.

There are 33 production/injection wells as shown in Figure 7.1 (Walters and Zoback,

2013). The positions of 25 (out of a total of 30) surface tilt stations that were deemed

to provide usable data are shown in Figure 7.2.
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Figure 7.1: Injection well trajectories. The portions of well trajectories that are
within the reservoir are shown in red. [CR] tilts/. welltrajectories
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Figure 7.2: Inverted induced pore pressure change (color scale) and differential tilt
measurements (arrows) for ε = 10−3 at the beginning of Phase 1 of Cycle 1, after 2
weeks of injection. The observed differential tilts are shown in green, modeled tilts
are in red. [CR] tilts/. TdP14
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Figure 7.3: Inverted induced pore pressure change (color scale) and differential tilt
measurements (arrows) for ε = 10−3 at the end of Phase 1 of Cycle 1, after 24 days

of injection. [CR] tilts/. TdP24
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INVERSION OF PRESSURE FROM TILT DATA

I used the following values for the poroelastic medium and reservoir parameters in

our tests:

Name Value Units

Shear modulus µ 1.5 Gpa

Poisson’s ratio ν .25 –

Undrained Poisson’s ratio νu .45 –

Skempton’s coefficient B .9 –

Average TVD of reservoir 455 m

Average reservoir thickness 50 m

I solved the regularized optimization problem 6.7, 6.8 over a 2 km by 2 km computa-

tional domain with a 40 m spacing. I used the value of pmax = 7 MPa in the upper

constraint 6.8 based on estimated vertical stress at the reservoir depth, assuming the

minimal stress to be vertical. Continuous tilt measurements from 25 functional tilt

meters (see Figure 7.2) were available over a 60-day period. These measurements

were decimated to 60 daily measurements from each of the 25 tilt meters and used in

independent inversions of daily cumulative pressure changes.

Although there is a considerable uncertainty with regard to the magnitudes of

the medium parameters (e.g., lateral heterogeneity of Skempton’s coefficients), this

uncertainty does not affect the qualitative evolution of the induced pressure change.

Figures 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7 show inversion results at various stages of Cycle

1 injection, with the regularization parameter ε = 10−3. A maximum cumulative

pressure change of 6.1 MPa was achieved on January 6, 2008. Note that the migration

of the pressure peak eastward with the progress of injection from Phase 1 to Phase 2 is

consistent with the geometry of the injection wells in Figure 7.1. No value of pressure

change was prescribed along the boundaries of the computational domain, and the

inversion results indicate a significant pressure increase in the northeastern part of the

modeling domain, consistent with the fact that a considerable fraction of the injection
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Figure 7.4: Inverted induced pore pressure change (color scale) and differential tilt
measurements (arrows) for ε = 10−3 at the beginning of Phase 2 of Cycle 1, after 31

days of injection. [CR] tilts/. TdP31
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Figure 7.5: Inverted induced pore pressure change (color scale) and differential tilt

measurements (arrows) for ε = 10−3 after 38 days of injection. [CR] tilts/. TdP38
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wells are located in that area. Also note that no temporal regularization was used in

the inversion, i.e., separate inversions were performed for each set of tilt observations.

The fact that the resulting pore pressure estimates are continuous in time indicate

consistency of our input data and stability of the inversion. I conducted optimization

Figure 7.6: Inverted cumulative pore pressure change and differential tilt measure-
ments for ε = 10−3 during Phase 2 of Cycle 1. Day 46 of the injection. [CR]

tilts/. TdP46

for a wide range of regularization parameters 10−3 ≤ ε < 10−2, and show our results

in Figures 7.8(a)-7.10(c). Increasing the value of the regularization parameter has, as

expected, a smoothing effect (Aster et al., 2011) on the inverted pore pressure change,

but does not change the qualitative picture of pressure front propagation.
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CONCLUSIONS AND PERSPECTIVES

Injection-induced pore pressure changes can be stably estimated from surface tilt mea-

surements. While quantitative estimates are affected by the uncertainty in medium

and reservoir parameters, the inversion provides a useful insight into the temporal

evolution of pressure profiles. Well log data could provide more accurate parame-

ter definition and allow use of vertically heterogeneous medium models in equations

6.13. The scarcity of data and relatively low accuracy of tilt measurements result in

highly ill-posed inversion problems that are, however, amenable to regularization and

multi-scale solution. Note that satellite differential radar interferometry has produced

maps of surface displacement with subcentimeter-level precision (Zebker et al., 1994)

and many of the disadvantages of using tilt measurement data can be remedied by

complementing tilt data with differential GPS or InSAR observations (Segall, 2010).

I caution that the extent to which the theory of linear poroelastic deformation can

be applied to heavy oil sands is not fully understood. For example, thermal effects

may significantly alter heavy oil formations and their poroelastic properties. Further-

more, modeling steam injection in the presence of “wormholes” created as a result of

sand production (Hinkle and Batzle, 2006), and preexisting hydraulically conducting

faults may require using techniques similar to those modeling fluid-filled chambers

that are ubiquitous in volcanology (Segall, 2010). Time-lapse seismic surveys and mi-

crosesimic data may provide spatial constraints on the location of activated fluid-filled

faults and very high-permeability areas within the reservoir, and this information can

be used to modify the underlying deformation model. However, the linear poroelas-

tic deformation model, effectively equivalent to modeling reservoir expansion using

distributed dilatational sources, appears to be a useful first approximation that can

provide at least qualitative insight into the propagation of steam fronts and reservoir

heterogeneity.
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Figure 7.7: Inverted cumulative pore pressure change and differential tilt measure-
ments for ε = 10−3 during Phase 2 of Cycle 1. Day 60 of the injection. Note the
increase of pressure from Figure 7.6 to Figure 7.7 in the northeast of the computa-
tional domain. This matches the geometry of injection wells within the reservoir in
Figure 7.1. [CR] tilts/. TdP60

(a) (b) (c)

Figure 7.8: Cumulative pore pressure change with ε = 10−3 for (a) 14 (b) 38 (c) 60

days into the injection cycle. [CR] tilts/. 1TdP14,1TdP38,1TdP60
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(a) (b) (c)

Figure 7.9: Cumulative pore pressure change with ε = 5× 10−3 for (a) 14 (b) 38 (c)

60 days into the injection cycle. [CR] tilts/. 5TdP14,5TdP38,5TdP60

(a) (b) (c)

Figure 7.10: Cumulative pore pressure change with ε = 10−3 for (a) 14 (b) 38 (c) 60

days into the injection cycle. [CR] tilts/. 2TdP14,2TdP38,2TdP60
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Chapter 8

Characterization of reservoir

heterogeneity

“Vision is the art of seeing things

invisible”

Jonathan Swift
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In the previous chapter I have demonstrated inversion of a complex evolution of

pressure fronts in a heavy oil reservoir undergoing cyclic steam stimulation. My in-

version method was based on solving a regularized inverse problem for inverting pore

pressure change from surface displacements. In this chapter I extend the method to

recover sharp contrasts in induced reservoir pressure that may be due to permeabil-

ity barriers or fluid-conducting faults. I demonstrate the method by inverting pore

pressure changes from uplift observations for a synthetic model of a heterogeneous

reservoir undergoing fluid injection. Using my new computationally efficient technique

for constrained TV-regularized optimization, I invert values and locations of sharp

pressure contrasts from noisy measurements of surface deformation, and estimate the

location of an impermeable boundary between reservoir compartments.
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RECOVERING PRESSURE CONTRASTS

In this chapter I extend the method of chapters 6 and 7 to identifying sharp pres-

sure contrasts in reservoirs undergoing injection, with the aim of applying it in the

characterization of reservoir heterogeneities. I solve the pressure inversion problem as

a bound-constrained optimization problem with a total-variation regularization, de-

scribed in chapter 6, equations (6.9, 6.8) and compare the obtained solution with the

result of solving the Tikhonov-regularized problem (6.7, 6.8) solved in the previous

chapter.

While our numerical experiments indicate that both approaches are effective

in resolving heterogeneous pressure profiles, the bound-constrained TV-regularized

method enhances the “blockiness” of estimated pressure profiles, preserving bound-

aries between large-scale features—see appendix C and Maharramov and Levin (2015).

I demonstrate both methods on a synthetic model of a reservoir featuring a low-

permeability barrier between two highly permeable compartments.

COMPARISON OF TWO METHODS

I used the poroelastic medium parameters shown in Table 7, and the isotropic reservoir

permeability shown in Figure 8.1, with the permeability of the barrier (shown in blue)

ranging between 1 and 10 millidarcies. Water was injected at a constant well pressure

of 15 MPa for up to 60 days at injection locations shown in Figure 8.2. Pressure evolu-

tion within the reservoir was simulated assuming a single phase flow, snapshots of the

“true pore pressure change on day 20, 40 and 60 are shown in Figures 8.4(a), 8.5(a),

8.6(a). Random Gaussian noise with σ = .05 was added to the forward-modeled up-

lift measurements, see Figures 8.3(a), 8.3(b), 8.3(c). Forward-modeling and inversion

were conducted on a 50 by 50 computational grid spanning a 2 km by 2 km area. A

500-sample spatial subset of the modeled surface uplift was used in the inversion to

imitate realistic spatial constraints of field measurements. With only 500 spatial data

point, problem (6) is ill-posed and requires regularization. I solve the constrained

problem (6.9,6.8). The maximum pressure change limit of 7 MPa was set in (6.8),
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estimated from the formation hydraulic fracturing pressure. Potential sparsity and

Figure 8.1: Reservoir permeability. [CR] char/. Perm

limited spatial distribution of uplift measurements result in non-unique fitting, or an

underdetermined problem. Problem (6.7,6.8) was solved using the technique of Chap-

ters 6,7 and the resulting snapshots of estimated pore pressure change on day 20, 40,

and 60 are shown in the right panels of Figures 8.4(b),8.5(b),8.6(b) versus the true

pressure change shown in the left panels. Note the very good agreement between the

true and inverted pressure profiles, both quantitatively and qualitatively. Solution

of (6.7,6.8) indicates the existence of a low-pressure zone roughly centered on the

permeability barrier of Figure 8.1. To further improve our estimate of the boundary

between the permeable compartments, we applied the technique of Maharramov and

Levin (2015), based on solving the TV-regularized optimization problem with bound

constraints (6.9,6.8). The result of solving this problem with ε = 1 for day 40 is

shown in Figure 8.7. As expected of a blockiness-promoting method, the solution fea-

tures contrasts between large-scale pressure areas. In contrast to the corresponding

solution of (6.7,6.8) shown in Figure 8.5(b), the level curves of the estimated pressure

change in the low-pressure area match the geometry and location of the permeabil-

ity barrier—compare the dashed line of Figure 8.7 with Figure 8.1. TV-regularized
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Figure 8.2: Locations of water injection wells. [CR] char/. tdP2

(a) (b) (c)

Figure 8.3: Noisy uplift measurements on (a) day 20, (b) day 40, (c) day 60. [CR]

char/. uz20,uz40,uz60
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inversion with bound constraints offers a mechanism for trading fitting fidelity for

resolution of sharp pressure contrasts that characterize reservoir heterogeneity.

(a) (b)

Figure 8.4: (a) True induced pore pressure change (color scale) on day 20.
(b) Estimated induced pore pressure change inverted using (6.7,6.8). [CR]

char/. tdP20,dP20
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(a) (b)

Figure 8.5: (a) True induced pore pressure change (color scale) on day 60.
(b) Estimated induced pore pressure change inverted using (6.7,6.8). [CR]

char/. tdP40,dP40

(a) (b)

Figure 8.6: (a) True induced pore pressure change (color scale) on day 60.
(b) Estimated induced pore pressure change inverted using (6.7,6.8). [CR]

char/. tdP60,dP60
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Figure 8.7: Estimated induced pore pressure change on day 40 using TV-regularized
inversion (6.9,6.8) with bound constraints. Note that the permeability barrier of
Figure 8.1 is well approximated by a level curve of the estimated pressure distribution.
[CR] char/. 9tv
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Appendix A

Yet another guide to computing

FWI objective functional

“There are a terrible lot of lies

going about the world, and the worst

of it is that half of them are true.”

Winston Churchill
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In this appendix I describe gradient computation by the adjoint-state method

used in this thesis. With all derivations provided, this appendix presents a self-

contained exposition of the adjoint-state method. Special emphasis is placed on

explaining the relationship between the adjoint-state method and linearization of the

forward modeling operator. The appendix concludes with three examples of applying

the method in time and frequency-domain FWI. Unlike appendices B and C, this

appendix does not present original research but is intended as a reference.
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OBJECTIVE FUNCTIONS

Inverse problems of parameter estimation are often cast as nonlinear least squares

fitting problems (Hansen, 1998; Aster et al., 2011):

J(m) =
1

2
‖u− d‖2

2 → min, u = F(m), (A.1)

where m ∈ RN denotes model, u,d ∈ RM denote predicted and observed data, and

F : RN → RM is a (generally) nonlinear forward modeling operator. The objective of

parameter estimation is to minimize the data misfit (A.1) by varying m, often subject

to additional regularization as in

1

2
‖F(m)− d‖2

2 + Φ(m) → min, (A.2)

where is Φ is a regularization term. This work is concerned with solving very large

problems, with the dimensions of m and d in the order of 105–109, with both compu-

tational time 1 and storage constraining our choice of numerical solvers. The nonlinear

conjugate gradients method and quasi-Newton methods (Nocedal and Wright, 2006)

are the most widely used derivative-based local optimization methods for solving

large-scale problems as these methods only require (repetitive) evaluation of (A.2)

and its gradient with respect to m, without Hessian evaluation2. Therefore, efficient

computation of the objective function gradient is one key to successful application of

these methods.

Note that the regularization term Φ(m) in (A.2) is usually a known explicit func-

tion of the model m, and evaluating derivatives with respect to m is computationally

straightforward. However, this appendix describes a framework for efficient numerical

differentiation of objective functions that are even more general than (A.2).

1of applying the forward-modeling operator F
2Other methods such as truncated Newton can be adapted to solving large-scale problems so that

the Hessian (either exact or approximate) is not required to be known component-wise.
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Differentiating (A.1) with respect to mj, j = 1, . . . , N we obtain

∂J

∂mj
=

[
∂F i

∂mj

]T
(F(m)− d) =

M∑
i=1

∂F i

∂mj

(
F i(m)− di

)
=

M∑
i=1

∂ui

∂mj

(
ui − di

)
.

(A.3)

From (A.3) we immediately see that the gradient of the objective function equals the

adjoint of the Jacobi matrix ∂F/∂m = ∂u/∂m applied to the data residual F(m)−d.

Formula (A.3) indicates that computation of the gradient requires a matrix-vector

multiplication. It is important to note that for very large M and N component-wise

evaluation of the Jacobi matrix may not be feasible.

�

Without any additional assumptions about the modeling operator, no further

computational simplification of (A.3) is possible. However, certain practically

important explicit (e.g., using Green’s functions) and implicit types of func-

tional dependence between the modeled data u and modeling parameters m

allow gradient computation without component-wise evaluation of the Jacobi

matrix, as discussed in the following sections.

The adjoint-state method originated in the theory of PDE-constrained optimiza-

tion (Chavent, 1971; Lions, 1971) and found its first geophysical applications in the

seventies—see, e.g., Bamberger et al. (1977).

ADJOINT-STATE METHOD

In (A.1) we represented modeled data as an explicit function of modeling parameters,

u = F(m). However, forward modeling in typical applications often means solving

a problem for operator equations3. After discretization, such problems are typically

reduced to solving a system of M nonlinear equations with respect to M data variables

3(pseudo-)differential, integral, integro-differential, etc.
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u = [ui], i = 1, . . . ,M that depend on N model parameters m = [mj], j = 1, . . . , N .

Before considering the most general formulation, we look into the important case of

frequency-domain wave-equation modeling.

Wave-equation modeling

As an example, let us consider one-dimensional frequency-domain acoustic wave-

equation modeling that requires solving

(
s2(x)ω2 + ∆

)
p(x, ω) + f(x, ω) = 0, x ∈ R1, (A.4)

where s(x) is the slowness (reciprocal velocity) as a function of spatial coordinate

x, p(x, ω) is the temporal Fourier transform of the pressure at x, and f(x, ω) is the

temporal Fourier transform of a source function. Using a single frequency ω = ω0 and

spatial discretization x = xi, i = 1, . . . ,M (and appropriate boundary conditions),

(A.4) can be approximated with the following discrete problem

(mi)2ω2ui +
M∑
k=1

∆̃i
ku

k + f(xi, ω) = 0, i = 1, . . . ,M, (A.5)

where mi = s(xi), ui = p(xi, ω0), f i = f(xi, ω0) and ∆̃ =
[
∆̃i
k

]
is a finite-difference

discretization of the Laplace operator and boundary conditions. In (A.5) the dimen-

sions of the model space (m) and data space (u) are equal; however, we could have

N < M if we choose a coarser slowness discretization grid. Equation (A.5) means

that forward-modeling of acoustic wave propagation requires solving a system of lin-

ear equations with respect to u, with equation coefficients depending on m. The

system of equations (A.5) is the kind of implicit functional relationship between the

model m and data u (after problem discretization) that was referred to above.
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Method

In our formulation of the adjoint-state method, we assume the existence of an implicit

functional dependence between model and data, applicable to any finite-dimensional

modeling problem. Note that (A.5) can be represented in an operator notation as

S(m,u) = 0, (A.6)

where S : RN × RM → RM is a smooth mapping. We assume that the adjoint-state

method is applied after discretization, and virtually any operator equation after dis-

cretization can be represented in the form of a finite-dimensional nonlinear functional

dependence (A.6). Equation (A.6) establishes implicit dependence of u on m that is

locally unique and smooth if the following condition holds

det

∣∣∣∣∂S

∂u

∣∣∣∣ 6= 0, (A.7)

wherever equality (A.6) is satisfied. This statement is known as the implicit function

theorem (Zorich, 2008) and is key to the existence and uniqueness of a solution to our

modeling problem, and its smooth dependence on model parameters. We will now

study the following problem:

�

Formulate a computationally efficient way of evaluating the gradient of

J(m) = H(m,u), (A.8)

where u,m satisfy (A.6) and H is an arbitrary smooth function. “Com-

putational efficiency” means avoiding potential O (min(M,N))2 storage and

compute time requirements of component-wise ∂u/∂m Jacobi matrix com-

putation.



122 APPENDIX A. FWI OBJECTIVE FUNCTIONAL

Taking the full derivative of (A.6) with respect to mj, j = 1, . . . , N and remem-

bering that u is a function of m, although implicit, we obtain

∂Si

∂mj
(m,u(m)) +

M∑
k=1

∂Si

∂uk
(m,u(m))

∂uk

∂mj
= 0, i = 1, . . . ,M, j = 1, . . . , N. (A.9)

F

System (A.9) can be regarded as a system of equations with respect to the elements of the Jacobi matrix

∂u/∂m, or variational equations (Gelfand and Fomin, 2000). Solving variational equations is the standard

technique for computing Jacobi matrices for solutions of operator equations. It should be noted that even

for simple linearized operators ∂S/∂u, solving (A.9) for M × N components of the Jacobi matrix is

computationally challenging unless data or model space dimension is small. However, if we are only

interested in measuring predicted response to a specified change in model parameters,

∆u =
[
∆ui

]
≈

∂u

∂m
∆m =

 N∑
j=1

∂ui

∂mj
∆mj

 , = i = 1, . . . ,M, (A.10)

—i.e., the result of applying the Jacobi matrix to a known model-space vector ∆m, then it can be evaluated

trivially by solving a system of M linear equations with respect to ∆u

N∑
j=1

∂Si

∂mj
(m,u(m))∆mj +

M∑
k=1

∂Si

∂uk
(m,u(m))∆uk = 0, i = 1, . . . ,M, (A.11)

often called variational equations as well. System (A.11) is a linearization of (A.6) around solution

u = u(m). Note that (A.3) is the result of applying the adjoint of the Jacobi matrix to a known data-

space vector. The rest of this section essentially is a demonstration of how the result of applying the

adjoint Jacobi matrix to a known data-space vector can be obtained by solving the linearized adjoint

equation.

Taking the full derivative of (A.8) with respect to mj, j = 1, . . . , N , we have

∂J

∂mj
=

∂H

∂mj
(m,u(m)) +

M∑
k=1

∂H

∂uk
(m,u(m))

∂uk

∂mj
, j = 1, . . . , N. (A.12)

In (A.12) the partial derivatives of H are trivial to compute and store. We will now

eliminate the Jacobi matrix ∂u/∂m from (A.12) using (A.9). Indeed, from (A.9)

using (A.7) we obtain

∂uk

∂mj
= −

M∑
i=1

Zk
i

∂Si

∂mj
(m,u(m)), (A.13)
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where

Z =

[
∂Si

∂uk
(m,u(m))

]−1

(A.14)

and the inverse exists because of (A.7). Substituting (A.13) into (A.12), we get

∂J

∂mj
=

∂H

∂mj
(m,u(m))−

M∑
k=1

∂H

∂uk
(m,u(m))

M∑
i=1

Zk
i

∂Si

∂mj
(m,u(m)). (A.15)

At this point we can make two important observations about (A.15): 1) for the

implicit formulation (A.6), the partial derivatives of S with respect to m may be

obtained trivially (for example, for (A.5) ∂S/∂m is a diagonal matrix) and 2) the

second term in (A.15) can be represented as[
∂H

∂u

]T
Z
∂S

∂m
=

[
ZT ∂H

∂u

]T
∂S

∂m
=

=
M∑
i=1

{
M∑
k=1

[
ZT
]i
k

∂H

∂uk
(m,u(m))

}
∂Si

∂mj
(m,u(m)),

(A.16)

where the expression in the braces in (A.16) is the result of applying adjoint of the

inverse of linear operator
∂Si

∂uk
(m,u(m))

to the easily computable vector ∂H/∂u. Here is the source of the most important

computational saving: rather than multiplying Z by another matrix as in (A.15), we

apply its adjoint to a vector. Furthermore, from (A.14) we see that computing

λi =
M∑
k=1

[
ZT
]i
k

∂H

∂uk
(m,u(m)), (A.17)
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is equivalent to solving the following system of equations

M∑
i=1

[
Z−T

]k
i
λi =

∂H

∂uk
(m,u(m)) ⇔

M∑
i=1

∂Si

∂uk
(m,u(m))λi =

∂H

∂uk
(m,u(m)),

(A.18)

i.e., to evaluate λ (often referred as the “adjoint field”) we simply need to solve a

linear system with the adjoint of the linear operator obtained by linearizing implicit

equations (A.6) around the forward-modeled solution u = u(m). Once (A.18) is

solved, λ is substituted into (A.16), where the adjoint of operator

∂S

∂m
=

[
∂Si

∂mj
(m,u(m))

]
, i = 1, . . . ,M, j = 1, . . . , N. (A.19)

is applied to it.

�

Utility of the adjoint state method lies in the fact that in many practical

problems the computational cost of solving (A.18) does not exceed that of

solving (A.6), and the linearized operators in the left-hand side of (A.18) and

in (A.19) are sparse, can be derived analytically, and/or have efficient “black

box” implementations.

Adjoint-state recipe

We can now describe detailed steps for evaluating the gradient of (A.8) for a discrete

optimization problem. Assume that forward modeling of u, given model parameters

m, requires solution of (A.6), and we have a method for solving (A.6). At the expense

of some repetition, we provide all the equations and definitions required for an abstract

adjoint-state application framework.
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1. Given m, solve (A.6) for u = u(m).

2. Compute
∂H

∂u
=

[
∂H

∂uk
(m,u(m))

]
, k = 1, . . . ,M. (A.20)

3. Linearize (A.6) around u(m)—i.e., derive or compute the linear operator

L =
∂S

∂u
=

[
∂Si

∂uk
(m,u(m))

]
, i, k = 1, . . . ,M. (A.21)

4. Compute λ = λi, i = 1, . . . ,M by solving the linearized adjoint equation

LTλ =
∂H

∂u
(A.22)

with the right-hand side (A.20), or, in components,

M∑
i=1

∂Si

∂uk
(m,u(m))λi =

∂H

∂uk
(m,u(m)). (A.23)

To solve (A.22), use the derived explicit form of L or a “black box” opera-

tor application routine for L to avoid component-wise matrix operations and

storage.

5. Compute
∂H

∂m
=

[
∂H

∂mj
(m,u(m))

]
, j = 1, . . . , N. (A.24)

6. Linearize (A.6) around m—i.e., derive or compute the linear operator

G =
∂S

∂m
=

[
∂Si

∂mj
(m,u(m))

]
, i = 1, . . . ,M, j = 1, . . . , N. (A.25)

7. Compute the gradient as

∂J

∂m
=

∂H

∂m
− GTλ, (A.26)
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or, in components,

∂J

∂mj
=

∂H

∂mj
(m,u(m)) −

M∑
i=1

∂Si

∂mj
(m,u(m))λi. (A.27)

To compute GTλ in (A.26), use the derived explicit form of G, or a “black box”

operator application routine for G to avoid component-wise matrix operations

and storage.

EXAMPLES

In this section we discuss two applications of the adjoint-state method to PDE-

constrained optimization. First, we return to the frequency-domain wave equation

example discussed above. A step-by-step description is provided for applying the ad-

joint state method to a one-dimensional full-waveform inversion problem. Next, we

consider a time-domain formulation of the same problem and again derive all the steps

of the method. We demonstrate how the framework can be applied to complex-valued

data.

Frequency-domain full-waveform inversion

Here we apply the adjoint-state method to computing the gradient of objective func-

tion (A.1) with respect to the slowness. Function u is a solution of (A.4) for x ∈ [a, b],

satisfying zero boundary conditions

u(z = a, ω) = u(x = b, ω) = 0. (A.28)

We discretize (A.4) over a grid xi, i = 0, 1, . . . ,M,M+1, with x0 = a, xM+1 = b, using

the second-order central finite-difference (Ascher, 2008) to obtain (A.5). Operator ∆̃
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(discretized Laplacian) in (A.5) is given4 by the following M ×M matrix

∆̃ =
1

∆x2



−2 1 0 0 . . . 0 0 0 0

1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0

0 0 1 −2 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . −2 1 0 0

0 0 0 0 . . . 1 −2 1 0

0 0 0 0 . . . 0 1 −2 1

0 0 0 0 . . . 0 0 1 −2



. (A.29)

and functions S = [Si], i = 1, . . . ,M in the implicit functional relationship (A.6) are

given by

Si(m,u) = (mi)2ω2ui +
M∑
k=1

∆̃i
ku

k + f(xi, ω), i = 1, . . . ,M. (A.30)

Forward-modeling wavefield u for a given slowness function m requires solving system

(A.5) for

ui = u(xi, ω), i = 1, . . . ,M ; (A.31)

note that u(x0) = u(M+1) = 0 from (A.28).

We will now formulate steps of the adjoint-state framework (A.20–A.26) for com-

puting [∂J/∂mj]. After forward-modeling the wavefield, we compute (A.20):

∂H

∂u
= u(m)− d, (A.32)

i.e., the residual. Since for (A.30) we have

∂Si

∂uk
(m,u) = (mi)2ω2δik + ∆̃i

k, i, k = 1, . . . ,M, (A.33)

4for zero boundary conditions (A.28)
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the adjoint equation is

M∑
i=1

(mi)2ω2δikλ
i +

M∑
i=1

∆̃i
kλ

i = uk(m)− dk k = 1, . . . ,M, (A.34)

where u(m) = [ui(m)] is the forward-modeled wavefield, i.e., solution of (A.5). Note

that S depends on u linearly, and the linearized adjoint matches the adjoint of the

operator S as a linear operator applied to u. Specifically, (A.29) is symmetric, i.e.,

self-adjoint , trivially leading to

(mk)2ω2λk +
M∑
i=1

∆̃k
i λ

i = uk(m)− dk k = 1, . . . ,M. (A.35)

We see that the adjoint equation matches the forward-modeling equation except for

the source term, which is now given by d − u(m) (note the sign). Note that (A.24)

is zero for objective function (A.1), and for operator (A.25) we have

∂Si

∂mj
(m,u) = δij2m

iω2ui, i = 1, . . . ,M, j = 1, . . . , N = M, (A.36)

yielding for the objective function gradient

∂J

∂mj
= −2mjω2uj(m)λj. (A.37)
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�

In our formulation of the adjoint-state method we assumed all functions and

solutions to be real-valued. In the context of frequency-domain full waveform

inversion, that means that formula (A.37) applies when u(x, ω) and d(x, ω)

are either temporal sine or cosine transforms of the predicted and observed

data. However, the forward modeling and adjoint equations (A.5) and (A.35)

can be solved for complex Fourier transform of the data. Note that the

objective function (A.1) is simply the sum of similar misfits for the cosine

and sine transforms, assuming real data. Hence, if u and λ now denote

complex solutions of (A.5) and (A.35) with d as the complex temporal Fourier

transform of the observed data, gradient of the total objective function will

be the sum of two contributions, leading to

∂J total

∂mj
= −2mjω2Reuj(m)Reλj − 2mjω2Imuj(m)Imλj =

= −2mjω2Re
{
uj(m)λj

}
,

(A.38)

where the horizontal bar denotes complex conjugate. Formula (A.38) is ap-

plicable to frequency-domain complex full-waveform inversion and is in the

form used in this thesis.

The computational cost and memory requirements of computing (A.38) are driven

by the requirements of solving the forward modeling problem (A.5) and adjoint equa-

tion (A.35). Since the two equations in our case differ only by the source term, the

computational cost is at most twice the cost of forward modeling. The linearized

adjoint operator matches the forward-modeling operator because the latter depends

linearly on u and is self-adjoint (Kolmogorov and Fomin, 1999; Kantorovich and Ak-

ilov, 1982). Although the above derivation was carried out for a one-dimensional
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frequency-domain problem, all the equations and derivations stay valid for multi-

dimensional problems, with the discretized Laplacian (A.29) replaced with its multi-

dimensional analogue.

Time-domain full-waveform inversion

We again consider the one-dimensional full-waveform inversion problem (A.1), how-

ever, this time, we assume that the forward modeling is carried in time domain:(
s2(x)

∂2

∂t2
− ∆

)
p(x, t)− f(x, t) = 0, x ∈ R1, t ∈ [0, T ] . (A.39)

As before, we follow Ascher (2008) and first discretize then optimize (DTO). For the

time-domain formulation (A.39), the zero boundary conditions

p(z = a, t) = p(x = b, t) = 0, t ∈ [0, T ] , (A.40)

must be complemented with two initial conditions. Using Duhamel’s principle, we

can assume that the initial conditions are zero as any source can be included in the

term f(x, t) in a distributional sense (Vladimirov, 1971) so that

p(x, t ≤ 0) = 0,
∂p

∂t
(x, t ≤ 0) = 0. (A.41)

We discretize (A.39) over a spatial grid xi, i = 0, 1, . . . ,M,M+1 with x0 = a, xM+1 =

b and temporal grid tl, l = −1, 0, 1, 2, . . . , Nt with t0 = 0, tNt = T for some large M

and Nt. How I choose time indexing will be discussed shortly. After discretization

we have

uik = p(xi, tk), mi = s(xi), i = 0, 1, . . . ,M,M + 1, k = −1, 0, 1, . . . , Nt. (A.42)
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For boundary and initial conditions (A.40) and (A.41) after discretization we obtain

u0 k = uM+1 k = 0, k = −1, 0, 1, . . . , Nt

ui (−1) = ui 0 = 0, i = 0, 1, . . . ,M,M + 1.
(A.43)

To obtain discretized functional relations (A.6), we introduce Sjn that is a finite-

difference discretization of (A.39) for

x = xj, t = (n− 1)∆t, where ∆t = T/Nt, n = 1, . . . , Nt. (A.44)

Note that the retarded time indexing in (A.44) is different from the time grid indexing

used for discretizing u(x, t), as time index l = 1 now corresponds to t = 0. Using

second-order central differences for both spatial and temporal derivatives, we obtain

Sjn(m,u) = (mj)2

Nt∑
l=1

∆̂n
l u

j l −
M∑
k=1

∆̃j
ku

k n−1 − f(xj, tn−1),

j = 1, . . . ,M, n = 1, . . . , Nt,

(A.45)

where

∆̂ =
1

∆t2

Nt︷ ︸︸ ︷

1 0 0 . . . 0 0 0 0

−2 1 0 . . . 0 0 0 0

1 −2 1 . . . 0 0 0 0

0 1 −2 . . . 0 0 0 0
...

...
...

. . .
...

...
...

...

0 0 0 . . . 1 0 0 0

0 0 0 . . . −2 1 0 0

0 0 0 . . . 1 −2 1 0

0 0 0 . . . 0 1 −2 1





Nt.
(A.46)

Note that (A.46) is no longer self-adjoint, and the source term in (A.45) is time-shifted

because of the retarded time-indexing chosen for Sjn in (A.44).
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Matrix (A.46) is triangular, meaning that forward modeling can be performed very

efficiently by time marching . More specifically, values of the wavefield for t = ∆t are

computed from the source injected at t = 0 as

ui 1 = (mi)−2∆t2f(xi, 0), i = 1, . . . ,M, (A.47)

because of the conditions (A.43). The subsequent time sections of the wavefield are

computed as

ui k = 2ui k−1 − ui k + (mi)−2∆t2

(
M∑
j=1

∆̃k
ju

j k−1 + f(xi, (k − 1)∆t)

)
,

i = 1, . . . ,M, k = 2, 3, . . . , Nt.

(A.48)

F

The explicit marching scheme (A.48) makes the time-domain formulation especially attractive for multi-

dimensional full-waveform inversion. Solution of (A.5) requires solving a system of linear equations. In

the one dimensional case, system (A.5) has a tridiagonal matrix and can be solved in a linear time O(M).

In a multi-dimensional case this system has a very sparse but not banded matrix that requires application

of structured or iterative solvers (Golub and Van Loan, 1996; Trefethen and Bau III, 1997; Saad, 2003).

An alternative to solving (A.5) in the frequency domain is to forward-model the wavefield in the time

domain and apply the discrete Fourier transform to it (Sirgue et al., 2010a).

For the objective function

J(u) = H(u) =
1

2

M∑
i=1

Nt∑
k=1

(
ui k − di k

)2
(A.49)

(squared 2-norm of the data misfit over space and time), after differentiating with

respect to the wavefield we obtain

∂H

∂ui k
= ui k − di k, i = 1, . . . ,M, k = 1, . . . , Nt, (A.50)

i.e., the residual.
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To derive the linearized adjoint equation (A.22) we use (A.32) and

∂Sjn

∂uik
(m,u) = (mj)2δji ∆̂

n
k − δn−1

k ∆̃j
i (A.51)

to obtain

Nt∑
n=1

(mi)2∆̂n
kλ

i n −
M∑
j=1

∆̃j
iλ

j k+1 = ui k(m)−di k i = 1, . . . ,M, k = 1, . . . , Nt, (A.52)

where we add the “initial” condition

λiNt+1 = 0, i = 1, . . . ,M. (A.53)

Condition (A.53) is necessary to avoid the time index in (A.52) exceeding Nt. Without

(A.53) adjoint equations (A.52) would have to include an extra formula for the special

case of k = Nt, so (A.53) are introduced solely for notational and computational

convenience. Operator ∆̃ is given by (A.29) and is symmetric. Equation (A.52) is

equivalent to

Nt∑
n=1

(mi)2∆̂′
k

nλ
i n −

M∑
j=1

∆̃i
jλ

j k = ui k(m)− di k i = 1, . . . ,M, k = 1, . . . , Nt, (A.54)

where [
∆̂′

k

n

]
= ∆̂′ = ∆̂

∗
(A.55)
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is the transpose of operator (A.46),

∆̂′ =
1

∆t2

Nt︷ ︸︸ ︷

1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0

0 0 1 −2 . . . 0 0 1 0

0 0 0 1 . . . 0 0 1 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 −2 1 0

0 0 0 0 . . . 0 1 −2 1

0 0 0 0 . . . 0 0 1 −2

0 0 0 0 . . . 0 0 0 1





Nt.
(A.56)

Matrix (A.56) is upper-triangular, suggesting a marching for solving (A.54) analogous

to (A.47,A.48) but applied “backwards”. First, we initialize λiNt+1, i = 1, . . . ,M to

zero per (A.53). Next, we assign

λiNt = (mi)−2∆t2
(
uiNt(m)− diNt

)
, i = 1, . . . ,M, (A.57)

followed by the backwards marching scheme

λi k = 2λi k+1 − λi k+2 + (mi)−2∆t2
M∑
j=1

∆̃j
iλ

j k+1,

i = 1, . . . , N, k = Nt − 1, . . . , 1.

(A.58)

From
∂Sj n

∂mi
(m,u) = δji 2m

j

Nt∑
l=1

∆̂n
l u

j l = 2mj

Nt∑
l=1

∆̂n
l u

j l, (A.59)

constructing operator G (A.25) and forming (A.26), we obtain

∂J

∂mi
= −

M∑
j=1

Nt∑
n=1

∂Sj n

∂mi
λj n = −2mi

Nt∑
n=1

λi n
Nt∑
l=1

∆̂n
l u

i l, i = 1, . . . ,M. (A.60)
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Expression (A.60) can be interpreted as being proportional to the dot-product of the

second time derivative of the forward-modeled data with the data residual “back-

propagated” in time—compare with (A.38).

Note that just as in the frequency-domain example of the previous section, the

cost of computing the gradient is roughly twice the cost of forward modeling.

F

In both frequency and time-domain examples we assumed zero boundary conditions as implemented in

spatial Laplacian (A.29). In geophysical acoustic wave propagation problems zero boundary conditions

are equivalent to free surface boundary conditions and are typically applied at an air or water interface.

Absorbing boundary conditions are applied along boundaries of the computational domain, significantly

impacting finite-difference representation of the Laplacian. Note that in our examples S depends linearly

on u, significantly simplifying the linearized adjoint equation. Interesting practical cases of modeling

operators may involve nonlinear or quasilinear dependence on u. Note that in any case equation (A.22)

is obviously linear and may be more amenable to numerical analysis than the (potentially) nonlinear

forward-modeling equation (A.6).

Phase-only full-waveform inversion

Phase-only full-waveform inversion is based on minimizing a measure of misfit between

phase information in the predicted and observed data. Although phase differences

can be directly measured and used in an objective function, phase is inherently dis-

continuous, unless unwrapped, and the resulting objective function may suffer from

non-differentiability(Fichtner, 2011). However, here I demonstrate how a continuous

(and periodic) function of the phase can be used in an objective function thus avoid-

ing non-differentiability. I demonstrate a phase-only FWI based on minimizing the

following objective function

J(m) = H(u(m),m) = H(u(m)) = ‖ exp iarg u− exp iarg d‖2
2, (A.61)

where d and u are single-frequency components of the observed and predicted data5

and arg denotes the argument of a complex number. The gradient of (A.61) can

be computed within the framework of the frequency-domain adjoint state method

5we conduct the inversion in the frequency domain
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described in an earlier example. From (A.38) we obtain

∂J

∂mj
= −2mjω2Re

{
uj(m)λj

}
, (A.62)

where, using (A.23) and assembling real and complex components for λ, we have

(mk)2ω2λk +
M∑
i=1

∆̃k
i λ

i =
∂H

∂Reuk
+ i

∂H

∂Imuk
, k = 1, . . . ,M. (A.63)

From (A.63) we can see that the main difference with the phase-and-amplitude

frequency-domain inversion appears in the injected sources for the adjoint wavefield

propagation, in the right-hand side of (A.63). The objective function (A.61) can be

expressed via the forward-propagated wavefield as follows,

H(u) =
∑
k

{
cos arg uk − cos arg dk

}2
+
{

sin arg uk − sin arg dk
}2

=
∑
k

{
Reuk

|uk|
− Re dk

|dk|

}2

+

{
Imuk

|uk|
− Im dk

|dk|

}2

,

(A.64)

where | · | is the absolute value of a complex number, |z| =
√

(Re z)2 + (Im z)2.

After substituting (A.64) into the right-hand side of of (A.63), introducing the real

and imaginary components of the “phase misfit”6

ρk1 = cos arg uk − cos arg dk =
Reuk

|uk|
− Re dk

|dk|
,

ρk2 = sin arg uk − sin arg dk =
Imuk

|uk|
− Im dk

|dk|
,

(A.65)

6I use the term “phase misfit” loosely here; the actual misfit (A.61) involves a difference of the
exponents of phase.
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for the injected source we have

∂H

∂Reuk
+ i

∂H

∂Imuk

=
2

|uk|

{
ρk1

(
1−

(
Reuk

)2

|uk|2

)
− ρk2

ReukImuk

|uk|2

}

+
2i

|uk|

{
ρk2

(
1−

(
Imuk

)2

|uk|2

)
− ρk1

ReukImuk

|uk|2

}

=
2 sin arg uk

|uk|
{
ρk1 sin arg uk − ρk2 cos arg uk

}
+

2i cos arg uk

|uk|
{
ρk2 cos arg uk − ρk1 sin arg uk

}
=

2

|uk|
{

sin arg uk − i cos arg uk
}{

ρk1 sin arg uk − ρk2 cos arg uk
}

=
2i

|uk|
{

cos arg uk + i sin arg uk
}{

ρk2 cos arg uk − ρk1 sin arg uk
}
.

(A.66)

Introducing a “phase misfit residual”,

rk ≡ ρk1 + iρk2, (A.67)

such that

H(u) ≡
∑
k

‖rk‖2
2, (A.68)

expression (A.66) for the source is now reduced to

∂H

∂Reuk
+ i

∂H

∂Imuk
=

2i

uk
Im

[
uk

|uk|
rk

]
=

2i

uk
Im

[
uk

|uk|

(
uk

|uk|
− dk

|dk|

)]
. (A.69)

Expression (A.69) expresses the adjoint source via single-frequency components of

the predicted and observed wavefields. As expected, if the two wavefields match after

amplitude normalization, the gradient is zero. One significant disadvantage of the

phase-only inversion is that it is even more prone to cycle skipping than the phase-

and-amplitude inversion: the difference of the amplitude-normalized wavefields in
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(A.69) may be zero, resulting in a stationary point of the objective function (A.61)

even when wavefield amplitudes do not match. To obtain qualitative conditions of

convergence for the phase-only inversion, let us assume that the inversion is conducted

in a 1D medium of a characteristic dimension L (e.g., average travel distance), and

the average acoustic velocity in the medium is v. For a single-frequency component

of the observed data we have

d(x) ≈ exp 2πi
ω

v
x, (A.70)

(note there is obviously no need for amplitude normalization in 1D). If our initial

estimate of the acoustic velocity is v + ∆v, then for the predicted data we have

u(x) ≈ exp 2πi
ω

v + ∆v
x. (A.71)

Inversion does not cycle-skip so long as the average phase difference accumulated

between (A.70) and (A.71) over the characteristic distance L does not exceed 2π—

i.e.,

2πω

∣∣∣∣ 1

v + ∆v
− 1

v

∣∣∣∣L < 2π ⇔∣∣∣∣∆vv
∣∣∣∣ < v

ωL
,

(A.72)

i.e., relative velocity errors should not exceed the ratio of the characteristic wavelength

of the observed data to the characteristic distance of wave propagation7. One impli-

cation of (A.72) is a temporal multi-scale application of the (phase-only) frequency-

domain FWI: inversion proceeds from low to high frequencies because for low fre-

quencies the objective function (A.61) is more tolerant to velocity errors.

I illustrate the phase-only FWI method based on (A.62) and (A.69) using the

synthetic example of Figure 4.1 from chapter 4. In this experiment, a gradient com-

puted using (A.62) was supplied to a nonlinear conjugate gradients solver (Nocedal

7Compare with the discussion in the section on Rytov Series in chapter 2: (A.72) means that
the effect of a velocity perturbation ∆v over a distance L should not exceed the characteristic
wavelength.
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and Wright, 2006). The true velocity model was smoothed using a 1920 m window

to produce the starting model of Figure A.1. Synthetic data was generated using a

towed-streamer acquisition with the maximum offset of 5 km.

Figure A.1: Starting FWI model
obtained by smoothing true model
of Figure 4.1 using a 1920 m win-
dow. [ER] adjoint/. AAstarting

A temporal multi-scale frequency-domain phase-only inversion was conducted for

the frequency range of 3–30 Hz. Ten iterations of nonlinear conjugate gradients were

performed for each frequency inversion.

A gradient computed using (A.62) for ω = 3 Hz is plotted in Figure A.2 after

the first iteration of conjugate gradients, and in Figure A.3 after the tenth iteration.

Cross-correlations (A.62) gradually emerge as long-wavelength periodic structures at

depth.

Figure A.2: A gradient computed
using (A.62),(A.69) for ω = 3 Hz,
first iteration of conjugate gradi-
ents. Note that first arrival energy
dominates the gradient, however,
non-zero cross-correlations (A.62)
are beginning to emerge at depth.
[CR] adjoint/. AAgrad11

A gradient computed using (A.62) for ω = 7.4 Hz is plotted in Figure A.4 after
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Figure A.3: A gradient of (A.61)
computed using (A.62),(A.69)
for ω = 3 Hz, tenth iteration of
conjugate gradients. Note the
long-wavelength periodic cross-
correlations (A.62) at depth.

[CR] adjoint/. AAgrad110

the first iteration of conjugate gradients, and in Figure A.5 after the tenth iteration.

Cross-correlations (A.62) appear as short-wavelength periodic structures.

Figure A.4: A gradient of (A.61)
computed using (A.62),(A.69)
for ω = 7.4 Hz, first iteration of
conjugate gradients. Note the
short-wavelength periodic cross-
correlations (A.62) at depth.

[CR] adjoint/. AAgrad101

Short and long-model updates for ω =3–30 Hz constructively interfered to produce

the final result of Figure A.6. The phase-only FWI here does not cycle-skip, and this

can be explained using the simple heuristic (A.72).

The average difference between the smoothed model of Figure A.1 and true model

of Figure 4.1 does not exceed 5% of the VRMS velocity of approximately 2.2 km/s,

hence
∆v

v
≈ 0.05.

Characteristic (average) distance of wave propagation for our acquisition and 5 s max-

imum modeling time obviously does not exceed 11 km, hence L ≈ 11. Substituting
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Figure A.5: A gradient of (A.61)
computed using (A.62),(A.69) for
ω = 7.4 Hz, tenth iteration
of conjugate gradients. The
model is sufficiently close to the
true solution for the gradient to
point to the solution. [CR]

adjoint/. AAgrad1010

Figure A.6: Final inversion re-
sult for ω = 30 Hz. Note that
model updates for different fre-
quencies constructively interfered
to produce a quantitatively ac-
curate approximation of the true
model shown in Figure 4.1. [CR]

adjoint/. AAfinal
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these values and ω = 3 Hz into (A.72) yields

0.05 <
2.2

3× 11
≈ .07.

A similar argument can be repeated for higher frequencies so long as each single-

frequency inversion sufficiently reduces the velocity error ∆v.



Appendix B

Compressive Conjugate Directions:

Linear Theory

“Success is the sum of details.”

Harvey S. Firestone
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I present a powerful and easy-to-implement iterative algorithm for solving large-

scale optimization problems that involve L1/total-variation (TV) regularization. The

method is based on combining the Alternating Directions Method of Multipliers

(ADMM) with a Conjugate Directions technique in a way that allows reusing con-

jugate search directions constructed by the algorithm across multiple iterations of

the ADMM. The new method achieves fast convergence by trading off multiple ap-

plications of the modeling operator for the increased memory requirement of storing

previous conjugate directions. I illustrate the new method with a series of imaging

and inversion applications.
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INTRODUCTION

We address a class of regularized least-squares fitting problems of the form

‖Bu‖1 +
α

2
‖Au− d‖2

2 → min,

u ∈ RN , d ∈ RM , A : RN → RM , B : RN → RK , K ≤ N,
(B.1)

where d is a known vector (data), u a vector of unknowns1, and A,B are linear

operators. If B is the identity map, then problem (B.1) is a least-squares fitting with

L1 regularization,

‖u‖1 +
α

2
‖Au− d‖2

2 → min . (B.2)

If the unknown vector u is the discretization of a function, and B is the first-order

finite difference operator

(Bu)i = ui+1 − ui, i = 1, 2, . . . , N − 1,

then problem (B.1) turns into a least-squares fitting with a total-variation (TV) reg-

ularization

‖∇u‖1 +
α

2
‖Au− d‖2

2 → min . (B.3)

On the one hand, in (B.2) we seek a model vector u such that forward-modeled

data Au match observed data d in the least squares sense, while imposing sparsity-

promoting L1 regularization. In (C.1), on the other hand, we impose blockiness-

promoting total-variation (TV) regularization. Note that rather than using a regu-

larization parameter as a coefficient of the regularization term, we use a data-fitting

weight α. TV regularization (also known as the Rudin-Osher-Fatemi, or ROF, model

Rudin et al. (1992)) acts as a form of “model styling” that helps to preserve sharp

contrasts and boundaries in the model even when spectral content of input data has

a limited resolution.

1sometimes referred to as “model”
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L1-TV regularized least-squares fitting, a key tool in imaging and de-noising appli-

cations (see, e.g. Rudin et al. (1992); Chambolle and Lions (1997); Vogel and Oman

(1996); Kim et al. (2007)), is beginning to play an increasingly important role in ap-

plications where the modeling operator A in (B.1) is computationally challenging to

apply. In particular, in seismic imaging problems of exploration geophysics such as

full-waveform inversion Tarantola (1984); Fichtner (2011) modeling of seismic wave

propagation in a three-dimensional medium from multiple seismic sources is by far

the greatest contributor to the computational cost of inversion, and reduction of the

number of applications of the operator A is key to success in practical applications.

L1-regularized least-squares problems can be reduced to inequality-constrained

quadratic programs and solved using interior-point methods based on, e.g., Newton

Boyd and Vandenberghe (2004) or nonlinear Conjugate Gradients Kim et al. (2007)

methods. Alternatively, the resulting bound-constrained quadratic programs can be

solved using gradient projection Figueiredo et al. (2007) or projected Conjugate Gra-

dients Qiu et al. (2012). A conceptually different class of techniques for solving

L1-regularized least-squares problems is based on homotopy methods Hastie et al.

(2004); Efron et al. (2004); Osborne et al. (2000).

Another class of methods for solving (B.1) that merits a special mention ap-

plies splitting schemes for the sum of two operators. For example the iterative

shrinking-thresholding algorithm (ISTA) is based on applying forward-backward split-

ting Bruck Jr. (1977); Passty (1979) to solving the L1-regularized problem (B.2) by

gradient descent Bioucas-Dias and Figueiredo (2007); Combettes and Wajs (2005);

Daubechies et al. (2004):

yk+1 = uk − γαAT (Auk − d) ,

uk+1 = shrink {yk+1, γ} ,
(B.4)

where γ > 0 is a sufficiently small step parameter, and the soft thresholding or

shrinkage operator is the Moreau resolvent (see, e.g., Bauschke and Combettes (2011))
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of ∂γ‖u‖1,

shrink {y, γ} = (1 + ∂γ‖y‖1)−1 = argmin x

{
γ‖x‖1 +

1

2
‖y − x‖2

2

}
=

y

|y|
max (|y| − γ, 0) ,

(B.5)

and ∂ = ∂u denotes the subgradient Rockafellar (1971); Bauschke and Combettes

(2011), and the absolute value of a vector is computed component-wise. The typ-

ically slow convergence of the first-order method (B.4) can be accelerated by an

over-relaxation step Nesterov (1983), resulting in the Fast ISTA algorithm (FISTA)

Beck and Teboulle (2009b):

yk+1 = uk − γαAT (Auk − d) ,

zk+1 = shrink {yk+1, γ} ,

ζk+1 =

(
1 +

√
1 + 4ζ2

k

)
/2,

uk+1 = yk+1 +
ζk − 1

ζk+1

(yk+1 − yk) ,

(B.6)

where ζ1 = 1 and γ is sufficiently small.

It is important to note that algorithm (B.6) is applied to the L1-regularized prob-

lem (B.2), not the TV-regularized problem (C.1). An accelerated algorithm for solv-

ing a TV-regularized denoising problem2 was proposed in Beck and Teboulle (2009a)

and applied the Nesterov relaxation Nesterov (1983) to solving the dual of the TV-

regularized denoising problem Chambolle (2004). However, using a similar approach

to solving (C.1) with a non-trivial operator A results in accelerated schemes that still

require inversion of A Beck and Teboulle (2009a); Goldstein et al. (2014) and thus

lack the primary appeal of the accelerated gradient descent methods—i.e., a single

application of A and its transpose per iteration3.

2with A = I in (C.1)
3In Beck and Teboulle (2009a) inversion of A is replaced by a single gradient descent, however,

over-relaxation is applied to the dual variable.
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The advantage of (B.6) compared with simple gradient descent is that Nesterov’s

over-relaxation step requires storing two previous solution vectors and provides im-

proved search direction for minimization. Note, however, that the step length γ is

inversely proportional to the Lipschitz constant of αAT (Au− d) Beck and Teboulle

(2009b) and may be small in practice.

A very general approach to solving problems (B.1) involving either L1 or TV

regularization is provided by primal-dual methods. For example, in TV-regularized

least-squares problem (C.1), by substituting

z = Bu (B.7)

and adding (B.7) as a constraint, we obtain an equivalent equality-constrained opti-

mization problem

‖z‖1 +
α

2
‖Au− d‖2

2 → min,

z = Bu.
(B.8)

The optimal solution of (C.5) corresponds to the saddle-point of its Lagrangian

L0 (u, z,µ) = ‖z‖1 +
α

2
‖Au− d‖2

2 + µT (z−Bu) , (B.9)

that can be found by the Uzawa method Uzawa (1958). The Uzawa method finds the

saddle point by alternating a minimization with respect to the primal variables u, z

and ascent over the dual variable µ for the objective function equal to the standard

Lagrangian (B.9), L = L0,

(uk+1, zk+1) = argminL (u, z,µk) ,

µk+1 = µk + λ [zk+1 −Buk+1]
(B.10)

for some positive step size λ. Approach (B.10), when applied to the Augmented

Lagrangian Rockafellar (1976), L = L+,

L+ (u, z,µ) = ‖z‖1 +
α

2
‖Au− d‖2

2 + µT (z−Bu) +
λ

2
‖z−Bu‖2

2, (B.11)



150 APPENDIX B. COMPRESSIVE CONJUGATE DIRECTIONS

results in the method of multipliers Hestenes (1969). For problems (B.1) all these

methods still require joint minimization with respect to u and z of some objective

function that includes both ‖z‖1 and a smooth function of u. Splitting the joint

minimization into separate steps of minimization with respect u, followed by mini-

mization with respect to z, results in the Alternating-Directions Method of Multipliers

(ADMM) Glowinski and Marroco (1975); Gabay and Mercier (1976); Glowinski and

Le Tallec (1989); Eckstein and Bertsekas (1992); Boyd et al. (2011). To establish a

connection to the splitting techniques applied to the sum of two operators, we note

that the ADMM is equivalent to applying the Douglas-Rachford splitting Douglas

and Rachford (1956) to the problem

∂
[
‖Bu‖1 +

α

2
‖Au− d‖2

2

]
3 0, (B.12)

where ∂ is the subgradient, and problem (B.12) is equivalent to (B.1). The ADMM is

a particular case of a primal-dual iterative solution framework with splitting Zhang

et al. (2010), where the minimization in (B.10) is split into two steps,

uk+1 = argminL (u, zk,µk) ,

zk+1 = argminL (uk+1, z,µk) ,

µk+1 = µk + λ [zk+1 −Buk+1]

(B.13)

For the ADMM, we substitute L = L+ in (B.13) but other choices of a modified

Lagrange function L are possible that may produce convergent primal-dual algorithms

Zhang et al. (2010). Making the substitution L = L+ from (B.11) into (B.13), and

introducing a scaled vector of multipliers,

bk = µk/λ, k = 0, 1, 2, . . . (B.14)
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we obtain

uk+1 = argmin
α

2
‖Au− d‖2

2 +
λ

2
‖zk − Bu + bk‖2

2,

zk+1 = argmin ‖z‖1 +
λ

2
‖z − Buk+1 + bk‖2

2,

bk+1 = bk + zk+1 −Buk+1, k = 0, 1, 2, . . .

(B.15)

where we used the fact that adding a constant term λ/2‖bk‖2
2 to the objective func-

tion does not alter the solution. In the iterative process (C.10), we apply splitting,

minimizing

‖z‖1 +
α

2
‖Au− d‖2

2 +
λ

2
‖z − Bu + bk‖2

2
(B.16)

alternately with respect to u and z. Further we note that the minimization of (C.12)

with respect to z (in a splitting step with u fixed) is given trivially by the shrinkage

operator (C.14),

zk+1 = shrink {Bu− bk, 1/λ} . (B.17)

Combining (C.10) and (C.13) we obtain Algorithm 1.

Algorithm 1 Alternating Direction Method of Multipliers (ADMM) for (B.1)

1: u0 ← 0N , zK0 ← 0
2: b0 ← 0K

3: for k ← 0, 1, 2, 3, . . . do
4: uk+1 ← argmin

{
λ
2
‖zk −Bu + bk‖2

2 + α
2
‖Au− d‖2

2

}
5: zk+1 ← shrink {Buk+1 − bk, 1/λ}
6: bk+1 ← bk + zk+1 −Buk+1

7: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
8: end for

Minimization on the first line of (C.10) at each step of the ADMM requires in-

version of the operator A. In the first-order gradient-descent methods like (B.6) a

similar requirement is obviated by replacing the minimization with respect to variable

u by gradient descent. However, for ill-conditioned problems the gradient may be a

poor approximation to the optimal search direction. One interpretation of Nesterov’s

over-relaxation step in (B.6) is that it provides a better search direction by perturbing

the current solution update with a fraction of the previous update on the last line of
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(B.6). The intermediate least-squares problem in (C.10) can be solved approximately

using, for example, a few iterations of conjugate gradients. However, repeating multi-

ple iterations of Conjugate Gradients at each step of the ADMM may be unnecessary.

Indeed, as we demonstrate in the following sections, conjugate directions constructed

at earlier steps of the ADMM can be reused because the matrix of the system of

normal equations associated with the minimization on the first line of (C.10) does

not change between ADMM steps4. Therefore, we can trade the computational cost

of applying the operator A and its transpose against the cost of storing a few solution

and data-size vectors. As this approach is applied to the most general problem (B.1)

with a non-trivial operator B, in addition to the potential speed-up, this method has

the advantage of working equally well for L1 and TV -regularized problems.

We stress that our new approach does not improve the theoretical convergence

properties of the classic ADMM method under the assumption of exact minimization

in step 4 of Algorithm 1. The asymptotic convergence rate is still O(1/k) as with

exact minimization He and Yuan (2012). The new approach provides a numerically

feasible way of implementing the ADMM for problems where a computationally ex-

pensive operator A precludes accurate minimization in step 4. However, the rate

of convergence in the general method of multipliers (B.10) is sensitive to the choice

of parameter λ, and an improved convergence rate for some values of λ can be ac-

companied with more ill-conditioned minimization problems at each step of (C.10)

Glowinski and Le Tallec (1989). By employing increasingly more accurate conjugate-

directions solution of the minimization problem at each iteration of (C.10) the new

method offsets the deteriorating condition of the intermediate least-squares problems,

and achieves a faster practical convergence at early iterations.

Practical utility of the ADMM in applications that involve sparsity-promoting

(B.2) or edge-preserving (C.1) inversion is often determined by how quickly we can

resolve sparse or blocky model components. These features can often be qualitatively

resolved within relatively few initial iterations of the ADMM (see discussion in the

appendix of Goldstein and Osher (2009)). In our Section 5, fast recovery of such local

4Only the right-hand sides of the system are updated as a result of thresholding.
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features will be one of the key indicators for judging the efficiency of the proposed

method.

In the next section we describe two new algorithms, Steered and Compressive

Conjugate Gradients based on the principle of reusing conjugate directions for mul-

tiple right-hand sides. In Section 3 we prove convergence and demonstrate that the

new algorithm coincides with the exact ADMM in a finite number of iterations. Sec-

tion 4 contains a practical implementation of the Compressive Conjugate Gradients

method. We test the method on a series of problems from imaging and mechanics,

and compare its performance against FISTA and ADMM with gradient descent and

restarted conjugate gradients.

STEERED AND COMPRESSIVE CONJUGATE

DIRECTIONS

Step 4 of Algorithm 1 is itself a least-squares optimization problem of the form

‖Fu − vk‖2
2 → min, (B.18)

where

F =

[√
αA
√
λB

]
(B.19)

and

vk =

[ √
αd

√
λ (zk + bk)

]
(B.20)

Solving optimization problem (B.18) is mathematically equivalent to solving the

following system of normal equations Trefethen and Bau III (1997),

FTFu = FTvk, (B.21)
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as operator (B.19) has maximum rank. Solving (B.21) has the disadvantage of squar-

ing the condition number of operator (B.19) Trefethen and Bau III (1997). When the

operator A is available in a matrix form, and a factorization of operator F is numeri-

cally feasible, solving the normal equations (B.21) should be avoided and a technique

based on a matrix factorization should be applied directly to solving (B.18) Björk

(1996); Saad (2003). However, when matrix A is not known explicitly or its size ex-

ceeds practical limitations of direct methods, as is the case in applications of greatest

interest for us, an iterative algorithm, such as the Conjugate Gradients for Normal

Equations (CGNE) Björk (1996); Saad (2003), can be used to solve (B.21). Solving

(B.18) exactly may be unnecessary and we can expect that for large-scale problems

only a few steps of an iterative method need be carried out. However, every iteration

typically requires the application of operator A and its adjoint, and in large-scale

optimization problems we are interested in minimizing the number of applications

of these operations. For large-scale optimization problems we need an alternative to

re-starting an iterative solver for each intermediate problem (B.18). We propose to

minimize restarting iterations5 by devising a conjugate-directions technique for solv-

ing (B.18) with a non-stationary right-hand side. At each iteration of the proposed

algorithm we find a search direction that is conjugate to previous directions with re-

spect to the operator FTF. In the existing conjugate direction techniques, iteratively

constructed conjugate directions span the Krylov subspaces Trefethen and Bau III

(1997),

Kk = span
{

FTv0,
(
FTF

)
FTv0, . . . ,

(
FTF

)k
FTv0

}
, k = 0, 1, . . . . (B.22)

However, in our approach we construct a sequence of vectors (search directions) that

are conjugate with respect to operator FTF at the kth step but may not span the

Krylov subspace Kk. This complicates convergence analysis of our technique, but

allows “steering” search directions by iteration-dependent right-hand sides. Since the

right-hand side in (B.18) is the result of the shrinkage (C.13) at previous iterations

that steer or compress the solution, we call our approach “steered” or “compressive”

5avoiding restarting altogether in the theoretical limit of infinite computer storage
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conjugate directions.

For the least-squares problem (B.18), we construct two sets of vectors for k =

0, 1, 2, . . .

{p0,p1,p2, . . . ,pk} , {q0,q1,q2, . . . ,qk} ,

qi = Fpi, i = 0, 1, 2, . . . , k,
(B.23)

such that

qTi qj = pTi FTFpj = 0 if i 6= j. (B.24)

Equations (B.23) and (B.24) mean that the vectors pi form conjugate directions Tre-

fethen and Bau III (1997); Saad (2003). At each iteration we find an approximation

uk to the solution of (B.18) as a linear combination of vectors pi, i = 0, 1, . . . , k, for

which the residual

rk+1 = vk+1 − Fuk+1, (B.25)

is orthogonal to vectors qi,

qTi rk+1 = qTi (vk+1 − Fuk+1) = 0, i = 0, 1, . . . , k. (B.26)

Vector pk is constructed as a linear combination of all previous vectors pi, i =

0, 1, . . . , k and FT rk so that the conjugacy condition in (B.23) is satisfied. The re-

sulting algorithm for arbitrary vk depending on k is given by Algorithm 2.

Note that the above algorithm is not specific to a particular sequence of right-hand-

side vectors vk and its applicability goes beyond solving the constrained optimization

problems (C.5). The algorithm requires storing 2k + 2 vectors (B.23), as well as one

vector each for the current solution iterate uk, variable right-hand side vk, intermedi-

ate vectors wk and sk. The requirement of storing a growing number of vectors makes

the algorithm resemble the GMRES method Saad (2003) for solving linear systems

with non-self-adjoint operators. However, in our case, this is a consequence of hav-

ing a variable right-hand side, requiring re-computation of solution iterates as linear

combinations of all of the previous search directions (B.23). This requirement can

be relaxed in applications where vector vk is updated, for example, by the modified
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Algorithm 2 Steered Conjugate Directions for solving (B.18)

1: u0 ← 0N

2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do
5: τi ← qTi vk/δi
6: end for
7: uk+1 ←

∑k
i=0 τipi

8: rk+1 ← vk+1 −
∑k

i=0 τiqi
9: wk+1 ← FT rk+1

10: sk+1 ← Fwk+1

11: for i = 0, 1, . . . , k do
12: βi ← −qTi sk+1/δi
13: end for
14: pk+1 ←

∑k
i=0 βipi + wk+1

15: qk+1 ←
∑k

i=0 βiqi + sk+1

16: δk+1 ← qTk+1qk+1

17: if δk+1 = 0 then . Use condition “δk+1 < tolerance” in practice
18: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

19: end if
20: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
21: end for

Lagrangian technique for solving a constrained optimization problem, and converges

to a limit. In Section 4 we describe practical applications of the algorithm achieving

fast convergence while storing only a subset of vectors (B.23). The algorithm requires

one application of F and its transpose at each iteration and 2k + 3 dot-products of

large vectors.

Combining Algorithms 1 and 2 we obtain the Compressive Conjugate Directions

Algorithm 3.
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Algorithm 3 Compressive Conjugate Directions for (B.1)

1: u0 ← 0N , z0 ← 0K ; b0 ← 0K , v0 ←
[ √

αd√
λ (z0 + b0)

]
2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do
5: τi ← qTi vk/δi
6: end for
7: uk+1 ←

∑k
i=0 τipi

8: zk+1 ← shrink {Buk+1 − bk, 1/λ}
9: bk+1 ← bk + zk+1 −Buk+1

10: vk+1 ←
[ √

αd√
λ (zk+1 + bk+1)

]
11: rk+1 ← vk+1 −

∑k
i=0 τiqi

12: wk+1 ← FT rk+1

13: sk+1 ← Fwk+1

14: for i = 0, 1, . . . , k do
15: βi ← −qTi sk+1/δi
16: end for
17: pk+1 ←

∑k
i=0 βipi + wk+1

18: qk+1 ←
∑k

i=0 βiqi + sk+1

19: δk+1 ← qTk+1qk+1

20: if δk+1 = 0 then . Use condition “δk+1 < tolerance” in practice
21: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

22: end if
23: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
24: end for

CONVERGENCE ANALYSIS

Convergence properties of the ADMM were studied in many publications and are

well known. However, here we provide a self-contained proof of convergence for Al-

gorithm 1 that mostly follows the presentation of Boyd et al. (2011). Later, we use

this result to study the convergence of Algorithm 3.
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Theorem 1. Assume that M ≥ N , operators A, B are maximum rank, and

u = u∗,

z = z∗ = Bu∗,
(B.27)

is the unique solution of problem (C.5). Assume that a vector b∗ is defined as

b∗ = µ∗/λ, (B.28)

where µ∗ is the vector of Lagrange multipliers for the equality constraint in (C.5).

Algorithm 1 then converges to this solution if λ > 0, that is,

uk → u∗, zk → z∗, bk → b∗, k → ∞. (B.29)

Proof. Problem (C.5) has a convex objective function and equality constraints, hence

(B.27,B.28) is a saddle point of its Lagrangian (B.9) Boyd and Vandenberghe (2004).

Substituting zk+1,uk+1 from Algorithm 1, we have

L0 (z∗,u∗,µ∗) ≤ L0 (zk+1,uk+1,µ
∗) ⇐⇒

p∗ = ‖Bu∗‖1 +
α

2
‖Au∗ − d‖2

2 = ‖z∗‖1 +
α

2
‖Au∗ − d‖2

2 ≤

‖zk+1‖1 +
α

2
‖Auk+1 − d‖2

2 + µ∗T (zk+1 −Buk+1) =

pk+1 + µ∗T (zk+1 −Buk+1) = pk+1 + λb∗T (zk+1 −Buk+1) ,

(B.30)

where p∗ is the optimal value of the objective function and pk+1 is its approximation

at iteration k of the algorithm. Inequality (B.30) provides a lower bound for the

objective function estimate pk+1. Step 4 of the algorithm is equivalent to

αATAuk+1 + λBTBuk+1 = αATd + λBT (zk + bk) . (B.31)

Substituting the expression for bk from steps 6 into (B.31), we obtain

αATAuk+1 = αATd + λBT (zk − zk+1 + bk+1) . (B.32)
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Equality (B.32) is equivalent to

uk+1 = argmin
α

2
‖Au− d‖2

2 − λ (zk − zk+1 + bk+1)T Bu. (B.33)

Substituting uk+1 and u∗ into the right-hand side of (B.33), we obtain

α

2
‖Auk+1 − d‖2

2 ≤
α

2
‖Au∗ − d‖2

2 +

λ (zk − zk+1 + bk+1)T B (uk+1 − u∗) .
(B.34)

Step 5 is equivalent to

0 ∈ ∂z‖z‖1 + λ (zk+1 −Buk+1 + bk) = ∂z‖z‖1 + λbk+1,

zk+1 = argmin
{
‖z‖1 + λbTk+1z

}
,

(B.35)

where we used the expression for bk from step 6. Substituting z = zk+1 and z = z∗

into the right-hand side of the second line of (B.35), we obtain

‖zk+1‖1 ≤ ‖z∗‖1 + λbTk+1 (z∗ − zk+1) . (B.36)

Adding (B.34) and (B.36), we get

pk+1 ≤ p∗ + λbTk+1 (z∗ − zk+1) +

λ (zk − zk+1 + bk+1)T B (uk+1 − u∗) ,
(B.37)

an upper bound for pk+1. Adding (B.30) and (B.37), we get

0 ≤ λb∗T (zk+1 −Buk+1) + λbTk+1 (z∗ − zk+1) +

λ (zk − zk+1 + bk+1)T B (uk+1 − u∗) ,
(B.38)

or after rearranging,

0 ≤ λ (b∗ − bk+1)T (zk+1 −Buk+1) − λ (zk − zk+1)T (zk+1 −Buk+1) +

λ (zk − zk+1)T (zk+1 − z∗) .
(B.39)
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We will now use (B.39) to derive an upper estimate for

‖bk − b∗‖2
2 + ‖zk − z∗‖2

2.

Using step 6 of Algorithm 1 for the first term in (B.39) and introducing ρk+1 =

zk+1 −Buk+1, we get

λ (b∗ − bk+1)T ρk+1 =

λ
(
b∗ − bk − ρk+1

)T
ρk+1 = λ (b∗ − bk)

T ρk+1 − λ‖ρk+1‖2
2 =

λ (b∗ − bk)
T (bk+1 − bk)−

λ

2
‖ρk+1‖2

2 −
λ

2
‖ρk+1‖2

2 =

λ (b∗ − bk)
T (bk+1 − bk)−

λ

2
‖ρk+1‖2

2 −
λ

2
(bk+1 − bk)

T (bk+1 − bk) =

− λ (bk − b∗)T [(bk+1 − b∗)− (bk − b∗)]− λ

2
‖ρk+1‖2

2−

λ

2
[(bk+1 − b∗)− (bk − b∗)]T [(bk+1 − b∗)− (bk − b∗)] =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖ρk+1‖2

2.

(B.40)

Substituting (B.40) into (B.39), we obtain

0 ≤ λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖ρk+1‖2

2 − λ (zk − zk+1)T ρk+1 +

λ (zk − zk+1)T (zk+1 − z∗) =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖ρk+1‖2

2 − λ (zk − zk+1)T ρk+1 +

λ (zk − zk+1)T [(zk+1 − zk) + (zk − z∗)] =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖ρk+1‖2

2 − λ (zk − zk+1)T ρk+1 −

λ (zk − zk+1)T (zk − zk+1) + λ (zk − zk+1)T (zk − z∗) =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2

(
zk − zk+1 + ρk+1

)T (
zk − zk+1 + ρk+1

)
−

λ

2
‖zk − zk+1‖2

2 + λ (zk − zk+1)T (zk − z∗) =
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λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖zk − zk+1 + ρk+1‖2

2 −
λ

2
‖zk − zk+1‖2

2 +

λ [(zk − z∗)− (zk+1 − z∗)]T (zk − z∗) =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖zk − zk+1 + ρk+1‖2

2 −

λ

2
‖ (zk − z∗)− (zk+1 − z∗) ‖2

2 + λ [(zk − z∗)− (zk+1 − z∗)]T (zk − z∗) =

λ

2
‖bk − b∗‖2

2 −
λ

2
‖bk+1 − b∗‖2

2 −
λ

2
‖zk − zk+1 + ρk+1‖2

2 −

λ

2
‖zk+1 − z∗‖2

2 +
λ

2
‖zk − z∗‖2

2,

(B.41)

yielding

λ

2
‖zk − zk+1 + ρk+1‖2

2 ≤

λ

2

(
‖zk − z∗‖2

2 + ‖bk − b∗‖2
2

)
− λ

2

(
‖zk+1 − z∗‖2

2 + ‖bk+1 − b∗‖2
2

)
.

(B.42)

Expanding the left-hand side of (B.42), we obtain

λ

2

(
‖zk − zk+1‖2

2 + 2 (zk − zk+1)T ρk+1 + ‖ρk+1‖2
2

)
≤

λ

2

(
‖zk − z∗‖2

2 + ‖bk − b∗‖2
2

)
− λ

2

(
‖zk+1 − z∗‖2

2 + ‖bk+1 − b∗‖2
2

)
.

(B.43)

Let us prove that the middle term in the left-hand side of (B.43) is non-negatve,

0 ≤ (zk − zk+1)T ρk+1 = (zk − zk+1)T (bk+1 − bk)

where we used step 6 of Algorithm 1. Indeed, since zk+1 minimizes (C.12) with

u = uk+1, using the convexity of L1 norm, we have for z = zk+1,

∂z
λ

2
‖z−Buk+1 + bk‖2

2 = λ (z−Buk+1 + bk) ∈ −∂‖z‖1 ⇒

‖zk+1‖1 − ‖zk‖1 ≤ (zk − zk+1)T (zk+1 −Buk+1 + bk) = (zk − zk+1)T bk+1.

(B.44)
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Similarly, since zk minimizes (C.12) for u = uk and b = bk−1, for z = zk we have

∂z
λ

2
‖z−Buk + bk−1‖2

2 = λ (z−Buk + bk−1) ∈ −∂‖z‖1 ⇒

‖zk‖1 − ‖zk+1‖1 ≤ (zk+1 − zk)
T (zk −Buk + bk−1) = (zk+1 − zk)

T bk.

(B.45)

In both (B.44) and (B.45) we used step 6 of Algorithm 1 and the fact that for any

convex function f(x)

f(x0) + ξT (x− x0) ≤ f(x) ⇔ f(x0)− f(x) ≤ −ξT (x− x0) , if ξ ∈ ∂f(x0),

where ∂ is subgradient Rockafellar (1971). Summing (B.44) and (B.45) we get

0 ≤ (zk − zk+1)T (bk+1 − bk) . (B.46)

From (B.46) and (B.43), we have

‖zk − zk+1‖2
2 + ‖ρk+1‖2

2 ≤(
‖zk − z∗‖2

2 + ‖bk − b∗‖2
2

)
−
(
‖zk+1 − z∗‖2

2 + ‖bk+1 − b∗‖2
2

)
,

(B.47)

or
‖zk+1 − z∗‖2

2 + ‖bk+1 − b∗‖2
2 ≤

‖zk − z∗‖2
2 + ‖bk − b∗‖2

2 − ‖zk+1 − zk‖2
2 − ‖ρk+1‖2

2.
(B.48)

From (B.48) we can see that the sequence ‖zk − z∗‖2
2 + ‖bk − b∗‖2

2 and consequently

zk and bk are bounded. Summing (B.47) for k = 0, 1, . . . ,∞, we obtain convergence

of the series

∞∑
k=0

{
‖zk − zk+1‖2

2 + ‖ρk+1‖2
2

}
≤ ‖z0 − z∗‖2

2 + ‖b0 − b∗‖2
2. (B.49)

From (B.49) follows

zk − zk+1 → 0, zk −Buk → 0, k →∞. (B.50)
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Now using (B.37) we obtain

pk+1 − p∗ ≤ λbTk+1 (z∗ − zk+1) + λ (zk − zk+1 + bk+1)T B (uk+1 − u∗) =

λbTk+1 (zk − zk+1) + λbTk+1 (z∗ − zk) +

λ (zk − zk+1)T B (uk+1 − u∗) + λbTk+1B (uk+1 − u∗) =

λbTk+1 (zk − zk+1) + λ (zk − zk+1)T B (uk+1 − u∗) +

λbTk+1 (z∗ − zk) + λbTk+1B (uk+1 − u∗) =

λbTk+1 (zk − zk+1) + λ (zk − zk+1)T B (uk+1 − u∗) +

λbTk+1 (Buk+1 − zk+1 + zk+1 − zk + z∗ −Bu∗) → 0, k →∞,

(B.51)

where the right-hand side of (B.51) converges to zero because of (B.50), boundedness

of zk and bk and z∗ = Bu∗. Likewise, from (B.30) we have

p∗ − pk+1 ≤ λb∗T (zk+1 −Buk+1) → 0, k →∞. (B.52)

Combining (B.51) and (B.52) we obtain pk → p∗—i.e., value of the objective function

estimate at iteration k converges to the true minimum as k →∞. From the bounded

sequence uk ∈ RN we can extract a convergent subsequence

uki → u∗∗. (B.53)

Because our objective function is continuous, u∗∗ is a solution of (B.1) and (C.5).

However, if A is maximum rank the objective function of (B.1) is strictly convex,

hence u∗ = u∗∗. The sequence uk must converge to u∗ because otherwise we would

be able to extract a subsequence convergent to a different limit and repeat the above

analysis.

And finally, to prove that bk → b∗, we see that from the Karush-Kuhn-Tucker

(KKT) conditions Boyd and Vandenberghe (2004) for (C.5) we have

αAATu∗ = ATd + λBTb∗. (B.54)
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Passing (B.32) to limit as k →∞, using (B.50) and replacing bk+1 with a convergent

subsequence as necessary, we get

αAATu∗ = ATd + λBT lim bk. (B.55)

Since B is maximum rank, rank B = K ≤ N , (B.55) means that lim bk = b∗.

Note that our our proof does not depend on the selection of starting values for

u0, z0 and b0, and this fact will be used later on in proving the convergence of

Algorithm 3. Before we study convergence properties of Algorithm 3, we prove one

auxiliary result.

Theorem 2. Algorithm 3 constructs a sequence of subspaces of RN spanning expand-

ing sets of conjugate directions,

Sk = span {p0,p1, . . . ,pk} , k = 0, 1, 2, . . .

S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sk ⊆ . . .
(B.56)

such that

lim
k→∞

Sk = S ⊆ RN . (B.57)

Under the assumptions of Theorem 1, solution of the constrained optimization problem

‖z‖1 +
α

2
‖Au− d‖2

2 → min,

z = Bu,

u ∈ S.

(B.58)

matches the solution of (C.5).

Proof. If S = RN statement of the theorem is trivial, so we assume that dimS <

N . Since our problem is finite-dimensional, the limit (B.57) is achieved at a finite

iteration,

∃k1 ∀k ≥ k1 : Sk ≡ S. (B.59)



165

steps 4-7 of Algorithm 3 are equivalent to projecting the solution of the system of

normal equations (B.21) onto the space Sk. If pk+1 = 0 in steps 20-22, then the

right-hand side of (B.21) for any k ≥ k1 can be represented as a linear combination

of vectors from Sk1 ≡ S. Steps 8 and 9 of Algorithm 3 are equivalent to steps 5 and 6

of Algorithm 1. Step 10 prepares the right-hand side of (B.21) for the minimization

in step 4 of Algorithm 1 for iteration k + 1. However, since the right-hand side of

(B.21) is a linear combination of vectors p0,p1, . . . ,pk that span Sk ≡ S, steps 4-7 of

Algorithm 3 are equivalent to the exact solution of the unconstrained minimization

problem in step 4 of Algorithm 1. Hence, starting from iteration k1 the two algorithms

become equivalent. From Theorem 1 and

∀k ≥ k1 : uk+1 ∈ S

follows that the solution of (C.11) coincides with that of (C.5).

Convergence of Algorithm 3 now becomes a trivial corollary of theorems 1 and 2.

Theorem 3. Under the assumptions of Theorem 1, Algorithm 3 converges to the

unique solution (B.27) of problem (C.5), and (B.29) holds.

Proof. In the proof of Theorem 2 we have demonstrated that starting from k = k1

defined in (B.59) Algorithm 3 is mathematically equivalent to Algorithm 1 starting

from an initial approximation uk1−1, zk1−1 and bk1−1. Convergence of Algorithm 1

does not depend on these starting values, hence Algorithm 3 converges to the same

unique solution as Algorithm 1 and (B.29) holds.

The result of Theorem 3 indicates that our Compressive Conjugate Directions

method matches the ADMM in exact arithmetic after a finite number of iterations,

while avoiding direct inversion of operator A. This obvously means that the (worst-

case) asymptotic convergence rate of Algorithm 3 matches that of the ADMM and is

O(1/k) He and Yuan (2012).
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LIMITED-MEMORY COMPRESSIVE CONJUGATE

DIRECTIONS METHOD

Algorithm 3 (that we call “unlimited-memory” Compressive Conjugate Directions

Method) requires storing all of the previous conjugate directions (B.23) because in

step 7 the algorithm computes the expansion

uk+1 =
k∑
i=0

τipi, (B.60)

of these solution approximations with respect to all conjugate direction vectors (B.23)

at each iteration. It is a consequence of changing right-hand sides of the normal

equations system (B.18) that all of the coefficients of expansion (B.60) may require

updating. However, in a practical implementation we may expect that only the last

m+ 1 expansion coefficients (B.60) significantly change, and freeze the coefficients

τi, i < k −m

at and after iteration k. This approach requires storing up to 2m+ 2 latest vectors

pk,pk−1, . . . ,pk−m, qk,qk−1, . . . ,qk−m. (B.61)

A “limited-memory” variant of the method is implemented in Algorithm 4 that stores

vectors (B.61) in a circular first-in-first-out buffer. An index variable j points to the

latest updated element within the buffer. Once j exceed the buffer size for the first

time and is reset to point to the head of the buffer, a flag variable cycle is set,

indicating that a search direction is overwritten at each subsequent iteration of the

algorithm. The projection of the current solution iterate onto the old vector τjpj (now

to be overwritten in the buffer) is then accumulated in a vector ũ; the corresponding

contribution to the predicted data equals τjqj and is accumulated in a vector ṽ,

ũ =
k−m−1∑
i=0

τipi, ṽ =
k−m−1∑
i=0

τiqi. (B.62)
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Contributions (B.62) to the solution and predicted data from the discarded vectors

(B.23) are then added back to the approximate solution and residual in steps 8 and

12 of Algorithm 4.

Algorithm 4 Limited-Memory Compressive Conjugate Directions Method for (B.1)

1: m ← memory size, ũ ← 0N , ṽ ← 0N+K , j ← 0, cycle← .false.

2: u0 ← 0, z0 ← 0K ; b0 ← 0K , v0 ←
[ √

αd√
λ (z0 + b0)

]
3: p0 ← FTv0, q0 ← Fp0, δ0 ← qT0 q0

4: for k = 0, 1, 2, 3, . . . do
5: for i = 0, 1, . . . ,min(k,m) do
6: τi ← qTi (vk − ṽ)/δi
7: end for
8: uk+1 ← ũ +

∑min(k,m)
i=0 τipi

9: zk+1 ← shrink {Buk+1 − bk, 1/λ}
10: bk+1 ← bk + zk+1 −Buk+1

11: vk+1 ←
[ √

αd√
λ (zk+1 + bk+1)

]
12: rk+1 ← vk+1 −

∑min(k,m)
i=0 τiqi − ṽ

13: wk+1 ← FT rk+1

14: sk+1 ← Fwk+1

15: for i = 0, 1, . . . ,min(k,m) do
16: βi ← −qTi sk+1/δi
17: end for
18: j ← j + 1
19: if j = m+ 1 then
20: j ← 0, cycle← .true.
21: end if
22: if cycle then
23: ũ ← ũ + τjpj
24: ṽ ← ṽ + τjqj
25: end if
26: pj ←

∑min(k,m)
i=0 βipi + wk+1

27: qj ←
∑min(k,m)

i=0 βiqi + sk+1
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Algorithm 4 Limited-Memory Compressive Conjugate Directions Method (contin-
ued)

28: δj ← qTj qj
29: if δj = 0 then . Use condition “δj < tolerance” in practice
30: δj ← 1, pj ← 0N , qj ← 0M+K

31: end if
32: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
33: end for

Trade-off between the number of iterations and problem con-

dition number

In practical implementations of the ADMM when the operator A does not lend itself

to direct solution methods, an iterative method can be used to solve the minimization

problem in step 4 of Algorithm 1 Goldstein and Osher (2009). Algorithm 5, repre-

senting such an approach, uses a fixed number of iterations Nc of CGNE in step 4. At

each iteration of the ADMM conjugate gradients are hot-restarted from the previous

solution approximation uk. For comparison purposes we will refer to this method as

restarted Conjugate Gradients or RCG. Note that Algorithm 5 with Nc = 1 performs

Algorithm 5 ADMM and hot-restarted CG (RCG)

1: u0 ← 0N , z0 ← 0K , b0 ← 0K , Nc ← prescribed number of CG iterations
2: p0 ← FTv0, q0 ← Fp0

3: for k = 0, 1, 2, 3, . . . do
4: Solve

uk+1 ← argmin

{
λ

2
‖zk −Bu + bk‖2

2 +
α

2
‖Au− d‖2

2

}
,

starting from uk and using Nc iterations of CGNE.
5: zk+1 ← shrink {Buk+1 − bk, 1/λ}
6: bk+1 ← bk + zk+1 −Buk+1

7: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
8: end for

a single step of gradient descent when solving the following intermediate least-squares
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minimization problem in step 4,

uk+1 = argmin
α

2
‖Au− d‖2

2 +
λ

2
‖zk − Bu + bk‖2

2. (B.63)

The performance of Algorithm 5 depends on the condition number of the leasts-

squares problem (B.63) Trefethen and Bau III (1997): for well-conditioned problems

only a small number of conjugate gradients iterations Nc may achieve a sufficiently

accurate approximation to uk+1. The condition number of (B.63) depends on prop-

erties of operators A and B, as well as the value of λ. In applications with a simple

modeling operator A, such as is the case in denoising with A = I, a value of λ may

be experimentally selected so as to reduce the condition number of (B.63). However,

a trade-off may exist between the condition number of (B.63) and the number of

ADMM iterations in the outer loop (Step 3) of Algorithm 1: well-conditioned interim

least-squares problems may result in a significantly higher number of ADMM itera-

tions. Such a trade-off is a well-known phenomenon in applications of the Augmented

Lagrangian Method of Multipliers for smooth objective functions, see, e.g., Glowinski

and Le Tallec (1989). For example, large values of λ in (C.10) more strongly penalize

violations of the equality constraint, as in the Quadratic Penalty Function Method

Nocedal and Wright (2006) with a larger penalty and a more ill-conditioned quadratic

minimization. Of course, in the case of ADMM applied to (B.1), a non-smooth ob-

jective function, arbitrary and potentially ill-conditioned operator A, and (most im-

portantly) alternating splitting minimization of the modified Augmented Lagrangian

(C.10)6 complicate the picture. In fact, for an arbitrary A, the condition number of

(B.63) is not always an increasing function of λ. Some of the numerical examples

described in the following subsections exhibit this trade-off between the condition

number of the intermediate least-squares problem (B.63) and the number of ADMM

iterations: the better the condition-number of (B.63), the more ADMM iterations

are typically required. The main advantage of our Compressive Conjugate Directions

approach implemented in Algorithms 3 and 4 is that information on the geometry of

the objective function (B.63) accumulates through external ADMM iterations thus

6“modified” because of the added constant term λ/2‖bk‖22
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potentially reducing the amount of effort required to perform minimization of (B.63)

at each step. Since our objective is a practical implementation of the ADMM for (B.1)

with computationally expensive operators A, the overall number of operator A and

AT applications required to achieve given accuracy will be the principal benchmark

for measuring the performance of various algorithms.

APPLICATIONS

In this section we apply the method of Compressive Conjugate Directions to solving

L1 and TV-regularized inversion problems for several practical examples.

Image Denoising

A popular image denoising technique for removing short-wavelength random Gaussian

noise from an image is based on solving (C.1) with A = I. Vector d is populated

with a noisy image, a denoised image is returned in u,

u = ui,j, i = 1, . . . , Ny, j = 1, . . . , Nx,

with an anisotropic TV seminorm in (C.1) defined by the linear gradient operator

∇u =

[
∇xu

∇yu

]
=



ui,2 − ui,1
· · ·

ui,Nx − ui,Nx−1

· · ·
u2,j − u1,j

· · ·
uNy ,j − uNy−1,j


, i = 1, . . . , Ny, j = 1, . . . , Nx. (B.64)

Here, the dimension of the model space is N = Nx × Ny with M = N and K =

N−Nx−Ny. Since operator A = I is trivial, minimization of the number of operator
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applications in this problem carries no practical advantage. The only reason for

providing this example is to demonstrate the stability of the proposed Compressive

Conjugate Directions method with respect to choosing a value of λ.

Figure B.1(a) shows the true, noise-free 382× 382 image used in this experiment.

Random Gaussian noise with a standard deviation σ of 15% of maximum signal am-

plitude was added to the true image to produce the noisy image of Figure B.1(b). All

low-wavenumber or “blocky” components of the noise below a quarter of the Nyquist

wavenumber were filtered out, leaving only high-wavenumber “salt-and-pepper” noise.

Parameter α = 10 was chosen experimentally based on the desired trade-off of fidelity

and “blockiness” of the resulting denoised image. The result of solving (C.1) using

Algorithm 5 with λ = 1, one hundred combined applications of A and AT , and Nc = 1

is shown in Figure B.1(d). The result of applying our limited-memory Conjugate Di-

rections Algorithm 4 for m = 50 is shown in Figure B.1(c)7. Note that Nc = 1 means

that only a single step of Conjugate Gradients, or a single gradient descent, is made

in step 4 of Algorithm 5. For this choice of λ, problem (B.63) is very well conditioned,

with a condition number of κ = 1.8. A single iteration of gradient descent achieves

sufficient accuracy of minimization (B.63) and for λ = 1 there is no practical advan-

tage in using our method as both methods perform equally well, see Figure B.2(a).

In fact, the overhead of storing and using conjugate directions from previous itera-

tions may exceed the cost of operator A and its adjoint applications if the latter are

computationally cheap. The approximation errors of applying the limited-memory

Compressive Conjugate Directions Algorithm 4 with m = 50 versus Algorithm 5 with

Nc = 1, 5, 10 for λ = 102, 103, 104 are shown in Figures B.2(a),B.2(b),B.2(c),B.2(d).

Note that larger values of λ result in increasingly larger condition numbers of (B.63)

shown on top of the plots. The performance of Algorithm 5 here depends on a choice

of Nc: increasing Nc as required to achieve a sufficiently accurate approximate so-

lution of (B.63) results in fewer available ADMM iterations for a fixed “budget” of

operator A and adjoint applications. However, Algorithm 4 accumulates conjugate

directions (B.23) computed at earlier iterations and requires only one application of

7Here, this matches the results for any memory size m > 0 due to a well-conditioned problem
(B.63).
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(a) (b)

(c) (d)

Figure B.1: (a) Clean image [NR]; (b) Noisy image contaminated with Gaus-
sian noise with σ = 15% of maximum amplitude [CR]; (c) Image denoised us-
ing Algorithm 4 with α = 10, λ = 1 and memory size m = 50 [CR]; (d)
Image denoised using Algorithm 5 with α = 10, λ = 1, Nc = 1 [CR].

ccd/. X1trueimg,X1noisyimg,X1ccd,X1rcg
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the operator and its adjoint per ADMM iteration. Note that at iteration steps less

than Nc, Algorithm 5 may still outperform Algorithm 4 as it conducts more Con-

jugate Gradient iterations per solution of each problem (B.63). However, once the

ADMM iteration count exceeds the largest Nc, and sufficient information is accumu-

lated by Algorithm 4 about the geometry of the objective function, the Compressive

Conjugate Directions outperforms Algorithm 5. Note that this example does not

demonstrate the trade-off between the condition number of (B.63) and the number

of ADMM iterations. The reason for this is that for large λ convergence is achieved

relatively quickly within a number of iterations comparable to a number of Conjugate

Gradients steps required to solve (B.63). However, this example demonstrate another

feature of the proposed Compressive Conjugate Directions Method: compared with

a technique based on a restarted iterative solution of (B.63), the method may be less

sensitive to a suboptimal choice of λ.

Inversion of Dilatational Point Pseudo-sources

In our second example, we demonstrate our method on a geomechanical inversion

problem with a non-trivial forward-modeling operator A. Here, we are interested

in inverting subsurface sources of deformation from noisy measurements of surface

displacements, such as GPS, tilt-meter and InSAR observations.

The forward modeling operator simulates vertical surface displacements in re-

sponse to distributed dilatational (e.g. pressure change) sources Segall (2010). Our

modeling operator is defined as

Au = d(z), d(z) = c

∫ A

0

Du(ξ)dξ

(D2 + (z − ξ)2)3/2
, (B.65)

where we assume that u = u(ξ), ξ ∈ [0, A] is a relative pore pressure change along a

horizontal segment [0, A] of a reservoir at a constant depth D, d = d(x), x ∈ [0, A] is

the induced vertical displacement on the surface, and a factor c is determined by the
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(a) (b)

(c) (d)

Figure B.2: Performance of Algorithm 4 with m = 20 versus Algorithm 5 with varying
Nc for (a) λ = 1 [CR]; (b) λ = 100 [CR]; (c) λ = 1000 [CR]; (d) λ = 10000 [CR].

ccd/. X1lam1,X1lam100,X1lam1000,X1lam10000
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poroelastic medium properties, and reservoir dimensions. In this example, for demon-

stration purposes we consider a two-dimensional model, but a three-dimensional

model is studied in the next subsection. Operator (C.19) is a smoothing integral

operator that, after discretization and application of a simple quadrature, can be

represented by a dense matrix. Analytical representation of the surface displacement

modeling operator (C.19) is possible for simple homogeneous media; however, model-

ing surface displacements in highly heterogeneous media will involve computationally

expensive numerical methods such as Finite Elements Kosloff et al. (1980).

In this experiment we seek to recover a spiky model of subsurface sources shown

in Figure B.3(a) from noisy observations of the induced surface displacements shown

in Figure B.3(b). Such sparse dilatational pseudo-sources are mathematically equiv-

(a) (b)

Figure B.3: (a) A spiky true pseudosources [CR]; (b) the resulting true (black) and

noisy (red) surface displacements [CR]. ccd/. X2true,X2data

alent to concentrated reservoir pressure changes in hydrogeology and exploration geo-

physics, as well as expanding spherical lava chambers (the “Mogi model”) in volcanol-

ogy Segall (2010). We forward-modeled surface displacements due to the sources of

Figure B.3(a) using operator (C.19), and, as in our denoising tests, added random

Gaussian noise with σ = 15% of the maximum data amplitude. Prior to adding the

noise, all low-wavenumber noise components below a fifth of the Nyquist wavenumber
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were muted, leaving only the high-wavenumber noise shown in Figure B.3(b).

We set D = .1 km, A = 2 km, c = 10−2 in (C.19), and discretized both the

model and data space using a 500-point uniform grid, N = M = 500. We solve

problem (B.2) with α = 10000, and our objective is to accurately identify locations

of the spikes in Figure B.3(a) and their relative magnitudes, carrying out as few

applications of operator (C.19) as possible. Inversion results of using the limited-

memory Compressive Conjugate Directions Algorithm 4 with m = 100, ADMM with

restarted Conjugate Gradients Algorithm 5 and FISTA of (B.6) are shown in Fig-

ures B.4(a),B.4(b),B.4(c),B.4(d) for λ = 0.05, 0.1, 1, 100. In each case one hundred

combined products of operators A and AT with vectors were computed. We used the

maximum FISTA step size of τ = 10−4 in (B.6) computed for operator (C.19). These

results indicate that the Compressive Conjugate Directions method achieves qualita-

tive recovery of the spiky model at early iterations. Superiority of the new method

is especially pronounced when the intermediate least-squares minimization problem

(B.63) is ill-conditioned (see plot tops). The method retains its advantage after 1000

operator and adjoint applications, as shown in Figures B.5(a),B.5(b),B.5(c),B.5(d).

Note that the error plots of the CCD in Figures B.6(a),B.6(b),B.6(c),B.6(d) exhibit a

trade-off between the convergence rate and condition number of problem (B.63) dis-

cussed earlier: a more ill-conditioned (B.63) is associated with a faster convergence

rate of the new method.

Figures B.7(a),B.7(b),B.7(c),B.7(d) show error plots for the CCD, ADMM with

exact minimization of (B.63), and FISTA. The said trade-off between the conver-

gence rate and condition number of (B.63) is exhibited by the ADMM. The CCD

curves approach the convergence rates of the ADMM once Algorithm 4 has accu-

mulated enough information about the geometry of the objective function in vectors

(B.61). Note that the advantage of a faster asymptotic convergence rate of FISTA

kicks in only when the ADMM-based methods use values of λ that are not optimal

for their convergence—see Figures B.6(d) and B.7(d). In this case (B.63) is very

well conditioned, and its adequate solution requires only a single step of gradient de-

scent at each iteration of the ADMM, depriving conjugate-gradients-based methods
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(a) (b)

(c) (d)

Figure B.4: Inversion results for CCD (red), RCG (blue), FISTA (green) af-
ter 100 operator and adjoint applications for (a) λ = .05 [CR]; (b) λ = 0.1
[CR]; (c) λ = 1 [CR]; (d) λ = 100 [CR]. Note that FISTA does not use
λ and the same FISTA results are shown in all plots but using different verti-
cal scales. Improving condition number of (B.63) is accompanied by slower con-
vergence. Compressive Conjugate Directions method most accurately resolves the
spiky model at early iterations, and performs well when (B.63) is ill-conditioned.

ccd/. X2lam005invonly,X2lam01invonly,X2lam1invonly,X2lam100invonly
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(a) (b)

(c) (d)

Figure B.5: Inversion results for CCD (red), RCG (blue), FISTA (green) after
1000 operator and adjoint applications for (a) λ = .05 [CR]; (b) λ = 0.1
[CR]; (c) λ = 1 [CR]; (d) λ = 100 [CR]. Note that FISTA does not
use λ and the same FISTA results are shown in all plots but using differ-
ent vertical scales. Compressive Conjugate Directions method still retains its
advantage in resolving the spiky model at earlier iterations. Asymptotically
faster convergence of FISTA kicks in when λ = 100 with a well-conditioned
(B.63), when the ADMM convergence is slowed—compare with Figure B.7(d).

ccd/. X21000itlam005invonly,X21000itlam01invonly,X21000itlam1invonly,X21000itlam100invonly
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(a) (b)

(c) (d)

Figure B.6: Convergence curves for CCD (solid red), RCG (dashed), FISTA
(solid green) for (a) λ = .05 [CR]; (b) λ = 0.1 [CR]; (c) λ = 1
[CR]; (d) λ = 100—compare with Figures B.5(a),B.5(b),B.5(c),B.5(d) [CR].

ccd/. X2lam005conv,X2lam01conv,X2lam1conv,X2lam100conv
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of their advantage. FISTA, being based on accelerating a gradient-descent method,

now asymptotically beats the convergence rates of the other techniques but this hap-

pens too late through the iterations to be of practical significance. In other words, in

this particular example FISTA can beat the ADMM (and CCD) only if the latter use

badly selected values of λ. Generalizing this observation about FISTA and ADMM

for problem (B.2) with a general operator A goes beyond the scope of our work.

Inversion of Pressure Contrasts

In this section we apply the Compressive Conjugate Gradients method to identify

sharp subsurface pressure contrasts in a reservoir from observations of induced sur-

face displacements. We use a 3-dimensional geomechanical poroelastostatic model of

pressure-induced deformation based on Biot’s theory Segall (2010).

We solve a TV-regularized inversion problem (C.1) with operator B given by

(B.64), and operator A given by extension of (C.19)

Au = d(x, y), d(x, y) = c

∫ A

0

∫ A

0

Du(ξ, η)dξdη

(D2 + (x− ξ)2 + (y − η)2)3/2
, (B.66)

where we assume that u = u(ξ, η), (ξ, η) ∈ [−A,A]×[−A,A] is a relative pore pressure

change at a point (ξ, η) of the reservoir at a constant depth D, 2A is the reservoir

length and breadth, d = d(x, y), (x, y) ∈ [−A,A] × [−A,A] is the induced vertical

displacement at a point (x, y) on the surface, and a constant factor c is determined

by the poroelastic medium properties and reservoir thickness.

In this experiment, we discretize the pressure and displacement using a 50 × 50

grid, with A = 1.2 km, D = .455 km and c = 5.8515 × 103, based on a poroelastic

model of a real-world unconventional hydrocarbon reservoir Maharramov and Zoback

(2014). We use a least-squares fitting weight α = .1 in (C.1) to achieve a desirable

trade-off between fitting fidelity and blockiness of the inverted pressure change. The

blocky model shown in Figure B.8(a) was used to forward-model surface displacements

using operator (B.66). Random Gaussian noise with σ = 0.15% of maximum data
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(a) (b)

(c) (d)

Figure B.7: Convergence curves for CCD (solid red), ADMM with exact solver
(blue), FISTA (green) for (a) λ = .05; (b) λ = 0.1; (c) λ = 1; (d) λ = 100.
Limited-memory Compressive Conjugate Directions with m = 100 achieves
convergence rate comparable to ADMM with exact minimization of (B.63).

ccd/. X2admmlam005conv,X2admmlam01conv,X2admmlam1conv,X2admmlam100conv
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amplitude, muted below a quarter of the Nyquist wavenumber, was added to the

clean data to produce the noisy displacement measurements of Figure B.8(b).

(a) (b)

Figure B.8: (a) A blocky true pressure model (MPa) [CR]; (b) the resulting sur-
face displacements (mm) with added random Gaussian noise with σ = 15% of data

amplitude [CR]. ccd/. X4true,X4data

Figure B.9(a) shows the result of the limited-memory Compressive Conjugate Di-

rections Algorithm 4 with m = 100, after a total of 100 combined applications of

operator A and its adjoint. For the same number of operator applications, Fig-

ure B.9(b) shows the best result of the ADMM with restarted Conjugate Gradients

Algorithm 5. The corresponding results after 1000 applications of A and AT are

shown in Figures B.9(c) and B.9(d), respectively.

The Compressive Conjugate Directions method resolves key model features faster

than the ADMM using iterative solution of (B.63) restarted at each ADMM itera-

tion. This advantage of our method is particularly pronounced when the intermedi-

ate least-squares problem (B.63) is ill-conditioned—compare Figures B.10(a),B.10(b)

with Figures B.10(c),B.10(d). To accurately resolve the blocky pressure model of Fig-

ure B.8(a), the Compressive Conjugate Directions technique requires about a tenth of

operator A and adjoint applications compared with Algorithm 5 when (B.63) is poorly

conditioned. And again, as in the previous example, there is a trade-off between the

convergence rate of the Compressive Conjugate Directions and the condition number
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(a) (b)

(c) (d)

Figure B.9: Inversion results after (a) 100 iterations (operator and adjoint appli-
cations) of CCD with λ = 10 [CR]; (b) 100 iterations of RCG with λ = 10
[CR]; (c) 1000 iterations of CCD with λ = 10 [CR]; (d) 1000 iterations of
RCG with λ = 10 [CR]. In all tests, CCD is the limited-memory Compres-
sive Conjugate Directions method of Algorithm 4; RCG is ADMM with restarted
Conjugate Gradients of Algorithm 5 showing the most accurate model reconstruc-
tion among the outputs for different Nc–see Figures B.10(a),B.10(b),B.10(c),B.10(d).

ccd/. X4it100lam10ccd,X4it100lam10rcg,X4lam10ccd,X4lam10rcg
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of (B.63): values of λ that result in more poorly-conditioned (B.63) yield the fastest

convergence.

DISCUSSION

Compressive Conjugate Directions provides an efficient implementation of the Alter-

nating Direction Method of Multipliers in L1 − TV regularized inversion problems

(B.1) with computationally expensive operators A. By accumulating and reusing

information on the geometry of the intermediate quadratic objective function (B.63),

the method requires only one application of the operator A and its adjoint per ADMM

iteration while achieving accuracy comparable to that of the ADMM with exact min-

imization of (B.63). The method does not improve the worst-case asymptotic con-

vergence rate of the ADMM. However, it can be used for fast recovery of spiky or

blocky solution components. The method trades the computational cost of applying

operator A and its adjoint for extra memory required to store previous conjugate

direction vectors (B.61).

Our numerical experiments involving problems of geomechanical inversion demon-

strated a trade-off between the number of ADMM iterations required to achieve a suf-

ficiently accurate solution approximation, and condition number of the intermediate

least-squares problem (B.63). Understanding the extent to which this phenomenon

applies to solving (B.1) with other classes of modeling operators A requires further

analysis.

Generalizations

The primary focus of this work are L1 − TV regularized inversion problems (B.1).

However, the Steered Conjugate Directions Algorithm 2 can be combined with the

Method of Multipliers to solve more general problems of large-scale equality-constrained

optimization.
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(a) (b)

(c) (d)

Figure B.10: Convergence rates for CCD and RCG with various Nc for (a)
λ = 5 [CR]; (b) λ = 10 [CR]; (c) λ = 50 [CR]; (d) λ = 100 [CR].

ccd/. X4lam5conv,X4lam10conv,X4lam50conv,X4lam100conv
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For example, consider the problem

‖Au− d‖2
2 → min,

Bu− c = 0,

u ∈ RN , d ∈ RM , A : RN → RM , B : RN → RK ,

(B.67)

where A is a computationally expensive operator. Many “coupled” systems governing

two or more physical parameters can be described mathematically as a constrained

problem (B.67). Of special interest are cases when K � min {N,M}—e.g., large-

scale optimization problems with a localized constraint. Applying the Augmented

Lagrangian Method of Multipliers to (B.67), after re-scaling the multiplier vector, we

get

uk+1 = argmin ‖Au− d‖2
2 +

λ

2
‖c−Bu + bk‖2

2,

bk+1 = bk + c−Buk+1.

(B.68)

As before, the minimization on the first line of (B.68) is equivalent to solving a system

of normal equations with a fixed left-hand side and changing right-hand sides. Com-

bining the dual-variable updates from (B.68) with Algorithm 2, we get Algorithm 6.

Algorithm 6 Steered Conjugate Directions + Method of Multipliers for solving
(B.67)

1: u0 ← 0N , b0 ← 0K , v0 ←
[

d√
λ (c + b0)

]
2: p0 ← FTv0, q0 ← Fp0, δ0 ← qT0 q0

3: for k = 0, 1, 2, 3, . . . do
4: for i = 0, 1, . . . , k do
5: τi ← qTi vk/δi
6: end for
7: uk+1 ←

∑k
i=0 τipi

8: bk+1 ← bk + c−Buk+1

9: vk+1 ←
[

d√
λ (c + bk+1)

]
10: rk+1 ← vk+1 −

∑k
i=0 τiqi

Operator F in Algorithm 6 is given by (B.19) with α = 1. A limited-memory
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Algorithm 6 Steered Conjugate Directions + Method of Multipliers (continued)

11: wk+1 ← FT rk+1

12: sk+1 ← Fwk+1

13: for i = 0, 1, . . . , k do
14: βi ← −qTi sk+1/δi
15: end for
16: pk+1 ←

∑k
i=0 βipi + wk+1

17: qk+1 ←
∑k

i=0 βiqi + sk+1

18: δk+1 ← qTk+1qk+1

19: if δk+1 = 0 then . Use condition “δk+1 < tolerance” in practice
20: δk+1 ← 1, pk+1 ← 0N , qk+1 ← 0M+K

21: end if
22: Exit loop if ‖uk+1 − uk‖2/‖uk‖2 ≤ target accuracy
23: end for

version of Algorithm 6 is obtained trivially by adapting Algorithm 4. We envisage

potential utility of Algorithm 6 in applications where storing a set of previous conju-

gate direction vectors (B.61) is computationally more efficient that iteratively solving

the quadratic minimization problem in (B.68) from scratch at each iteration of the

method of multipliers.

The Compressive Conjugate Directions Algorithm 4 can be extended for solving

non-linear inversion problems with L1 and isotropic total-variation regularization.

Likewise, the Steered Conjugate Directions Algorithm 6 can be adapted to solving

general equality-constrained non-linear optimization problems. A nonlinear theory

and further applications of these techniques will be the subject of our next work.
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Appendix C

Total-variation minimization with

bound constraints

“In all pointed sentences, some

degree of accuracy must be

sacrificed to conciseness.”

Samuel Johnson

189
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I present here a powerful and easy-to-implement algorithm for approximate solu-

tion of constrained optimization problems that involve L1/total-variation regulariza-

tion terms, and both equality and inequality constraints. I discuss the relationship

of this method to earlier works of Goldstein and Osher (2009) and Chartrand and

Wohlberg (2010), and demonstrate that my approach is a combination of the aug-

mented Lagrangian method with splitting and model projection. I test the method

on a geomechanical problem and invert highly compartmentalized pressure change

from noisy surface uplift observations.



192 APPENDIX C. TV WITH CONSTRAINTS

INTRODUCTION

The primary focus of this work is a class of least-squares fitting problems with a

total-variation (TV) regularization and bound model constraints:

‖|∇m|‖1 +
α

2
‖F(m)− d‖2

2 → min,

m1 ≤ m ≤ m2.
(C.1)

In (C.1) we seek a model vector m such that forward-modeled data F(m) match ob-

served data d in the least squares sense, while imposing blockiness-promoting total-

variation (TV) regularization (Rudin et al., 1992) and lower (m1) and upper (m2)

model bounds. Rather than using a regularization parameter as a coefficient of the

regularization term, we use a data-fitting weight α. TV regularization (also know

as the Rudin-Osher-Fatemi, or ROF, model) acts as a form of model styling that

helps to preserve sharp contrasts and boundaries in the model, even when spectral

content of input data has limited resolution. Examples of successful geophysical ap-

plication of unconstrained TV-regularized optimization are included in (Maharramov

and Biondi, 2015b; Maharramov et al., 2015c; Ma et al., 2015a,b). The regularization

provided by bounded total-variation sometimes produces sufficient smoothing side-

effect on the inverted model that obviates explicit bound constraints. However, many

applications still require the imposition of additional constraints regardless of the reg-

ularization. For example, reservoir pore-pressure inversion problems often come with

a priori bounds on the estimated pore pressure change, such as the pore pressure

change being non-negative as a result of fluid injection (lower bound) or never ex-

ceeding a hydraulic fracturing pressure (upper bound). An example of such inversion

for an unconventional reservoir from field tilt measurements is provided by Mahar-

ramov and Zoback (2014). TV regularization is a key tool in imaging and denoising

applications (Rudin et al., 1992; Chambolle and Lions, 1997; Goldstein and Osher,

2009; Chartrand and Wohlberg, 2010) and require an efficient mechanism for includ-

ing a priori model constraints that can significantly reduce model space (Chartrand

and Wohlberg, 2010). While barrier or penalty function methods, such as nonlin-

ear interior-point methods (Nocedal and Wright, 2006), can be used to tackle the
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general constrained formulation (C.1), the presence of a non-differentiable L1-norm

total-variation term and non-quadratic penalty terms pose considerable challenges to

practical implementation. A log-barrier function such as

− const ×
n∑
i=1

log
mi

2 −mi

δ
+ log

mi −mi
1

δ
, (C.2)

where n is the model space dimension, can be added to the right-hand side of the

objective function to keep solution iterates away from the rectangular bounds. How-

ever, this adds a non-quadratic term to the objective function. For large-scale inver-

sion problems with n > 105 (such as typical in geophysical applications) often only

iterative gradient-based solution techniques like the nonlinear conjugate gradients

(Nocedal and Wright, 2006) are available, and adding non-quadratic terms may sig-

nificantly affect convergence properties. Note that this is in addition to the challenges

associated with handling the non-differentiable TV-regularization term.

Chartrand and Wohlberg (2010) used a splitting approach to decouple the TV-

regularized problem from enforcing the constraints. In my approach, we perform

three-way splitting of problem (C.1) into a smooth optimization, gradient thresholding

and projection steps using the Alternating Direction Method of Multipliers (ADMM)

(Boyd et al., 2011). For unconstrained TV-regularized problems this approach is

equivalent to the split-Bregman method of Goldstein and Osher (2009). However,

we integrate the projection step associated with enforcing the bound constraints into

the TV-minimization loop and avoid unnecessary iterations in the minimization of a

proximal term (Parikh and Boyd, 2013) associated with the projection.

METHOD

First, we recast the TV-regularization part of (C.1) as a constrained optimization

problem following the approach of Goldstein and Osher (2009). I introduce an aux-

iliary variable x and operator Φ : m → x such that for isotropic TV regularization
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we have a vector of the model-space dimension

Φ(m) =

√
(∇xm)2 + (∇ym)2, (C.3)

and for anisotropic regularization a vector twice the model-space dimension

Φ(m) =

[
∇xm

∇ym

]
. (C.4)

Problem (C.1) can now be reformulated with an additional equality constraint:

‖x‖1 +
α

2
‖F(m)− d‖2

2 → min,

x = Φ(m),

m1 ≤ m ≤ m2.

(C.5)

Problem (C.5) is still a bound-constrained problem. Introducing the projection op-

erator

Π(m) = max{min{m,m2},m1}, (C.6)

where min and max are applied component-wise, we reduce (C.5) to a fully equality-

constrained formulation:

‖x‖1 +
α

2
‖F(m)− d‖2

2 → min,

x = Φ(m),

m = y,

y = Π(m).

(C.7)

Following the augmented Lagrangian recipe for (C.7) while assuming the last equality

constraint still enforced explicitly, we obtain a sequence of problems (Nocedal and
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Wright, 2006)

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)‖2

2 − µkT (x − Φ(m)) +
δ

2
‖m− y‖2

2 − νkT (m− y) → min,

µk+1 = µk − λ
[
xk+1 −Φ(mk+1)

]
,

νk+1 = νk − δ
[
mk+1 − y

]
, k = 0, 1, 2, . . .

(C.8)

Coefficients λ and δ are any positive constants above certain problem-specific “thresh-

old” values (Nocedal and Wright, 2006), and can be selected experimentally. Vectors

µk and νk are vectors of multipliers that converge to the set of Lagrange multipliers

for the first two equality constraints of problem (C.7). At each step, (C.8) solves an

L1-regularized problem with respect to the combined model vector (x,m). Introduc-

ing new scaled multiplier vectors

bk =
µk
λ
, ck =

νk
δ
, k = 0, 1, 2, . . . (C.9)

a little algebra shows that (C.8) is equivalent to

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − y − ck‖2

2 → min,

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + y −mk+1, k = 0, 1, 2, . . .

(C.10)

Here we used the fact that adding a constant term λ/2‖bk‖2
2 + δ/2‖ck‖2

2 to the ob-

jective function obviously does not change the minimizing solution.

Problem (C.7) can be solved by iteratively projecting the current model vector

m onto y, then conducting the iterations (C.10) to convergence, then repeating the

process. However, presence of the proximal term δ/2‖m − y‖2
2 in (C.8) due to the

constraint m = y means that a very accurate solution of (C.10) at early iterations is

wasteful and unnecessary. I instead carry out a single iteration of (C.10) followed by
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the model projection:

(xk+1,mk+1) = argmin ‖x‖1 +
α

2
‖F(m)− d‖2

2 +

λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − yk − ck‖2

2 → min,

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + yk −mk+1,

yk+1 = Π(mk+1) = max{min{mk+1,m2},m1}, k = 0, 1, 2, . . .

(C.11)

The iterative process (C.11) still requires solving an L1-regularized problem. However,

the L1-norm term now involves only the vector x. Therefore, we apply splitting,

minimizing

‖x‖1 +
α

2
‖F(m)− d‖2

2 +
λ

2
‖x − Φ(m)− bk‖2

2 +
δ

2
‖m − yk − ck‖2

2
(C.12)

alternately with respect to m and x in an inner loop of N1 ≥ 1 cycles. Because the

proximal constraint m = y renders good fitting accuracy at early stages unnecessary,

N1 can be small. Further we note that the minimization of (C.12) with respect to

x (in a splitting step with m fixed) is given trivially by the “shrinkage” operator

(Goldstein and Osher, 2009):

xk+1 = shrink

{
Φ(m) + bk,

1

λ

}
, (C.13)

where

shrink {x, γ} =
x

|x|
max (|x| − γ, 0) , (C.14)

and is effectively thresholding the model gradient. Our algorithm can be described

by the following five steps:
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1 Initialization
m0 = starting guess,

x0 = 0,

y0 = max{min{m0,m2},m1},

b0 = 0,

c0 = 0,

(C.15)

2 Outer loop. Repeat steps 3-5 for k = 0, 1, 2, . . .

3 Inner loop. Iterate (C.16) N1 ≥ 1 times.

mk+1 = argmin
λ

2
‖xk −Φ(m)− bk‖2

2 +
α

2
‖F(m)− d‖2

2+

δ

2
‖m− yk − ck‖2

2,

xk+1 = shrink

{
Φ(mk+1) + bk,

1

λ

}
, xk = xk+1,

(C.16)

4 Update the multipliers and project the model onto the bounding rectangle:

bk+1 = bk + Φ(mk+1)− xk+1,

ck+1 = ck + yk −mk+1,

yk+1 = max{min{mk+1,m2},m1}.

(C.17)

5 Terminate if the target accuracy is reached

‖mk+1 −mk‖2

‖mk‖
≤ target accuracy. (C.18)

or go back to step 2 otherwise.

Optimizing (C.16) with respect to m is in itself a large-scale optimization problem,

nonlinear for a nonlinear modeling operator F. Solving the optimization problem

(C.16) exactly is unnecessary because for small k (i.e., at early stages of the inversion)

vector yk is not the true model, vector xk is far from the true model gradient, and
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the multipliers bk,xk could be far from scaled Lagrange multipliers. Therefore, for

large-scale problems only a few steps of an iterative method like conjugate gradients

need be carried out. As the solution converges to the true solution and critical sharp

contrasts in the model are identified, an iterative solver can begin to take advantage

of the objective function curvature information collected at previous iterations of the

outer loop, potentially leading to a significantly faster convergence.

RESULTS

I demonstrate the method on a test problem that simulates vertical surface uplift

in response to distributed dilatational sources, mathematically equivalent to surface

deformation due to pore pressure change (Segall, 2010). Our modeling operator is

defined as

F(m) = u(x), u(x) = const

∫ A

0

Dm(ξ)dξ

(D2 + (x− ξ)2)3/2
, (C.19)

where we assume that m = m(ξ), ξ ∈ [0, A] is a relative pore pressure change along

a linear segment [0, A] of a reservoir at a constant depth D, and u = u(x), x ∈
[0, A], within a proportionality factor determined by poroelastic medium properties

(Maharramov, 2012), is the induced vertical uplift on the surface. For demonstration

purposes we consider a one-dimensional model but the results trivially extend to

realistic reservoir and surface geometries. Operator (C.19) is a smoothing operator,

and recovering sharp pressure contrasts e.g. due to permeability barriers requires

model “styling” or regularization such as blockiness-promoting ROF model. As a

true model I used a highly compartmentalized pressure model of Figure C.1(b). In

this experiments, I set D = 100 m A = 2 km, and discretized both the model and

data space using a 200-point uniform grid. Random Gaussian noise with σ = 15%

of the maximum noise-free data amplitude was added to the clean forward-modeled

data to produce the noisy observations shown in Figure C.1(a).

The result of a TV-regularized unconstrained inversion is shown in Figure C.2(a)

against the true model and a Tikhonov-regularized inversion. This result was ob-

tained using the above algorithm by setting δ = 0 (no bound constraints) and using
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Figure C.1: (a) True and noisy uplift observations. Random Gaussian noise with σ =
15% of maximum clean data amplitude was added to the clean data. (b) True model

exhibits a highly compartmentalized “blocky” behavior. [ER] btv/. tvdata,true

the values of α = 1 and λ = 2. The TV-regularized result captures the compartmen-

talized picture of pressure distribution better than the highly smoothed Tikhonov

regularization result. However, due to absence of bound constraints, lower pressure

bounds are not honored, resulting in negative pressure areas that are not present in

the true model. The result of running the new bound-constrained TV-regularization

algorithm is shown in Figure C.2(b). The imposition of bound constraints not only

removed the negative relative pressure areas, but also removed the pressure spike

at approximately x ≈ 1 km in the unconstrained inversion of Figure C.2(a) that

apparently had resulted from compensating negative pressures. In both the con-

strained and the unconstrained runs I conducted 1000 outer loop iterations with 2

inner loops cycles. However, the algorithm converged quickly, with only a few initial

iterates outside a tight neighborhood of the final curve, as shown in Figure C.3(b).

Finally, note that many practical implementations of bound constraints often resort

to a simplistic way of enforcing the constraints: the inverted model is projected onto

the bounding rectangle either once after applying a direct unconstrained solver, or
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at each iteration of an unconstrained solver. In this case variable y and the asso-

ciated quadratic regularization term are not introduced into the objective function.

This may result in a violation of the KKT optimality conditions where the bound

constraints are active (Nocedal and Wright, 2006), and is demonstrated by the blue

plot in Figure C.3(a). While the bound constraints are honored, the solution is both

qualitatively and quantitatively far from optimal.

CONCLUSIONS AND PERSPECTIVES

The algorithm for approximate TV-regularized inversion with bound constraints com-

bines the advantages of the blockiness-promoting and edge-preserving ROF model

with the ability to impose bound constraints. The splitting mechanism used for en-

forcing the bound constraints is naturally integrated into the ADMM/split-Bregman

iterations and results in no extra computational cost. The method was able to re-

solve compartmentalized subsurface pressure changes from noisy surface uplift ob-

servations despite the highly diffusive nature of the underlying deformation process.

The method can be implemented around any large-scale nonlinear solver such as

conjugate gradients or quasi-Newton methods. Additional equality and inequality

constraints can be incorporated into the algorithm using the general ADMM frame-

work. Solutions provided by this algorithm are only approximations to the true

solution of problem (C.1). However, progressively more accurate solutions of (C.1)

can be obtained by gradually reducing parameter δ. A variable-δ version of algorithm

(C.15–C.18) for finding true solutions of (C.1) merits further investigation.
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Figure C.2: (a) Unconstrained TV-regularized inversion. The algorithm tries to fit
the data by allowing negative relative pressure changes. (b) Bound constrained TV-
regularized result. Note that enforcing lower bounds resulted in a more accurate
shape matching of the true model. [ER] btv/. tvinv,boundtvinv
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Figure C.3: (a) Direct imposition of the bound constraints at each iteration of the
unconstrained solver resulted in a qualitatively and quantitatively wrong inversion.
(b) Convergence of TV-regularized inverted models with bound constraints. The
method quickly resolves both sharp contrasts and active bounds as only a few initial
curves out of 1000 iterates lie outside a small neighborhood of the final curve. [ER]

btv/. simplefailboundtvinv,boundtvconv
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Appendix D

Useful functions and equations

“It’s the little things that smoothes

people’s roads the most”

Mark Twain
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This appendix is a reference of functions and equations used in the thesis.
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MINDLIN’S ELASTOSTATIC TENSOR

The elastostatic Green’s tensor gki (x, y, z, ξ, η, ζ) has the meaning of the displacement

along axis i at point (x, y, z) due to a concentrated force along axis k at point (ξ, η, ζ).

The analytical expression for the components of the Green’s tensor in the elastic half-

space with a free-surface boundary condition are given by the following equations

(Mindlin, 1936):

g1
1 =w

(
3− 4ν

r1

+
1

r2

+
(x− ξ)
r3

1

+
(3− 4ν)(x− ξ)2

r3
2

)
+

+w

(
2(r2

2 − 3(x− ξ)2)zζ

r5
2

+
4(1− ν)(1− 2ν)(r2

2 − (x− ξ)2 − r2(z + ζ))

r2(r2 − z − ζ)2

)
g1

2 =(x− ξ)(y − η)w

(
1

r3
1

+
3− 4ν

r3
2

− 6zζ

r5
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)2

)
g1

3 =(x− ξ)w
(
z − ζ
r3

1

+
(3− 4ν)(z − ζ)

r3
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
− 6zζ(z + ζ)

r5
2

)

g2
1 =g1

2

g2
2 =w

(
3− 4ν

r1

+
1

r2

+
(y − η)

r3
1

+
(3− 4ν)(y − η)2

r3
2

)
+

+w

(
2(r2

2 − 3(y − η)2)zζ

r5
2

+
4(1− ν)(1− 2ν)(r2

2 − (y − η)2 − r2(z + ζ))

r2(r2 − z − ζ)2

)
g2

3 =(y − η)w

(
z − ζ
r3

1

+
(3− 4ν)(z − ζ)

r3
2

− 4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
− 6zζ(z + ζ)

r5
2

)

g3
1 =(x− ξ)w

(
z − ζ
r3

1

+
(3− 4ν)(z − ζ)

r3
2

+
4(1− ν)(1− 2ν)

r2(r2 − z − ζ)
+

6zζ(z + ζ)

r5
2
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g3
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(
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+
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2
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w =
1

16πµ(1− ν)

r1 =
√

(x− ξ)2 + (y − η)2 + (z − ζ)2

r2 =
√

(x− ξ)2 + (y − η)2 + (z + ζ)2
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2.5D inversion, 71

4D analysis, 5

absorbing boundary conditions, 134

adjoint equation, 125

adjoint field, 124

adjoint-state method, 124

ADMM, 41, 149

with hot-restarted conjugate gradients,

167

Alternating Directions Method of Multi-

pliers, see ADMM, 149

Amplitude Versus Offset, see AVO, 7

AVO, 7

Biot’s theory, 83

bound-constrained optimization, 192

boundary conditions

absorbing, 13, 134

free surface, 134

center of dilatation, 84

CGNE, 153

Compressive Conjugate Directions, 41, 152

limited-memory, 166

condition

Sommerfeld radiation condition, 13

conjugate directions, 154

Conjugate Directions for Normal Equa-

tions, see CGNE, 153

CSS, see Cyclic Steam Stimulation 95

cycle skipping, 22, 137

Cyclic Steam Stimulation, 95

data misfit, 118

diffractor, 20

dual optimization problem, 148

effective stress, 8

Enhanced Oil Recovery, 8

equality-constrained optimization, 184

equation

Helmholtz, 13

Lippman-Schwinger, 14

wave, see wave equation, 120

Fast Iterative Shrinkage -Thresholding Al-

gorithm, see FISTA, 148

finite elements, 91

first discretize then optimize, 130

FISTA, 148

fluid substitution, 6

the effect on elastic rock properties, 6

free surface boundary conditions, 134
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full derivative, 122

full-waveform inversion

4D, see time-lapse full-waveform in-

version, 8

time-lapse, 8

phase-only, 135

function

objective, see objective function 22

penalty, 22

FWI

phase-only, 135

FWI misfit function, 30

phase-only, 21, 30, 135

FWI objective function, 30

GMRES, 155

gradient descent method, 147

accelerated, 148

Green’s tensor

elastostatic, 84

homotopy methods, 147

hysteresis

of velocity/stress relationship, 7

image denoising, 168

implicit function theorem, 121

inequality-constrained optimization, 192

interior point methods, 88, 147

inverse problem

of inverting pressure contrasts, 178

of inverting pressure from deformation,

83, 170, 178

of inverting sparse dilatational pseudo-

sources, 170

ISTA, 147

Iterative Shrinkage -Thresholding Algorithm,

see, ISTA, 147

Karush-Kuhn-Tucker optimality conditions,

see KKT optimality conditions, 199

KKT optimality conditions, 163, 199

Krylov subspace, 154

Lagrange multipliers, 195

Lagrangian, 149

augmented, 149, 194

Lagrangian multipliers, 149

least squares

L1-regularized, 146

condition number of, 167

nonlinear, see nonlinear least squares,

118

regularized, 146

TV-regularized, 146

linearized adjoint equation, 125

matrix

banded, 132

Jacobi, 119

sparse, 132

triangular, 131

tridiagonal, 132

medium

layered, 84

weakly laterally heterogeneous, 84
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method of multipliers, 149

model

baseline, 21

monitor, 21

modulus

bulk, 7

shear, 7

Nesterov relaxation, 148

nonlinear least squares, 118

objective function, 118

FWI, 22

gradient of, 118

phase-misfit, 135

operator

condition number, 153

convolutional, 86

integral, 86, 173

projection, 194

resolvent, 147

shrinkage, 147

splitting, 149

Douglas-Rachford, 149

three-way, 193

overburden

dilation, 7

phase

misfit, 135

unwrapping, 135

phase misfit residual, 137

poroelastostatic system, 85

coupled, 85, 91

semicoupled, 83

preconditioner

sparsifying, 15

primal-dual optimization method, 148

quadratic penalty function, 167

quasilinear equations, 134

quasistatic poroelastic deformation, 83

R-factor, 64

regularization, 22, 31

L1, 31, 146

L2, 31

model, 31

model difference, 31

Tikhonov, 25, 88, 198

total-variation, see TV regularization,

88

TV, 31, 88, 146

reservoir

caprock, 7

compaction, 7

low-permeability barrier, 109

permeability, 109

trap, 7

reservoir simulation

single-phase, 109

ROF model, 192

Rudin-Osher-Fatemi model, see ROF model,

192

saddle-point of Lagrangian, 149
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scattering

inverse Rytov, 21

scattering series

Born, 15

Rytov, 17

self-adjoint operator, 128

slowness

acoustic, 13

perturbation, 13

source, 13

dilatational, 173

sparse pseudo-source, 173

Steered Conjugate Directions, 154

for constrained optimization, 184

strain, 64

time, 64

subgradient, 147

time marching, 131

time-lapse inverse theory, 5

tomography

diffraction, 17

travel-time, 20

total derivative, see full derivative, 122

Total-variation minimization

with bound constraints, 192

TV seminorm, 31

anisotropic, 169

isotropic, 31

Uzawa method, 149

variational equations, 122

velocity

acoustic, 7

pressure, see acoustic velocity, 7

relationship to confining stress, 7

relationship to pore pressure, 7

relationship to strain, 7

shear, 7

wave equation

in frequency domain, 120

in time domain, 130
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