
Simultaneous shot separation

Typically, in seismic acquisition an active source is shot, and then a set waiting
time must elapse before the next source point is acquired. This is to allow the
energy to sufficiently dissipate, such that adjacent sources do not actively interfere.
In simultaneous shooting, this restriction is relaxed (?; ?; ?). Despite this unvaoidable
high energy overlap, many methods exist, or have been postulated, that can use these
data very effectively. There are ways to design these surveys to minimise types of
interference (?), to maximise acquisition potential (?), or to simply ignore the fact
other sources are present (?).

The concept of recording overlapping data has many terms in modern nomencla-
ture, often meaning subtly different things. Allowing active sources to overlap may
be called blending, simultaneous shooting, or continuous recording, amongst others.

Chapter 3 discussed phase-encoding in detail. Of course, there are stark similari-
ties between simultaneous acquisition and phase-encoding. From hereon, the former
will be referred to as ‘primary’ blending, and the latter as ‘secondary’ blending. This
language is intuitive, since during phase-encoding the data provided were acquired
conventionally, making the blending a secondary process.

For phase-encoding, how to blend and combine these data was a key consideration.
For field blended data, post-acquisition, the blending is fixed. There are encoding
options available during acquisition - randomness of delays, waiting times, amplitudes,
relative frequency contents etc, but once the user is given these data the blending can
not be changed. This poses a variety of new problems for how to eventually image
these simultaneously shot data, and how to optimally design a blended survey. This
chapter will focus on designing a robust method for separating simultaneously shot
data, under a variety of shooting patterns.

Initially, assuming the desired, final output is a clean, high-fidelity image, com-
parable to the image obtained from an unblended survey, then there are two clear
options. One can attempt to directly image these data, or attempt to separate these
overlapping data to approximate a conventionally acquired data-set, and image sub-
sequently. The following sections will discuss the benefits and pitfalls from these two
approaches.

IMAGING BLENDED DATA

Firstly, direct imaging of a simultaneously acquired data-set will be explored. As
discussed in Chapter 2, either Reverse Time Migration (RTM), or linearised inversion
can be used, the former being the first adjoint procedure of the latter.
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Passive imaging

Naive migration of these data, as if they were unblended, has been increasingly re-
ferred to as ‘passive’ imaging of blended data (not be confused with the imaging of
passive data). It follows from some simple algebra (and intuition) that the image will
be plagued with cross-talk artifacts.

n∑
i=1

Lim = d (1)

If an operator, L, describes all these data, as Lm = d, then L can be decomposed
into individual shots, as shown in equation 1. Here, m describes the scattering
potential field, d describes the entire data-set, and L1 relates the first shot, d1 to m
etc., up to shot n.

Now, consider the case where d1 and d2 overlap, such that d̃ = d1 + d2. Conven-
tional migration applies L′ to these data, where L′ = L′

1 +L′
2, and sums the result to

form an estimate of m. The result of this operation is formulated in equation 5.

m ≈ L′d̃ (2)

≈ L′
1d̃ + L′

2d̃ (3)

≈ L′
1d1 + (L′

1d2 + L′
2d1+)L′

2d2 (4)

≈ m0 + m̃0 (5)

The imaging artifacts come from the operator that images d1 being applied to d2,
and vice-versa. It is clear why this interference is known as crosstalk, since it comes
from these cross-terms.

There are circumstances under which direct migration of these data results in
an acceptable image. If shots are well separated by distance (Distance Separated
Simultaneous Source, or DS3, ?), then this operator overlap is small, and crosstalk
artifacts migrate outside of the domain of interest (or at least far from the imaging
target). Furthermore, if the blending power is low (a relative measure of interference
quantity), and the shooting dense, then the power of the stack will often mitigate
these crosstalk artifacts. Since, whilst they are high amplitude on a shot-by-shot
basis, they are incoherent between shots. The image may be unreliable for amplitude
analysis, but for structural information, or for an initial model during inversion, it
will be adequate. This is contingent on random time delays between sources, constant
delays may not result in these artifacts stacking out as efficiently.

Whilst these two situations may result in adequate structural images, two prob-
lems remain. A better solution is needed for trustworthy amplitudes, and there is
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an implicit background velocity model assumption. For direct imaging, especially
linearised inversion, a representative velocity model is needed. This point will be
elaborated upon during the rest of this chapter.

Imaging through inversion

Passive imaging of blended data can be improved by simultaneous inversion. Options
include direct inversion for the scattering model (?; ?), target oriented simultaneous
inversion (?), inversion for separate time-lapse vintages (?), amongst others. Con-
ceptually, this is similar to phase encoding, where the encoding is fixed, and α is a
vector filled with ones.

From the discussion in Chapter 3, one can conjecture that convergence for this
encoding sequence would be slow. Meaningful results can be recovered, however, by
virtue of the fact the model space is still vastly smaller than the data space.

However, there is a more fundamental limitation with inverting blended data di-
rectly than slow convergence. Such a methodology would require accurate velocity
control, which is crucial for linearised inversion and it’s subclasses. If the velocity is
not well constrained then the inverted scattering potential will be imaged incorrectly,
and information will be lost. As an acquisition solution a stringent velocity require-
ment is unacceptable. Consequently, using direct inversion to image blended data
is an interesting academic problem, but ultimately other solutions must be sought.
This leads to the problem of simultaneous data separation.

SEPARATING BLENDED DATA

The most flexible, and velocity independent, option for processing overlapping data
is to separate shots to individual records. Once this has been achieved a conventional
processing flow can be followed. A methodology that is not strongly dependent on
velocity or Earth model knowledge is desirable, since for exploration surveying a
strong control on subsurface geology is an unreasonable expectation.

For shot separation, several approaches are possible. The concept of image space
inversion will be the focus of this thesis discussion; other, existing, options will be
briefly discussed and contrasted first.

Data space filtering

A cursory glance at simultaneous shot records may give an observer the notion that
simple data space filtering could be used. For relatively flat geology, and with well
distance-separated simultaneous sources, this is often the case. Successful data space
filtering methods rely on either conflicting dips, or using the apex of events to ascertain
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the shot of origin. However, once sources are proximate in both time and space,
correctly identifying the origin of certain events in a shot record becomes difficult,
and the dips of events can become more aligned. If the human eye is not able to
distinguish these events, assuming there is limited prior model knowledge, then an
algorithm will similarly fail. This is exacerbated for certain geologies, for example
steeply dipping salt bodies. Reflections from these will appear at large offsets and
late times, potentially causing them to become confused with other sources.

As an example, a group of randomly delayed shots are shown in Figure 1. In this
figure it is largely possible to distinguish which shots are related with which reflection
events. This can be contrasted with Figure 2, which shows two shots simulated over
the same model, adjacent to a steep salt body.

3	
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e(s) 

Figure 1: Five randomly delayed shots, while the record is noisy it is possible to
distinguish which shot caused which event. [CR]

The concept of separating well distance-separated shots is almost moot. Filtering
antithetic events is trivial, and often simply migrating these data as if there was no
overlap provides reasonable result.

The majority of existing and effective techniques rely on using a domain transform,
or series of transforms, which can isolate coherent parts of the signal. These all
originate from the concept of randomised source intervals and receiver gathers (?).
The pinciple of seismic reciprocity concludes that, for a given shot record, the same
data would be recorded if all sources and receivers were swapped. In the situation
where overlapping shot points are randomized, in time and space, then transforming to
the common receiver domain will scramble much of the overlapping energy, resulting
in what could be considered as a shot gather plagued with random noise. A variety
of random noise reduction technqiues can now be invoked.

This can be further illustrated by looking at 2D gathers, for example in Figure 3
and Figure 4. Here the right hand panel is a corollary to the receiver domain, the left
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Figure 2: Two shots, simulated over the same model as Figure 1. At late times, it
becomes impossible to ascertain which shots given events originated from. [CR]

Figure 3: A simple dataset, from a two layer model. The left side panel is a shot
gather example, the right side panel is a receiver gather. [CR]
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Figure 4: The same dataset as in Figure 3, after random blending (top) and linear
blending (bottom). [CR]
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to the shot domain. The difference in coherency is extremely evident when comparing
the top and bottom panels.

The bottom panel in Figure 4 highlights another potential pitfall, if the delays are
constant then there are no coherency differences between these domains. As a result,
any attempt to treat overlapping shots in the receiver domain as random noise will
fail, and primary information will be lost.

Data space inversion

For randomised source timings, inverse methods based in the data space can be very
effective in the field of simultaneous source separation; most of these use a variety of
domain transformation, as mentioned above. ? showed that using a Projection Onto
Convex Sets (POCS) methodology, in the common receiver domain, results in a high
degree of separation. Whilst effective, this technique involves many multi-dimensional
Fourier transforms (?), so for certain geometries and blending schemes separation as
a function of compute time may be slow.

Other receiver-gather projections can also be used. Both median filtering (?) and
sparse radon transforms (?) are effective for many survey types and can be powerful
tools for noise reduction. Additionally, threshholded interference reduction (?) and
interference estimation (?) show promising results for data blended in 2D. Approaches
borrowed from multiple prediction literature have been shown to have varying results,
but often prediction-and-subtraction methods have yielded excellent separation (?).

? looked at a variety of advanced blending patterns and analysed how to invert
for the transform that will link the source and receiver domains. Other successful
methods use a compressive sensing approach (?), where many wavelet transforms can
be used to separate these data.

All these existing methods strongly rely on random source delays, and any rep-
etition or predictability in the source timings can induce surprisingly detrimental
artifacts. ? showed a number of interesting observations from field blending tests.
Natural variation in the recharge time of these airguns can often provide a suffi-
cient level of shot randomness. However, as survey size increases, so does the risk
of underlying shooting predictability occurring in certain shot sequences. This is
counter-intuitive in the field of seismic imaging, since generally an increase in survey
size results in more redundancy and higher fidelity. It is possible to mitigate this
potential repetition by inducing more unpredictability, such as by adding an extra
time delay. This can be determined from a random number table, and induced once
the airgun is recharged.

Theoretically, these inverse methods can handle many interfering shots. In prac-
tice, for marine acquisition, no more than three or four interfering sources are present
at a given instant. This is a function of physical space, and availability of source
boats. On land many vibroseis trucks have been used at once for a high degree of
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parallel acquisition (?; ?). It should also be noted that land acquisition provides a
few other advantages for separation; different sweeps can be encoded to encourage
orthogonalit and source positions are easier to randomise.

For these reasons, simultaneous land acquisition has been used extensively, and
shown to give impressive results. There has been a marked increase in simultaneous
marine acquisition, but some issues remain. For these reasons subsequent sections
will be limited to the discussion of marine surveys, and will focus on a blending power
of around three.

The image space

It is desirable to choose a domain, or inversion technique, which is less restrictive
of blending pattern. In particular, developing a scheme which is robust while sepa-
rating data acquired with constant or pseudo-constant delays is sought, since these
aforementioned data-space methods fail under these conditions. By projecting the
problem into the extended image space, these previous shortcomings can be circum-
vented. Although RTM is used as the transform operator, the use of an extended
domain (either in offset or angle) loosens the restriction of having an accurate veloc-
ity model, which was alluded to in Chapter 2. No information is lost this way, and
correct data reconstruction is achievable.

Furthermore, a technique that uses the image space can be easily augmented with
a velocity update scheme - most of the necessary computation will already be done.
This strengthens the potential of such an approach, as an improved velocity model
will allow for cheaper, more accurate shot separation, during the next set of iterations.
This will be elaborated upon subsequently.

Through image space projection, ‘primary’ shots of interest can be focused on
(migrated, essentially), while overlapping energy, from ‘secondary’ shots, will be dis-
persed. This allows separation criteria to focus on both move-out differences and
focusing contrasts. This is simply done by combing the input data into discrete shot
records, according to a suggested recording time length and a set of shot timings.
This results in a data-set which is the size of the would-be conventional data, but
plagued with overlapping, coherent events.

Using the extended image space to remove coherent noise sources has been pre-
viously analysed, albeit under other objectives. ? looked at using apex-shifted
parabolic-Radon transforms to successfully remove surface related multiples. ? looked
at using F-K transforms from the extended image space to successfully remove imag-
ing noise. However, in these cases the final imaging procedure had been completed,
and this step was to remove some coherent artifacts before stacking to the zero-offset
image.

The implicit goal herein is a separated dataset. As a result, transforming from
the extended image space back to the data space is necessary - this is sometimes
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termed demigration (?). Using demigration for multiple removal has been effective
in several studies (?; ?), and this is a similar problem to that of source separation.
For amplitude consistent recovery, one pass of extended Born modeling (demigration)
is insufficient, and inverse demigration is necessary (?). The process of demigration
is equivalent to Born modeling, so for clarity the term inverse Born modeling will
be used to describe linearized forward modeling as an inverse process, rather than
inverse demigration.

Such inverse Born modeling methods have been shown to give full data recovery
(?), and to remove multiples (?), although it has been an only lightly explored subject.
To formally introduce this concept Born modeling must be revisited, and the extended
image space will be introduced in full.

The extended image space and Born modeling

I(x, y, z) =
nshots∑

i

∑
t

Ps(x, y, z, t; si)Pr(x, y, z, t; si), (6)

I(x, y, z, xh, yh) =
nshots∑

i

∑
t

Ps(x + xh, y + yh, z, t; si) ∗ (7)

Pr(x− xh, y − yh, z, t; si).

If equation 6 describes Claerbout’s zero-offset imaging condition, then an example
of extended imaging can be described by equation 7. Here, I(x, y, z) is the image in
space, Ps is the source wavefield and Pr is the receiver wavefield; si represents the
current shot of interest. If lag coordinates (known as subsurface offsets) in x and y
are introduced (xh and yh), a 5D image can be created. It is possible to have lags in
both t and z to create a 7D image, or any combination thereof.

If the correct velocity is used for extended migration, then an image sharply fo-
cused at zero-subsurface-offset is created. All the necessary kinematic and amplitude
information for data reconstruction is contained in this zero-subsurface-offset image
panel, an example can be seen in Figure 5. Artifacts present are a result of limited
acquisition and data truncation, and will not hinder reconstruction. Next, Figure 6
shows the same data, but migrated using a constant velocity model (incorrect up
to 20%). This zero-offset panel is now not sharply focused, and coherency over a
range of subsurface offsets is observable. In this case much of the necessary kinematic
and amplitude information, critical for accurate extended Born modeling, is spread
over these offsets. Consequently, these must also be back-projected for accurate data
recovery.

It is possible to apply an additional transform from subsurface offset to the angle
domain. By measuring event curvature as a function of this opening angle, velocity
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Figure 5: The unblended simple dataset, as seen in Figure 3, migrated into the
extended domain with the correct velocity. [CR]
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Figure 6: The unblended simple dataset, as seen in Figure 3, migrated into the
extended domain with using a constant velocity model. [CR]
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model updates can be estimated. It is by this approach that Wave-Equation Migration
Velocity Analysis (WEMVA) works (?). For many algorithms the angle domain is
used instead of the subsurface offset domain, since this parameterisation is directly
relatable to surface geometry and velocity. The concept of suburface offset itself is
somewhat unphysical, but during extended imaging it provides the necessary degrees
of freedom to preserve input wavefield information.

In addition to this simple, two-layer dataset, two more complex and geologically
representative models will be used. These are a slightly modified version of the refer-
ence Marmousi model (?) (padded with a water layer), and a windowed subsection of
the latest SEAM model (?). Initially, the Marmousi model will be used to investigate
if this added complexity poses additional difficulty for inverse Born modeling, and
how these results vary under different blending experiments. The velocity models
used, and the reference unblended dataset, are shown in Figure 7 and Figure 8. For
this dataset, 60 shots were simulated with a spacing of 100 m, receivers were all along
the top of the model.

Figure 7: Accurate and smoothed representations of the Marmousi velocity model.
[ER]
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Figure 8: Data acquired over the Marmousi model. [CR]

Random delays

Random delays between source times and positions provides the most options for
data separation. Figure 2 already showed the simple two-layer dataset, with both
random and constant delays simulated. The implications of these scenarios will now
we analysed in more detail.

The left-side panels (of Figure 2) show examples of shot gathers, there is a sig-
nificant amount of highly coherent noise throughout these records. The right-side
panel shows example receive gathers (since the recorders were fixed.) Noticeably, for
random delays the overlapping noise takes on a highly different characteristic - the
data of interest (primary events) are coherent, and all of the contamination has now
been incoherently scrambled.

Inducing small delays between sources was an early style of simultaneous acquisi-
tion, known as dithering (?). Scrambling this noise was done through a simple, and
very cheap, domain transformation, typically to an F-K space. The noise is spread
over a large range of spatial and temporal frequencies, whilst the primary informa-
tion is more tightly contained. This can be exploited in a number of ways - filtering,
threshholding, inversion etc.

Figure 10 then show these randomly delayed data after imaging, migrated with
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Figure 9: Data acquired over the Marmousi model using a random delay function.
[CR]



15

the correct velocity model. The majority of this overlapping energy has stacked out,
but there is a significant amount of high-wavenumber noise remaining in the image.
This makes this simple imaging acceptable for structural / model building work flows,
but will be insufficient if any amplitude work is desired.

Figure 10: The extended image from migrating Figure 9 (data acquired using a
random blending function) [CR]

Linear delays

A constant shift between source locations and timings will be denoted as ‘linearly’
delayed data, and this can pose some interesting, additional problems.

Figure 11 shows these Marmousi data, but this time the shooting pattern features
a constant delay. Thus, there is no incoherency to exploit in the common receiver
domain. This is further illustrated by looking in the F-K domain, the signal and
the noise remain tangled, and techniques like filtering and threshholding will fail at
removing the noise, and may remove primary information.

Imaging these data, with the correct velocity, gives the result in Figure 12. Some-
what surprisingly, the image is not plagued with high-amplitude artifacts. The reason
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Figure 11: Data acquired over the Marmousi model using a linear delay function.
[CR]
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Figure 12: The extended image from migrating Figure 11. [CR]
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for this is a little more subtle - because the blending style was not very aggressive,
a lot of the noise either does not correlated into the image, or migrates outside of
the domain of interest. These is still some noise, relative to the conventional image,
but this is less damaging than in the random case. Additionally, these artifacts are
comparably high-amplitude if single-shot images are observed, however these artifacts
are still incoherent between images. Thus, stacking removes much of the noise which
was migrated into the target area.

Pseudo-linear delays

The most realistic marine acquisition scenario is often that of pseudo-linear delays.
These are close to constant shifts, but with a jitter of around 5% between times.

Figure 13: Data acquired over the Marmousi model using a pseudo-linear delay func-
tion. [CR]

This small amount of randomness creates a high level of incoherency between do-
mains; migrating these data gives similar results to the linear delays, and again, these
are cleaner than for random delays. Largely, this is due to the temporal separation of
the signal and noise. The slight randomness then provides the additional incoherency
needed to largely stack out the noise.
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Figure 14: The extended image from migrating Figure 13 (data acquired using pseudo-
linear delays). [CR]



20

Angle domain inversion

From studying the two-layer model subsurface offset panels, particularly under linear
blending conditions, it appears that blended energy could be isolated as a function of
curvature, and hence removed. If it is possible to remove contaminated energy from
these panels, then the images could be demigrated, and data separation achieved. To
test this theory, this two-layer dataset, with linear blending, will be used. Figure 15
shows the correct velocity image, and an image constructed from a velocity which
was scaled to be too slow. In both of the subsurface offset panels, events from the
data of interest (‘primary’ events) and events from the blended energy (‘secondary’
energy) are both easily identifiable. However, for the incorrect model the events now
all have significant curvature, and the focusing contrasts are less pronounced.

Figure 15: Linearly blended data migrated into the subsurface offset domain using
the correct velocity model (top) and a model 10% too slow (bottom.) [CR]
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A second domain transform is necessary, such that events can be isolated as a
function of curvature. A parabolic Radon transfrom was selected, since for a flat
reflector the curvature of these events should approximate to a parabola. However,
applying a parabolic Radon transform to the top panel will be problematic, since
some events have been focused to a point - this will cause this information to become
spread out in the Radon domain. Instead, another transfrom must be used before
moving to the Radon domain, and this is a transform to the angle domain. Measur-
ing the curvature of these events in the angle domain is how WEMVA updates are
constructed.

Figure 16: The same images as Figure 15 but with the third axis transformed into
the subsurface angle domain, rather than subsurface offset. [CR]

The angle domain representation is shown in Figure 16. The previously well-
focused events now appear flat, and the curvature of other events have become more
extreme. It is now possible to transfrom to the parabolic Radon domain, and isolate



22

events by this curvature.

Figure 17: The angle domain image with the correct velocity model after a single
parabolic transform (top) and the slow velocity image after a single parabolic radon
transform. [CR]

However, a parabola is not an ideal representation of these events, and nor is the
Radon transform used very exact (due to aperture restrictions). These limitations
are manifested in Figure 17; whilst some curvature separation has been achieved,
events have not been well focused as function of their curvature, and there is a lot of
contamination across this space. It is possible to extend this domain transformation
to an inverse process, and the result is shown in Figure 18. After ten iterations of
this process, coherent events are now well focused at a given measure of curvature.
It would be possible to window these events and reverse these processes, resulting in
a separated dataset.

This process has two key problems implicit in these assumptions. One, is that
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Figure 18: The angle domain image with the correct velocity model after a single
parabolic transform (top) and after ten linear iterations of the transform (bottom.)
Note the focusing at zero curvature (corresponding to a flat angle gather.) [CR]
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subsurface reflection events will exhibit a measurable, single-parameter curvature in
the angle domain. The other, is that primary events will focus at a similar level of
curvature.

The former of these can be quickly disproved by imaging a more complex dataset,
with steep structures and discontinuous reflectors. Under these conditions, events in
subsurface offset exhibit a far less parabolic nature. Attempts to transform these to
the angle domain and isolate primary reflections according to their move-out yielded
no success. This is not as severe a limitation for WEMVA, since not every reflector’s
curvature is needed to be measured in order to back-project a meaningful model
update. However, for deblending the loss of reflector information is unnacceptable.
Additionally, to build these angle domain panels a regular and dense acquisition
geometry is desirable, and this is not a good requirement for a separation engine.

Secondly, the fact that in this example the two events focused at the same measure
of curvature was because the velocity model was a scaled version of the true model.
If this was not the case, these events would focus to different amounts of curvature.
This is not as strict a limitation, since a predetermined range of curvatures could be
retained, and significant data-separation still achieved. However, these limitatations
coupled imply that curvature-based image-space separation will fail under a variety
of conditions.

Instead, posing the separation problem as an inversion will be investigated, where
the minimization is posed as a function of these separated data. Initially, how these
data behave after demigration will be tested.

Adjoint demigration / Born modeling

As in Chapter 2, for linearized inversion, the adjoint procedure of equation 7 can
be used to move back to the data domain. In this case, the forward procedure is
now extended Born modeling. For Born modeling, during each imaging time step the
receiver wavefield is convolved with the scattering estimate and then propagated. For
extended Born modeling, during each imaging time step the receiver wavefield must
now be convolved with the extended scattering estimate (this is the extended image.)
This is, of course, both more computationally expensive, and requires additional
memory. There are additional computation complications involved with extended
Born modeling, when compared to extended RTM, and these are discussed at the
end of Chapter 6.

To initially illustrate these processes, the same simple two-layer model will be used.
This is instructive since all events are readily identifiable. The input, unblended data
for these tests is the same as shown in Figure 3, and the correct and incorrect velocity
migrations used for forward modeling are the results plotted in Figure 5 and Figure 6.

Applying the adjoint of this extended migration process gives the result in Fig-
ure 19, which resembles these input data fairly well. This result is informative of
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Figure 19: The ouput dataset from one pass of forward modeling, using the correct
velocity model. [CR]

several attributes of this data recovery process. Amplitudes at early times and short
offsets are under-represented; this is indicative of the need to extend the procedure
to inversion.

Inverse Born modeling

While extended Born modeling results in the correct kinematic recovery of the input
data, the amplitudes are inconsistent. Especially at early times and short offsets; this
can be improved upon by extending forward modeling to an inverse procedure. Chap-
ter 2 discussed linearised inversion at length, with the goal of recovering an accurate
scattering model. What can be considered as the adjoint and forward procedures can
be simply exchanged, and the laws of linear algebra and inversion are all still valid (?).
Now, what was considered the model (the image) can be considered as the reference
data, and what was previously considered the data (the recorded seismic reflections)
are contained in what will be considered the model. The inversion scheme will act to
recover the dataset that will migrate to provide the (cleaned) input image.

J(m) = ‖d− Lm‖2
2 (8)

J(d) = ‖m− L′d‖2
2 (9)
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Equation 8 shows the same objective function which was minimised in Chapter
2, where L is the Born modeling operator, d is the input data and m the scattering
model. For inverse Born modeling, the objective function is formulated in equation 9.
These will now be expanded into minimization algorithms to explicitly analyse the
differences.

Algorithm 1 Extended linearized inversion

Calculate initial data-space residual r = Em0 − d
while iter < n iter; iter++ do

Create gradient ge = E ′r
Create conjugate gradient cg = Ege

Calculate step length
Update m and data residual

end while
Output model

The algorithm for LSRTM is shown again in algorithm 1. Now, however, L has
been replaced with E, to denote the extended imaging operator, and g with ge, to
clarify the increase in dimensionality. The size of the residual and the conjugate
gradient are not changed. By switching the sense of the operators, data, model,
residual and conjugate gradient, these scheme can be adapted to perform inverse
modeling. This is summarized in algorithm 2.

Algorithm 2 Extended inverse Born modeling

Calculate reference extended image ie = E ′d
Calculate initial residual r = E ′d0 − ie
while iter < n iter; iter++ do

Create gradient g = Er
Create conjugate gradient cg = E ′g
Calculate step length
Update dout and image-space residual

end while
Output dataset

? used a similar procedure to remove multiples in the unfocused extended image
space, and then used an inverse demigration scheme to recover amplitude consistent,
multiple free data. A very similar methodology will be used in this thesis, in the
context of data separation.

It is possible to approximate this extended operator, as shown in ?. This scheme
can give an approximate, forward modeled dataset at a substantially lower cost than
the full extended operator. However, in a strict inversion formulation it is not an
exact adjoint to the imaging procedure. Such an approach could provie a valuable
preconditioner to inverse Born modeling, and should be investigated.



27

Conventional, extended RTM of Figure 3 gave the image seen in Figure 5. In the
previous section, a single pass of linearized forward modeling was applied and the
output dataset analysed. For inverse Born modeling, this image can be considered
the ‘data’ of the inversion - meaning it is a fixed reference, and is used to calculated
the intial residual. Exactly the same procedure as Chapter 2 is run, but with the
forward and adjoint operators swapped. The first gradient of the scheme (the adjoint
result) is shown in Figure 19. It is immediately clear that the kinematics of the input
data have been resolved, but the amplitudes are not correctly balance. As before, the
error in the event positioning is incredibly low; the amplitude inconsistencies occur
mostly at short offsets and early times.

After running inverse Born modeling for ten iterations the output dataset in Fig-
ure 20 is achieved. The amplitude inaccuracies are all fixed, and the error between
these data and the input is very low. After only a couple of iterations the normalised
residual is below 10%, and after ten iterations this measure is less than 0.03%.

Figure 20: Inverse Born modeling using the correct velocity model, after ten iterations.
[CR]

To test the algorithm, a very inaccurate velocity model will now be used. The
same constant velocity model will be used, which is inaccurate up to 20% in areas.

The first gradient (adjoint) result from incorrect velocity model extended demgra-
tion is in Figure 21. Similar to the exact velocity case, the kinematics are (largely)
correct, however the amplitudes are not well balanced. This is exacerbated in the
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Figure 21: Adjoint Born modeling using an incorrect velocity model, after ten itera-
tions. [CR]
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Figure 22: Adjoint Born modeling using an incorrect velocity model, after ten itera-
tions. [CR]
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rough model case, and in addition to these amplitude inconsistencies, there are more
artifacts induced. These arise, from the extended Born modeling. The recovered data
after ten iterations are plotted in Figure 22. As before, the inversion has acted to
correctly balance these amplitudes and the output dataset closely resembles to input
data, to within 0.3% error.
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Figure 23: Convergence of inverse Born modeling as a function of iteration number.
The normalised residual is measured in the image space. [NR]

The convergence curve for both schemes are plotted in Figure 23. Unsurprisingly,
the extended scheme is slower to converge than the exact model scheme. Again,
within one iteration a residual of less than 10% is achieved, and after ten iterations
these output data are correct to within 0.3%. This is a very acceptable level of error,
particularly for a scheme which will be augmented with velocity updates.

These results demonstrate that extended inverse Born modeling can successfully
recover input data, even after imaging with an incorrect velocity model. A similar
approach can now be used, with the goal of data separation, rather than simple
amplitude recovery.

IMAGE SPACE DEBLENDING

While primary blending is fixed post-acquisition, the style of proposed processing
can influence how these data are initially acquired. Intuitively, the factors that will
influence these blended data are: the number of sources, the minimum recharge time
for the airguns, the randomness of shot positionings, the randomness of shot timings,
receiver geometry, and to a lesser extent, the number of receivers and the proposed
recording length.

As mentioned earlier in this chapter, existing separation methods are critically
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dependent on the randomness of the source timings. Any induced repetition or pre-
dictability in these can induce debilitating artifacts (?). In the case of constant de-
lays between shots, these methods entirely fail. For both flexibility, and confidence,
in acquiring simultaneous data, it is desirable to relinquish these restrictions. The
aforementioned three styles of shooting will be analysed in these upcoming sections:
random delays, linear delays, and pseudo-linear delays.

Marmousi data separation

Figure 10, Figure 12 and Figure 14 show the extended images produced from these
three datasets using the correct velocity. The differences in blending are manifested
in the image space, although the coherency differences are not as pronounced as
intuition may suggest. Even the linearly blended data becomes well dispersed in the
image space. The artifacts are more coherent, but the focusing characteristics of the
primary events, and the differences in contrast, suggest that separation should be
possible.

Figure 24: The output dataset after applying one pass of Born modeling to Figure 10,
which was the image created from a randomly delayed dataset. [CR]

The recovered datasets after adjoint separation can be seen in Figure 24, Figure 25
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Figure 25: The output dataset after applying one pass of Born modeling to Figure 12,
which was the image created from a linearly delayed dataset. [CR]
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Figure 26: The output dataset after applying one pass of Born modeling to Figure 14,
which was the image created from a pseudo-linearly delayed dataset. [CR]
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and Figure 26. These can be contrasted with the reference, unblended dataset, in
Figure 8. Each of the blending schemes have been well separated and the resultant
datasets could be used for conventional velocity estimation and imaging. Again,
amplitudes at early times and shot offsets are weaker than in Figure 8, which should
be the result if the separation was exact. This can be improved upon by using the
inverse scheme.

It should be noted that there are some fractionally more coherent artifacts in the
recovered data from the linear encoding. Nonetheless this methodology separated
these linearly delayed data very accurately.

Figure 27: The extended image from migrating Figure 13 (data with constant delays)
using a rough velocity model. [CR]

Figure 27 shows the result from migrating these data, but using an inaccurate
velocity model. The primary events are now not well focused at zero-subsurface offset,
and the focusing contrasts between primary and secondary events is far less. Energy of
interest now spans many of the acquired subsurface offsets and distinguishing events
from primary and secondary energy is less obvious. Separation as an inverse problem
was not run on these data, a more complicated model was used instead.

Using data acquired over the Marmousi model gives informative results about the
suggested procedure, but to further confidence over this methodology a more difficult
example must be used. A section of the SEAM model was windowed, featuring
rugose reflectors, continuous reflectors and a steep salt body with carbonate top
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and sedimentary inclusions. These attributes comprise many of the difficulties of
contemporary imaging targets. If this separation method can perform well over these
data then much stronger conclusions can be made.

Blended inversion

Adapting linearised inversion to inverse forward modeling involved reversing the op-
erators, and the sense of what was the model and what was the data. Creating a
blended inversion scheme to recover separated data involves an extra step, since the
blending must be accounted for.

db = Γds (10)

If ds denoted the separated data, db the blended data, and Γ the operator that
creates these blended data (applies the time shifts), then the blending can be de-
scribed as equation 10. This operator, Γ, contains all the necessary time shifts to
move between the domains, and takes an continuous, input dataset. It windows this
input dataset according the source times and a desired recorded length, and outputs
a series of shot gathers. Of course, these shot gathers will contain blended contam-
ination, since individual shots have simply been windowed and no separation has
been attempted. This process of windowing and aligning is sometimes referred to as
pseudo-deblending.

m = L′Γ′db (11)

me = E′Γ′db (12)

As earlier, L′ can represent the zero-offset imaging operator, and E′ the extended
imaging operator. The input, blended data can be cut and aligned, using Γ, and
then migrated, using either operator. This results in either a zero-offset image or an
extended image, shown in equation 11 and equation 12 respectively. These images
can then be used for forward modeling, or for inverse Born modeling. Cost functions,
similar to those in Chapter 2, can then be minimized. Now, the function will aim to
reduce the misfit related to ds, the separated dataset.

J(ds) = ‖L′ds −m‖2
2 (13)

J(ds) = ‖E′ds −me‖2
2 (14)

A similar algorithm to algorithm 2 is then used; the new zero-offset and extended
objective functions to be solved are formulated in equation 13 and equation 14, and
this adapting algorithm expanded as algorithm 3. These new objective functions are
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extensions of equation 9, with Γ included. By making this extended image the input
for an inverse Born modeling scheme, these data can be effectively separated into
individual shot records.

Algorithm 3 Inverse deblending

Calculate reference extended image ie = E ′Γ′d
Calculate initial residual r = E ′d0 − ie
while iter < n iter; iter++ do

Create gradient g = Er
Create conjugate gradient cg = E ′g
Calculate step length
Update dout and image-space residual

end while
Output dataset

To demonstrate the effectiveness of minimising equation 14 for shot separation, a
model and dataset more complex than Marmousi will be used. A same section of the
SEAM model that was used in Chapters 2 and 3 was used, since this features steep
deeps, high velocities, and a range of scattering contrasts. While the Marmousi tests
were informative, it does not feature these final two attributes.

Figure 28: The velocity model windowed from the SEAM model, used for a more
realistic separation test. [ER]

As a reminder, the velocity model used for simulating the comparison, unblended
data is shown in Figure 28, and the reference dataset can be seen in Figure 29. A
pseudo-linear blending scheme was implemented, since this is the most realistic and
can pose separation problems. These data after blending are plotted in Figure 31.
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Figure 29: A conventional dataset acquired using the section of the SEAM model.
[CR]

Figure 30: A heavily smoothed version of Figure 28, used for inaccurate model sepa-
ration. A rectangle filter of 30 model points x 30 model points was used. [ER]
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Figure 31: A pseudo-linearly blended dataset acquired using the section of the SEAM
model. [CR]
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An approximate, unfocused image was created in the extended image space by
massively smoothing the input velocity model, creating some regions where the ve-
locity is approximately, and some regions where the velocity incorrect up to 15%. This
is more realistic than simply scaling the full model, and will create a very loosely fo-
cused salt boundary, creating a valid separation test. The inaccurate model used is
plotted in Figure 30, and the loosely focused, noisy image after migration, in Fig-
ure 32. After ten iterations of this inverse deblending process (algorithm 3), the
output, separated dataset is shown in Figure 34. Through comparison to the input,
blended dataset, this scheme has been very successful in separating these shots into
uncontaminated gathers. No remaining energy from the interfering data remain in
these separated shots, however a few, minor artifacts from extended modeling remain.

Figure 32: The extended image created by migrating the blended dataset with the
velocity model shown in Figure 30. [CR]

Figure 35 shows the results of applying RTM to Figure 29, Figure 33 and Figure 34
respectively. It is clear that all images are directly comparable, although a small
amount of noise is noticeable within the salt body in the two lower images. The
salt boundary is slightly less smooth in the image using the data separated with the
inaccurate model, however this is the only obvious imperfection. Using the heavily
smoothed model does not appear to have resulted in the loss of any information.

Extended images produced by migrating 30 shots before and after deblending are
shown in Figure 36 and Figure 37, using the rough migrating velocity. Due to the in-
accurate model, both images are unfocused and noisy, but the image after deblending
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Figure 33: The output separated data after 10 iterations of inverse deimgration using
the correct velocity model. [CR]
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Figure 34: The output separated data after 10 iterations of inverse deimgration using
an inaccurate velocity model. [CR]
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Figure 35: Images created from conventionally acquired data, blended data separated
using the correct velocity, and blended data separated using an inaccurate velocity
model respectively.
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is substantially cleaner, and would be easier to perform preliminary interpretations
on, as well as moveout based estimations. Often for quick velocity updates / QC
checks a subset of the data will be used, and this demonstrates the effectiveness of
performing separation first.

Figure 36: Thirty shots migrated into the extended domain before deblending, using
the inaccuarte separation velocity. [CR]

The convergence to the input dataset is shown in Figure 38. This was calculated
by reblending the output data, and comparing to the input blended data. Since the
only input is the blended data, db, then to measure separation these output data, ds,
should be reblended, and the output compared to db. Other quantitative measures
could be misleading, so ‖db−Γds‖2

2 is plotted. The system deblends the data almost
immediately, and requires iterations to recover the amplitude content of the input
data, and to reduce modeling artifacts. This process does not converge to as low a
residual as unblended inverse linearized forward modeling (Figure 23), but considering
how much more complex the model and data were for this SEAM test, it does a very
comparable job.

CONCLUSIONS

Primary blending poses many more processing and imaging challenges than secondary
blending, due to the fact the the blending is fixed. For field blended data to integrate
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Figure 37: Thirty shots migrated into the extended domain after deblending, using
the inaccurate separation velocity. [CR]
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Figure 38: How the separation algorithm performs, for SEAM, as a function of iter-
ation number. This normalised residual is the L2 norm of the difference between the
input, blended data, and the output, separated data after reblending. [NR]
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well into existing processing and imaging work flows, the ability to separate these
data into their conventionally acquired equivalent dataset is desirable.

The image space provides a powerful transform for this separation, since even with
constantly delayed data many high amplitude blending-related artifacts are stacked
out, and for randomly blended data the separation is provided almost immediately.
By formulating the imaging in the extended image space a good velocity model re-
quirement can be relaxed, since all kinematic and amplitude information for the
primary data is saved, and the overlapping data is still massively reduced in both
focusing and moveout characteristics.

For simple, layered models it is possible to isolate these overlapping data as a
function of their curvature, however for more complex data this is not possible. In-
stead, by fixing this extended image and posing data recovery as an inverse, extended
Born modeling problem, a separated dataset with comparable amplitudes and correct
kinematics can be constructed.


