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Abstract

Imaging targets for exploration seismology surveys are increasingly associated with

subsurface conditions that pose serious challenges for both seismic model building

and imaging. In particular, these zones of interest are often sub-salt, and can feature

dipping, anisotropic overburdens. In order to construct representative Earth mod-

els, and hence an accurate image, reflection datasets with large offsets, high levels

of reflection point redundancy, and rich azimuthal coverage are sought. This creates

a requirement for denser and more efficient field acquisition techniques, which can

be achieved through blended data acquisition. Here, multiple source points are ac-

quired simultaneously and receivers continuously record the overlapping wavefields.

Separating these simultaneously acquired seismic data into their conventionally ac-

quired equivalent is the link between more efficient data acquisition and conventional

imaging and model building techniques.

The focus of this thesis is the development of a robust methodology for taking these

continuously recorded, blended datasets and accurately separating each shot into an

individual record, free from blending contamination. Successful existing techniques

unanimously feature strict requirements on the randomness of the source distribu-

tion during acquisition, as a consequence, a technique which can separate data with

repeatable delay patterns is demonstrated.

By using extended seismic migration and inverse forward modeling, separation is

demonstrated which is less sensitive to shooting pattern. The image space has several

features amenable to the separation problem; it is of lower dimensionality, it has a

higher signal-to-noise ratio and methods such as preconditioning and regularization
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can be employed. Images with a reduced quantity of interference-related noise are

created, then a forward modeling process provides a separated output dataset. While

forward modeling alone provides a high level of separation, amplitudes subleties of

these input data can be lost. By posing the data recovery process as an inverse

problem, representative amplitude character is recovered.

Posing the problem in the extended image space relaxes requirements on the accu-

racy of the migration velocity model. This extended space preserves all kinematic and

amplitude information present in the input data, and there is no loss of information

during imaging. This methodology is demonstrated on three synthetic datasets, of

varying complexity, and a 3D Ocean Bottom Node dataset. Qualitative and quantita-

tive comparisons for the synthetic tests show the separation is accurate to the order

of 5% after ten iterations. Qualitative analysis of the OBN separation shows that

comparable images are achieved after separation, compared to an unblended input

dataset.
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Preface

The electronic version of this report1 makes the included programs and applications

available to the reader. The markings ER, CR, and NR are promises by the author

about the reproducibility of each figure result. Reproducibility is a way of organizing

computational research that allows both the author and the reader of a publication

to verify the reported results. Reproducibility facilitates the transfer of knowledge

within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the

paper. The author claims that you can reproduce such a figure from the pro-

grams, parameters, and makefiles included in the electronic document. The

data must either be included in the electronic distribution, be easily available

to all researchers (e.g., SEG-EAGE data sets), or be available in the SEP data

library2. We assume you have a UNIX workstation with Fortran, Fortran90,

C, X-Windows system and the software downloadable from our website (SEP

makerules, SEPScons, SEPlib, and the SEP latex package), or other free soft-

ware such as SU. Before the publication of the electronic document, someone

other than the author tests the author’s claim by destroying and rebuilding all

ER figures. Some ER figures may not be reproducible by outsiders because

they depend on data sets that are too large to distribute, or data that we do

not have permission to redistribute but are in the SEP data library, or that the

rules depend on commercial packages such as Matlab or Mathematica.

1http://sepwww.stanford.edu/private/docs/sep146
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html

vii



CR denotes Conditional Reproducibility. The author certifies that the commands

are in place to reproduce the figure if certain resources are available. The pri-

mary reasons for the CR designation is that the processing requires 20 minutes

or more.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their

figures as NR except for figures that are used solely for motivation, comparison,

or illustration of the theory, such as: artist drawings, scannings, or figures taken

from SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel Fortran90 compiler)

and the SEPlib-6.4.6 distribution, but the code should be portable to other architec-

tures. Reader’s suggestions are welcome. For more information on reproducing SEP’s

electronic documents, please visit http://sepwww.stanford.edu/research/redoc/.
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Chapter 1

Introduction

Whilst advanced imaging algorithms have proved to be a crucial tool for many imaging

problems, the hindrance for imaging deep and difficult targets is often associated

with data coverage. Effective seismic imaging and model building in 3D hinges on

several key factors, such as the offset range (determining the rough maximum depth

of imaging), the azimuthal coverage, and the density of sampling (for both sources

and receviers).

Many acquisition solutions exist that aim to improve offset coverage, azimuthal

coverage, and sampling density, however a significant increase in acquisition cost is

inherent. These solutions may feature multiple acquisition vessels, multiple source

vessels, or varied shooting patterns, but the factor that increases survey cost the

most dramatically is time. A typical survey crew costs roughly $500,000 per day,

with 3D surveys often lasting 3-6 months. The costs incurred while shooting these

data are enormous, and so methods of increasing suvery efficiency are of huge interest.

Additionally, these datasets are extremely large, and expand with increase in offset,

azimuth and sampling density. Consequently, the imaging approach used must often

be adapted to accomodate these huge data quantities.

A typical Narrow Azimuth Towed Streamer (NATS) acquisition vessel (Figure 1.1,

top left) features a typical maximum offset of 10 km in the inline direction, and 1
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2 CHAPTER 1. INTRODUCTION

km in the crossline direction. Typical receiver sampling intervals are 25 m and 50

m in the inline and crossline directions respectively, the source sampling is typically

comparable. The rectangular patch indicates the subsurface illumination achieved

with this configuration. The sampling density NATS is reasonable, however the offset

range limits the depth of imaging to 10 km (for flat geology) and both the azimuthal

richness and the crossline offset are very low. Since seismic model building techniques

rely on redundant reflection point information in the subsurface, in terms of offset

and azimuth, then accurately building these models in the crossline direction becomes

difficult.

One method is to reacquire the survey along a different azimuth. The azimuthal

range of these data increases linearly with azimuths acquired, but so does survey

time, and hence cost. Another method is Wide Azimuth Towed Stream (WATS), also

shown in Figure 1.1. As many as four extra source boats are used, greatly increasing

subsurface illumination, by virtue of both offset and azimuth (again, indicated by the

rectangle.)

A WATS type approach has been shown to produce excellent images, Verwest

and Lin (2007), but a major bottleneck is the increase in survey time. After each

shot point has been fired a sufficient waiting period is elapsed before the next shot

point, so that energy has sufficiently dissipated. Typical imaging algorithms assume

a single shot point per record, so high-amplitude and coherent overlapping arrivals

between sources will be very damaging imaging results. Often 15 seconds are elapsed

before the next point is acquired, so for a survey comprising of four source boats, a

full minute must elapse before a given source boat acquires it’s next location.

If this waiting period restriction was relaxed, many more source points could be

acquired in a given time interval (Beasley et al., 1998a). This concept has the potential

to drastically reduce survey time, and the financial savings can be drastic. Acquiring

data in this manner is referred to as simultaneous source data, continuously recorded

data, and blended data, amongst others. The recorded data will feature significant,

high amplitude, overlapping arrivals between shot records, and this must be taken

into account during processing, model building and imaging. Naturally, this will
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Figure 1.1: Rough plots of four acquisition techniques - Narrow Azimuth Towed
Streamer (NATS), Multiple Azimuth Acquisition (MAZ), Wide Azimuth Towed

Stream (WATS) and Coil shooting. [NR] chap1/. acq
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make the data processing more expensive, but this increase in processing cost will be

drastically less than the money saved through quicker acquisition.

BLENDED DATA

There are numerous opportunites, and challenges, provided by blended acquisition.

A number of studies have looked at extracting subsurface properties directly from

the overlapping records, such as Tang and Biondi (2009), however these approaches

implicitly require an accurate velocity model. If blended surveying is to become an

option for exploration type surveying, then processing techniques which do not rely

on prior subusurface knowledge are essential.

Developing a methodology that can effectively separate these overlapping shot

gathers into their conventionally acquired equivalent records would provide the link

between efficient data acquisition, and contemporary model-building and imaging

work flows. Thus, the focus of this thesis will be on data separation, rather than

direct imaging of these data. There are a number of existing separation techniques,

and many of them work extrememly well. In particular, the work by Abma et al.

(2010) is now used widely by BP. Doulgeris et al. (2010), Ayeni and Biondi (2009) and

Moore et al. (2008) all have demonstrated useful separation procedures, by exploiting

the randomness of source points acquired.

Figure 4.9 shows a 2D dataset where randomly delayed overlap between sources

has been permitted. By studying the receiver gather panel, it is clear that this

overlapping energy is randomly scrambled in this domain. A selection of random

noise attenuation methodologies can now be employed, and this is how the mentioned

authors achieved their separation. However, Figure 4.11 shows these same data,

but with constant delays between sources. There is now no coherency difference

between the source and receiver domains; attempting to apply one of these mentioned

techniques would now entirely fail.
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Figure 1.2: A dataset acquired with random delays between overlapping sources.
The left panel is an example shot gather, the right panel, an example receiver gather.
[CR] chap1/. marmrndblnd
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Figure 1.3: A dataset acquired with constant delays between overlapping sources.
[CR] chap1/. marmlinblnd
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Image space separation

These successful data-space approaches use either Fourier transforms, Radon trans-

forms or wavelet transforms to move to a domain where coherency attributes can be

isolated. By a series of domain transforms, or by an inverse process, random noise is

iteratively removed and clean receiver gathers formed. Subsequently, by the principle

of reciprocity, separated shot gathers have been created.

It is also possible to transform to the extended image domain, rather than the

Fourier, Radon or wavelet domain. The image domain is often usefully employed,

since it is of much lower dimensionality, and has a high signal-to-noise ratio, when

compared to the data-space. This image space transform, known as migration, re-

quires a subsruface velocity model. Instead, by transforming to the extended image

domain, the requirement of an accurate velocity model is relinquished. Kinematic

and amplitude information contained within these data are all preserved. It is possi-

ble to manipulate these extended images, according to a set of criteria, and to then

transform back to the data-space. Weibull and Arntsen (2014) used a similar method

for surface-related multiple removal.

This thesis will use the imaging transform as a type of coherency filter, and sep-

arate overlapping data using the image domain. This approach is effective for both

randomly delayed shots and constantly delayed shots, since even for consistent delays

the artifacts are not coherent between separate images. Chapter 4 will formally in-

troduce how an inverse forward modeling procedure can be formulated, for accurate

data separation under a variety of blending methodologies.

Artificial blending

As alluded to above, an increase in acquisition complexity leads to an increase in the

quantity of data acquired. For data acquired in an unblended fashion, subsequent,

artificial blending can be a useful endeavour. This is known as phase encoding.

For seismic imaging and inversion, shots are migrated and modeled invidually,
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and then combined. It is possible to delay and sum shot gathers together, and then

image and model them concurrently (Romero et al., 2000). Such a methodology

induces crosstalk artifacts, but these can be reduced according to how shots are scaled

and summed together. Furthermore, with stacking these artifacts will be greatly

diminished, while real events will actively sum. The difference between phase encoded

and field blended data is that the processor has direct control over how the shots are

combined.

Chapter 3 will analyse two methods of data space reduction - phase encoding, and

randomized sampling, whereby rolling subsets of the data are selected during separate

iterations of an inverse process. This is in contrast to the different set of tools needed

to process field-blended data, and provides a meaningful discussion and comparison

between field blending and artificial blending.

HPC METHODS

The extended imaging, demigration, and inversion approaches applied throughout this

thesis are extrememly computationally intensive. Simulating a simplified form of the

wave-equation is the engine of all these methodologies, and this simulation requires

millions of finite-difference stencil convolutions to apply the spatial derivative.

To account for this demand, a significant portion of the research and work nec-

essary for this thesis was in accelerating wave-equation imaging and modeling. The

main focus of this was in the use of Graphical Processing Units (GPUs) to accelerate

this stencil convolution. GPUs are an example of Single Instruction Multiple Data

(SIMD) computing, where a single set of instructions (a kernel) are applied to a large

array, or set of arrays, very efficiently. A GPU, at base level, can be considered as

several hundred (to several thousand) mini CPUs, each acting independently, and

each with an individual, and small, low latency memory level. Acoustic wave propa-

gation is a close to ideal candidate for GPUs, since the bulk of the computation can

be made to fit this SIMD framework.

GPU computing poses challenges, however. Each individual card features a small
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global memory, so for meaningful computation an array of GPUs must be used in

parallel, and communication between these units is paramount. Chapter 6 will discuss

GPU computing in detail, and elaborate on many of these details.

It should be noted that the vast majority of results contained in this thesis use

a GPU based code library for wave propagation, thus most results are labelled Con-

ditionally Reproducible (CR). This is because an available GPU card with compute

capability of CUDA 4.0+ is required for the bulk of the computation, despite run

times usually being brief. The codes have been tested and validated on M2090, K10

and K40 cards.

THESIS OVERVIEW

Wave-equation imaging and linearized inversion: Chapter 2 introduces the core

concepts of wave-equation imaging, and it’s extension to linearized inversion.

These techiques are used throughout the entire thesis, and so a formal introduc-

tion is necessary. With particular reference to Reverse Time Migration, results

from a complex synthetic model are shown for adjoint imaging and for data-

space inversion. Quantitive measures of these effectiveness of these methods are

introduced and compared, and methods for accelerating the process discussed.

The concept of preconditioning is discussed, and the use of a few simple opera-

tors are employed, with the goal of increasing inversion efficiency, as a function

of cost. This will be contrasted later in the thesis, where regularization methods

and HPC methods are used to improve and accelerate linearized inversion.

Phase-encoding and randomized sampling: In Chapter 3 two methods of data-

space reduction are introduced - phase-encoding and randomized sampling. The

concepts of both static and dynamic phase-encoding are discussed, the algo-

rithms contrasted, and a set of inversion results shown. Residual reductions are

plotted as functions of both iteration number and cost, and the improvement

of convergence discussed. Phase-encoded is then contrasted with randomized

sampling, where a rolling subset of the data is used between iterations. Results
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are plotted as functions of iteration and cost, again. Results of augmenting

these two methodologies are then mentioned.

Simultanous shot separation: Chapter 4 contains much of the core work of the

thesis. Existing separation techniques, and their drawbacks, are discussed at

length, and then the concept of image space separation is introduced. The do-

main coherency differences of a variety of blending techniques shown clearly,

and the manifestation of these different delays in the extended image space, for

a simple and complicated synthetic model, are shown. Isolating events accord-

ing to the curvature by using a parabolic Radon inversion in the angle domain is

demonstrated, and the results show strong event separation. The original con-

cept of extended demigration for shot separation is formally presented, as is it’s

extension to an inverse forward modeling process. The concept of incorporating

a blending operator into an image-space deblending technique is demonstrated.

Separation results using this innovative technology are presented, for both ac-

curate and inaccurate velocity models, over a range of three synthetic models

of increasing complexity. Quantitiative measures of the effectiveness of this

concept are used, and the results show good convergence.

Field data example: In Chapter 5, several of the concepts discussed in Chapter

2 and Chapter 4 are applied to a field dataset. This dataset featured Ocean

Bottom Node receivers, and a set of anisotropic models. This required a non-

negligible extension of these procedures, and the results of linearized inversion

show large improvements. These data are then blended and deblended, using an

acoustic deblending engine, with accurate and inaccurate velocity models. The

images constucted from these separated data are directly comparable, however

these separate receiver gathers show a number of artifacts. Possible sources of

these are then discussed, and improvements for the procedure suggested.

High performance computing solutions: Finally, Chapter 6 presents all the re-

search and work that went into building the wave-equation engine that created

the results for all previous chapters. Both CPU and GPU based linearized
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inversion solutions are discussed and contrasted, and the requirement of differ-

ent source wavefield domain boundaries mentioned. The extension to multiple

GPU propagation is then demonstrated in detail, for propagation, RTM and

Born modeling. How the necessary extension to anisotropic propagation was

done (to construct the results of Chapter 5) is then mentioned, with reference

to how GPU memory and storage structures were made use of.
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Chapter 2

Wave-equation imaging and

linearized inversion

Developing a methodology to correctly reposition recorded seismic reflection events

is one of the most crucial aspects of exploration seismology. As a result, imaging

algorithms have been an intensely researched topic over the last several decades. The

underlying physics of seismic scattering, while complicated, are well understood; it

is the computational feasibility of accurate wave simulation that remains a major

bottleneck in image construction

Increases in computing power over the last two decades have brought forth the

ability to, within certain assumptions, calculate direct solutions to the wave-equation.

Accurate simulation of the two-way wave-equation is vital to capture many wave-

field complexities, such as multiply scattered events, prismatic events, attenuation,

overturned waves, elastic arrivals, mode conversions, anisotropy and steeply dipping

arrivals (Alford et al. (1974); Mulder and Plessix (2004); Marfurt (1984)). Earlier

efforts to numerically solve the wave-equation, so called one-way extrapolators, could

not reliably track any of these aforementioned complexities (Claerbout, 1971).

However, simplifications of the physics are still necessary, and many assumptions

remain inherent. As computational power increases, so does the ability to capture

13



14CHAPTER 2. WAVE-EQUATION IMAGING AND LINEARIZED INVERSION

Method u h g
Seismic Reflection Pressure/displacement 1/c2 2α/c

Transient EM Magnetic components µε µσ
Georadar Electrical components µε 0

Low-frequency EM Electromagnetic fields 0 µσ
Geothermal Thermal fields 0 1/κ

Electical/Magnetic/Gravity Potential fields 0 0

Table 2.1: Wave equation coefficients for various geophysical methods

more of the physics within a given imaging algorithm. Moreover, acquisition tech-

niques are constantly improving, meaning datasets are increasing in size - both in

terms of the number of shot points and the quantity of offsets/azimuths present.

Most of this discussion will be limited to an acoustic, isotropic Earth, but solutions

to the two-way wave equation will always be used. The reasons for these assumptions

will be discussed at length in the forthcoming chapter.

TWO WAY WAVE-EQUATION IMAGING

The acoustic wave equation can be expressed in equation 2.1.

∇2u− h∂2u
∂t2
− g ∂u

∂t
= f (2.1)

u = u(x, y, z, t); f = f(x, y, z, t). (2.2)

Here, u represents the wavefield, t represents time, h represents the acceleration

coefficients, g represents the diffusion coefficients and f is a forcing term. Depending

on the situation, h and g may be scalar or vector terms. Table 2 details six different

geophysical scenarios and the values of these differential coefficients under certain

assumptions.

Of course, the wavefield of interest herein is the seismic reflection pressure field,

and it will be assumed that the diffusion term is negligible (g = 0). This assumption
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is valid for the scope of this thesis discussion.

∂2u
∂t2

= v2∇2u (2.3)

ut+1 = −ut−1 + 2ut + ∆t2v2∇2ut. (2.4)

Numerical solutions to these various wave equations have been extensively re-

searched, and implementations include frequency domain propagation (Pratt, 1999),

time domain propagation (Boore, 1972), mixed domain techniques (Sirgue et al.,

2010), finite difference and finite element techniques (Moczo et al., 2007), and many

more. For 3D wave propagation, decomposed across a network of computers, a time-

doman finite-difference approach can provide sufficiently accurate, computationally

efficient solutions (Komatitsch et al., 2010). The resultant equation to be solved is

shown in equation 2.3.

The second equation represents how to practically update the solution. ut+1 is

the 3D wavefield, at time t + 1, being solving for (one time increment in the future),

ut is the current 3D wavefield, ut−1 the previous wavefield, ∆t2v2 the time sampling

time squared multiplied by the current velocity value squared and, finally, ∇2ut is the

second-order spatial derivative, or Laplacian, of the current 3D wavefield. It is clear,

through comparison of the above equation, that these first two terms approximate

the time derivative of the wave equation, and the final term approximates the spatial

derivative.

Implementing the time derivative is relatively trivial, and a simple subtraction

of the two wavefields is acceptable. Although, more accurate options exist (Shubin

and Bell, 1987). For the spatial derivative/Laplacian choosing an exact breakdown is

more subtle. This depends on the desired accuracy and stability of the solution, and

more subtly on the range of velocities present and the desired propagation bandwidth.

It is desirable to use a large stencil to approximate the spatial derivative - the

larger the stencil, the more stable the numerical solution, since instabilities can be
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implicitly smoothed over (Dablain, 1986). These short wavelength instabilities are of

particular concern for exploration seismology, since velocity fields often feature sharp

contrasts over short distances. These can be caused by geological scenarios such as

salt bodies and anhydrous layers (Mulder, 2001).

This larger stencil also means that the field can have a sparser representation,

for a given level of derivative accuracy. A large stencil requires more computation;

current industry applications vary from using a 4th order stencil to a 40th order

stencil. Generally, the choice depends on how many time-steps the wavefield will be

propagated for, as each time step introduces new errors which are carried forward.

An 8th order stencil introduces an error of approximately 10−7 per time step, this

can be estimated by looking at the smallest stencil coefficient (Marfurt, 1984).

A representation of an 8th order stencil can be seen in Figure 2.1. It is comprized

of 25 coefficients (nine in each dimension with a shared central value), only five of

these coefficients are unique: the stencil is symmetric in all three dimensions about

the central value. The Laplacian is applied by convolving the stencil about every

point in the current wavefield, and multiplying by ∆t2v2, where ∆t2 is a constant and

v is the velocity field value for the central stencil point.

Figure 2.1: Representation of a centred, symmetric, 8th order finite-difference stencil.
[NR] chap2/. asten
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Reverse Time Migration

Simulating the wave-equation provides the core of seismic imaging, but is only part

of the process. The act of repositioning reflection events to create a representative

Earth image is called migration, and there are many approaches.

Baysal et al. (1983), formally introduced the concept of Reverse Time Migration

for exploration seismology, referred to as RTM. It’s construction is relatively intuitive:

the algorithm propagates both a source wavefield and a receiver wavefield (these will

be in 4D, x, y, z and time.) The source wavefield is a forward simulation of the

seismic experiment, the receiver wavefield is the back projected data. Events in these

fields which are coincident in space and time will represent a true reflection event,

all other events are non-physical. By applying an appropriate imaging criterion to

these wavefields, a representative image of the Earth scattering field can be created.

For RTM, this imaging condition is the cross-correlation of these wavefields, at zero

time-lag. This is a representation of Claerbout’s imaging condition (Claerbout, 1971),

which was conceived by using the exploding reflector model (Claerbout and Black,

2008).

m(x) =
∑
xs,ω

f(ω)G0(x,xs, ω)
∑
xr

G0(x,xr, ω)d∗(xr,xs, ω) (2.5)

A frequency domain representation of RTM is more compact, and can be seen in

equation 2.5. Here, x represents a generic coordinate system, xs the current source

wavefield coordinate, xr the current receiver wavefield coordinate and ω the temporal

frequency. m(x) is the scattering model, f(ω) the injected source function and G0

are Green’s functions that represent the wavepaths between the relevant coordinates.

Finally, the two summation operators approximate time and space integrals, and d∗

is the complex conjugate of the recorded data.

The aforementioned imaging condition is the implied multiplication of these two

wavefields, and subsequent sum over ω. This is equivalent to integrating over time,
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over the source coordinates, and over the receiver coordinates, resulting in an image

created in all spatial dimensions. Only events coincident at the same point in time

(and space) coherently interfere, to contribute to the estimate of m(x). Other events

are incoherent, and will correlate incoherently.

The data term features a complex conjugate, this reverses the sense of time of the

receiver wavefield with respect to the source wavefield. This is clear when considering

equation 2.5 expanded with the implied Fourier transforms; the conjugate changes the

sign of the exponent which reverses the sense of time. Consequently, these wavefields

cannot be estimated concurrently. When solving for m(x), it is necessary to propagate

and save these 4D wavefields separately. Typically, the source wavefield is computed

and saved, the receiver wavefield is then back-propagated and the imaging condition

is applied at each imaging time step. The result of this correlation is summed to the

estimate of the scattering potential.

Multiple additional methods for dealing with this temporal incongruity have been

postulated, and some are more appropriate for certain computational systems than

others. These will be discussed in Chapter 6 and Section 6.

While RTM can produce valuable images from few underlying physics assump-

tions, often, unphysical artifacts and imaging noise are prevalent. This is particularly

true if acquisition was not uniform, or strong reflector contrasts were present. To

improve the process RTM can be extended to linearized inversion.

LINEARIZED INVERSION

RTM can be considered an adjoint procedure (Tarantola, 1984a). RTM is the adjoint

of an idealized modeling operator known as the first-order Born scattering operator.

Applying this adjoint will serve to approximate the inverse of the operator, but ideally

a better estimate of the inverse is desired (Alewine, 1974).
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d(xr,xs, ω) = ω2
∑
x

f(ω)G0(x,xs, ω)m(x)
∑
x

G0(x,xr, ω) (2.6)

This idealized modeling procedure is represented as equation 2.6, where the terms

have the same meanings as in equation 2.5. If this equation describes how the physics

links the scattering potential, m(x), to the recorded data, d(xr,xs, ω), then it is de-

sirable to ”un-do” the physics to recover the model. The exact inverse of equation 2.6

does not exist (the corresponding matrix is both singular and not square), but it is

possible to achieve a better approximation than simply applying RTM. One solution

is to pose the problem as an inversion.

This has been studied in detail over the last few decades, in reference to improv-

ing seismic imaging. Nemeth (1996) initially presented the theory and results for,

what they referred to as, Least-Squares Migration. This was posed as a linearized

inversion problem, and Kuehl (2002) expanded on this, in the particular focus of

wave-equation migration and inversion. Clapp (2005) demonstrated multiple regular-

ization options for improving least-squares imaging, particularly around salt bodies,

and Nemeth et al. (1999) extended their orginal work to demonstrate the effectiveness

of this technique with incomplete data. In accordance with the nomenclature of these

previous studies, the extension of RTM to a linearized inverse process will be referred

to as Least-Squares RTM, or LSRTM, from hereon.

d = Lm (2.7)

m ≈ L′d. (2.8)

Initially, equation 2.6 could be simplified by writing the full Born operator as

L, the data as d and the model as m. Implicit in L is all knowledge of source

coordinates, receiver coordinates, and the velocity field. The modeling procedure is

now equation 2.7. Accordingly, RTM is now represented more simply as equation 2.8,
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where again L′ is the adjoint of L.

This can be considered as a discretized linear system, whereby the linear operator,

L, links our recorded observations to the model we are trying to obtain. In the case

of seismic reflection imaging these data are recorded in a plane on the surface of the

Earth. However, the model to be delineated, m, exists in three dimensions. The

resultant system is underdetermined: there is not enough information in these data

to uniquely determine the model. From the view of linear algebra, L contains some

zero eigenvalues, meaning it is rank deficient and consequently non-invertible.

L is not a square matrix, and exhibits a null space. A square matrix that can

be estimated is L′L, and since it is square, (L′L)−1 can be constructed. The matrix

L′L is often referred to as the Hessian. Thus, it is possible to solve the system in

equation 2.9.

m = (L′L)−1L′d (2.9)

However, computing the Hessian matrix, let alone the inverse, is not possible

due to size constraints. Instead, the process can be posed in a different way. An

algorithm can be used that attempts to reduce a measure of how closely the current

model estimate matches the data. There are many ways to measure this misfit, and

these are referred to as ‘norms.’ Least-sqaures imaging uses the L2 norm to measure

this misfit, this is a scalar measure, and in this context would be the sum of the

difference of the squares of the two datasets (Σ(d2
obs − d2

est)).

Using this scalar measure of data similarity, an objective function can be con-

structed; this is a function that will aim to either minimize or maximize a numerical

value. In this case, the objective will aim to minimise the L2 norm of these datasets,

since this measurement will tend to zero as these datasets approach each other. Two

such objective functions can be seen in equation 2.10.
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J(m) = ‖d− Lm‖2
2 (2.10)

J(m) = ‖d− Lm‖2
2 + ε‖Am‖2

2 (2.11)

If these data are noise free and the operator exactly describes the physics, then it

is possible to reduce J(m) to zero.

Data-space inversion

At this juncture it is necessary to consider two complementary approaches to the

problem, these are data-space inversion and model-space inversion. In data-space

inversion, forward modeling is used to estimate the misfit between the estimated

data and the observed data (Tarantola, 1984b). As a sequential process, consider

algorithm 1.

Algorithm 1 Linearized inversion

Calculate initial data-space residual r = Lm0 − d
while iter < n iter; iter++ do

Create gradient g = L′r
Create conjugate gradient cg = Lg
Calculate step length
Update m and data residual

end while
Output model

The stopping criterion (when to output the final model) can either be designed

to halt after a certain minimum residual is reached, or after a certain computational

duration. For inverse imaging it is usually the latter.

This construction assumes that the background velocity is well constrained. Im-

plicitly, Born modeling states that the velocity model can be divided into high-

wavenumber and low-wavenumber components (Tang et al., 2009). The former of
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these controls the position and amplitude of all reflection events (a representation of

the reflectivity), the latter controls the kinematics of the wavefield.

m = b + h (2.12)

Ordinarily, linearized inversion will be applied once a reasonable background veloc-

ity model has been estimated, otherwise events will be be misaligned when comparing

estimated and observed data. Alternatively, linearized inversion can be augmented

with a velocity update scheme, where imaging is the ‘outer loop’ of the process, and

the ‘inner loop’ acts to update the velocity model (Symes and Carazzone, 1991).

Velocity update schemes will not be discussed in detail in this thesis, but their im-

portance should be mentioned while discussing seismic inversion.

SEAM EARTH MODEL

Artificial Earth models can be invaluable for understanding how these imaging sys-

tems work. To understand and quantify how RTM and linearized inversion contrast it

is necessary to use a representative example, where the physics can be controlled. To

test these algorithms an imaging target that contains a wide variety of wavenumbers

and velocity contrasts is desirable, in this section part of the SEAM (Vigh et al.,

2009) model is used. A constant density assumption will be implicit during these

upcoming sections.

Figure 2.2 shows a section of the model which was chosen. Features include

continuous sedimentary reflectors, rugose and discontinuous reflectors, and a high

contrast, steeply dipping salt body. Within this salt body are sedimentary inclusions

and a carbonate top. An effective imaging algorithm will be able to resolve these

features and converge towards the correct image, within given acquisition restrictions.

A high wavenumber representation is shown in Figure 2.3: these are the features that

the imaging methodology should aim to recreate.



23

Figure 2.2: Section of the SEAM velocity model, used for modeling and imaging.
[ER] chap2/. seamsmall
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Figure 2.3: The scattering potential to be imaged, calculated by subtracting a lightly
smooth version of the velocity model from itself. [ER] chap2/. seamsmallrefl
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Figure 2.4: An example of a 3D shot simulated using linearized forward modeling
over the proposed velocity model. [CR] chap2/. seamsmallborndata
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Figure 2.5: The unfiltered RTM image produced from the synthetic data shown
above. For this image the source domain was well sampled with 800 inline shots and
30 crossline shots. [CR] chap2/. seamsmallimg
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An example of a 3D shot simulated over the model is shown in Figure 2.4. The

geometry was a relatively sparse, fixed receiver type survey to emulate that of Ocean

Bottom Node (OBN) acquisition. Sources were at the surface in a regular grid,

receivers were on a sparse grid below the surface with dense inline sampling (35

receivers, one every 200 m) and sparse crossline sampling (two inlines separated by

one kilometre.) The Earth model itself is sampled every 10 m in the three cartesian

directions and extends to a depth of 3600 m (almost 12,000 ft), has an average

water depth of 800 m (2600ft) and extends 8km x 3km in the x and y directions

respectively (26,000 ft x 10,000 ft). To mitigate spurious reflections from the domain

boundaries during propagation each dimension is padded by an additional 40 model

points (another 400 m, or 1300 ft.)

To create these data Born modeling was used. For imaging RTM is used first; this

was a full 3D algorithm using random boundaries for the source wavefield modeling,

for more details see Chapter 6. For the random boundaries the same additional

padding was used (40 model points.) The image obtained from RTM is shown in

Figure 2.5. Noticeably, many nuances of the high wavenumber model have been

successfully recreated. Upon some scrutiny, several shortcomings are identifiable.

Amplitudes are incorrectly balanced, the steep edges of the salt body are not well

focused, the general frequency content of the image is lower than the model (not well

balanced through the wavenumber domain) and low frequency artifacts are prevalent

throughout. There is also an imprint of the wavelet along the reflectors.

These image imperfections can be attributed to two origins: the imaging procedure

was not a true representation of the underlying physics (Yoon et al., 2003); the

acquisition was limited to a surface plane (Pan et al., 1988). Image noise is induced

from limited acquisition, wavelet effects, random correlation noise and from coherent

correlation noise (Guitton et al., 2006). These will be briefly elaborated upon, in the

next few paragraphs.

The imaging condition (equation 2.5) will result in a squaring of the source wavelet,

which is implicit in both f and d. Thus, reflectors will appear more spread out, as

their spectra will be shifted; this is the wavelet effect alluded to. High frequency noise
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is present in the image (largely) because of random boundary source wavefield prop-

agation, although this noise source is not significant. More noticeably, low frequency,

unphysical events are seen as a result of coherent correlation noise. The imaging con-

dition only holds for wavefields traveling in opposite directions. In a complex velocity

model, occasionally the source and data wavefields may travel in the same direction.

When correlated, low-frequency artifacts will be created (Fletcher et al., 2005). In

particular, this is seen around the edges of the salt body (Jones and Davison, 2014).

It is possible to harness this effect for velocity updates, since this same direction

correlation can provide tomographic information (Woodward, 1992).

Figure 2.6: The recovered scattering model after a single iteration of conventional
linearized inversion. [CR] chap2/. seamsmallinv1

Figure 2.6 shows the same image crosss-section after a single iteration of linearized

inversion, then Figure 2.7 shows the same section after ten iterations of linearized

inversion. Each iteration of linearized inversion is twice the cost of a single pass
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Figure 2.7: The recovered scattering model after ten iterations of conventional lin-
earized inversion, clipped identically to Figure 2.6. [CR] chap2/. seamsmallinv10
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of RTM imaging. A conjugate direction algorithm, (Fox, 1971), was used at each

iteration.

It is clear that this process improves upon all these imaging imperfections. Fre-

quency content is higher and more consistently balanced, low-wavenumber artifacts

are entirely gone and reflector amplitudes (and illumination) are representatively bal-

anced throughout the section. In particular, inclusions in the salt body are more

pronounced and the low-contrast carbonate atop the salt has been resolved. Addi-

tionally, the rugose nature of many of the shallow reflectors has been well resolved.

To measure how the procedure is performing the objective function can be plot-

ted as a function of iteration number. Figure 2.8 shows this, by analysing at the

normalized data-space residual (taking the difference of the squares of the estimated

data and the observed data.) If the residual is zero then the estimated data exactly

matches the observed data. After ten iterations the system has converged to within

a few percent. This is as expected, since noise-free, Born modeled data were used.

With field data convergence to within ten, or even twenty, percent is regarded as

successful.

PRECONDITIONING

For many applications, even ten iterations can become prohibitively expensive. The

results in the previous section took the most naive approach to linearized inversion,

with no attempt to influence the system with any prior knowledge. There are two

main categories of influence that can be applied in seismic inversion, known as regu-

larization and preconditioning (Claerbout, 2001). The former acts to steer the model

space towards some preconceived notion or statistic that the model should exhibit

(Fomel, 2001), the latter aims to create a change of model variable that may improve

convergence characteristics (Steihaug, 1983). This section will focus on precondition-

ing, whereas Chapter 4 will address some regularization options.
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J(m) = ‖d− Lm‖2
2 (2.13)

J(p) = ‖d− LSp‖2
2 (2.14)

By making the change of variable m = Sp, equation 2.10 can be rewritten as

equation 2.13. During each new iteration this operator, S, and it’s adjoint must be

applied.

r = Lm0 − d (2.15)

gg = L′d

rr = Lgg

r = r + αrr

m = m + αgg

The system will act to recover the most representative p; during the final step

this preconditioner can be reapplied to recover m = Sp.

Equation(s) 2.15 demonstrates the sequence of operations for linearized inversion.

By including a preconditioner, the sequence subtly changes to that seen in equa-

tion 2.16.

q = LSp0 − d (2.16)

ss = S′L′d

qq = LSss

q = q + αqq

p = p + αss
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It is necessary to consider what the preconditioning operator, S, could be to im-

prove convergence. The mathematics of inversion instructs that the gradient can be

multiplied by any positive definite matrix and convergence will be observed. It is, per-

haps, most instructive to consider how the first gradient could be improved/cleaned

to better represent the system. In this case the initial gradient is the RTM image.

The subsequent step of the inversion is to model a dataset using this gradient, to con-

struct the conjugate gradient. One could conjecture that a preconditioner that could

improve the frequency content of the image and remove the low amplitude artifacts

would improve convergence. Options for this could include a vertical derivative, or a

spatial Laplacian, applied to the image. Both of these would remove low-wavenumber

artifacts and shift the frequency content.

Figure 2.9: The first gradient of linearized inversion without any preconditioning.
[CR] chap2/. precident

The appearance of the initial gradient after application of these operators can be
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Figure 2.10: The first gradient of linearized inversion preconditioned with a vertical
derivative. [CR] chap2/. precvd
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Figure 2.11: The first gradient of linearized inversion preconditioned with a Laplacian.
[CR] chap2/. preclaplac
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seen in Figure 2.9, Figure 2.10 and Figure 2.11. Both operators perform as expected,

however, it is important to notice that the vertical derivative sets all zero-wavenumber

events to zero, meaning it will destroy any vertical events. This is noticeable on the

edges of the salt body.

Convergence curves for three preconditioners (also the identity matrix is used,

meaning no preconditioning) can be seen in Figure 2.12. The application of these

preconditioners (in terms of computation) is entirely negligible, so the cost of these

systems is the same as unpreconditioned inversion. Consequently, there is no need

to distinguish between iteration number and cost. In Chapter 3 a wider of inversion

techniques will be discussed, and here a distinction between cost and iteration number

with become imperative.
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Predictably, the preconditioned systems converges to a lower data-space residual

faster than the unconditioned system. Particularly for low iteration results the dif-

ference is considerable, giving much fast data-space convergence, at no extra cost. In
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this case preconditioning is only necessary for the first iteration, as after these arti-

facts have been removed the inverse system can work on amplitude balancing. One

way to think about this is simply providing the system with a more accurate initial

model.

Whilst convergence has been accelerated, the procedure it is still very expensive.

The subsequent chapter will discuss methods of reducing the data-space in order to

greatly reduce convergence as a function of cost.

CONCLUSIONS

Methods of creates seismic images using wave-equation based approaches were dis-

cussed. By assuming data were created from an acoustic, isotropic, Earth, the two-

way wave-equation can be reduced to three terms - a forcing term, a spatial derivative,

and a temporal derivative. If knowledge of the subsurface velocity exists then the seis-

mic experiment can be simulated.

Through simulating the source wavefield, and back projecting the receiver wave-

field using the recorded data, RTM can be applied. RTM gives accurate, representa-

tive images of the subsurface, within these restrictions. These images can be greatly

improved by extending this linear system to an inversion, and by using an update

scheme to iteratively improve the model estimate.

This linearized inversion concept, as a function of convergence, can be accelerated

by using preconditioners which can remove RTM induced artifacts faster than the

inverse scheme.
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Chapter 3

Phase-encoded inversion and

randomized sampling

Applying linearized inversion to many thousands of shots can quickly become un-

feasible; it is possible to intelligently reduce the data size by using two classes of

techniques - phase encoding and randomized sampling. It is also possible to augment

these two concepts to further increase inversion feasibility. This chapter will address

this data size problem, and analyze these solutions.

PHASE ENCODING

Typically, in seismic imaging the size of the data space is much larger than the

model space, thus data movement can become an impediment to an efficient inversion

scheme. Phase encoding is a method of artificially combining (blending) data that will

result in a algorithm that favours additional computation, per iteration, over reduced

data movement. In some cases, the overall computation can be reduced. The aim is

to macroscopically improve convergence as a function of overall cost.

In phase encoding seismic shots are scaled, shifted and summed together to create

a series of super-shots (Morton and Ober (1998); Dai et al. (2012)). In the most

39
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extreme case all shots can be combined to create a single supershot. For Ocean

Bottom Node (OBN) or Ocean Bottom Cable (OBC) type surveys this can be viable,

since often the receivers are fixed. How many super-shots one should create is a

question of survey geometry and source sampling (Ober et al., 2000).

As discussed in the previous and final chapters, data movement can be a signif-

icant source of cost during conventional migration and modeling (Neelamani et al.,

2010). Every shot must be read and written, from disk, during every iteration. This

can create a bottleneck both within and across iterations. Furthermore, as discussed

in the final chapter, a GPU based propagator is used. This greatly accelerates the

speed of wave propagation, exaggerating the penalties of I/O and disk access. Phase

encoding reduces the data-space dimensionality within each iteration, favouring addi-

tional computation over disk access. Under many conditions this can give a significant

reduction of cost for a given level of sub-surface property convergence. Again, this

discussion will focus on scattering potential recovery.

Designing the encoding matrix

The first decision is how to combine these data into subsets. Consider de = αd,

where d is the full data vector, de is a supershot (or series of supershots) and α is the

encoding matrix. This encoding matrix contains all information about how to shift,

scale and sum the shots together.

Designing α is both a question of convergence properties, efficiency, and data

geometry. Phase encoding, for the purposes of seismic imaging, was first postulated

in Romero et al. (1999), in the context of combining shots for prestack migration.

Herein it is concluded that using a random series of time shifts provides the best

results. Furthermore it is claimed that no more then ten shots should be combined

at a time. However, if post-imaging amplitude analysis is desirable such a technique

can have drawbacks (Zhang et al., 2007).

For pre-stack imaging a variety of different encoding functions, α, have been anal-

ysed, in addition to simple random shifts (Godwin et al., 2010). For example, plane
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wave encoding, Liu et al. (2002), can perform very well for dense source sampling,

since crosstalk artifacts can be mitigated. In the context of phase encoded inversion,

as opposed to migration, many more shots can be combined since the solver searches

for common model properties between iterations. Krebs et al. (2009) used a single

bit encoding function (1s and −1s) to scale the data, performing no time shifts. This

results in the most efficient convergence, since the time records are not being prolon-

gated and the cost of each iteration is massively smaller. Many iterations are required

to reduce artifacts, thus relative usefulness is determined as a function of cost and

convergence.

Phase encoded inversion

Linearized inversion can be extended to incorporate phase encoding. The most natu-

ral extension will be termed ‘static’ phase encoding, whereby the encoding function,

α, is constant across iterations. Under this condition the main loop of the algorithm

remains unchanged, but in initialisation the encoding is applied to the full dataset

to create these reduced data, de. Each loop is significantly faster to implement since

only super-shots are being looped over, rather than each individual shot. Solver is-

sues aside, this speed up will be directly proportional to the ratio of the total number

of shots to the number of super-shots, nshots/nsupershots. This is largely similar to

linearized inversion and is summarized in algorithm 2.

It is immediately apparent that such a scheme will induce many artifacts; more-

over, these artifacts will be consistent between iterations. Consequently, many itera-

tions will be required to reach a given level of convergence. Given this, a comparison

between phase encoded inversion and linearized inversion will be done under the con-

text of data-residual reduction as a function of computational cost. This cost will

be normalized to one full iteration of linearized inversion and convergence will be a

normalized measure of the data space residual.

Reducing the cross-talk artifacts in this way can be a slow process. These artifacts

are reduced significantly more quickly if the encoding function is changed between
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Algorithm 2 Static phase encoding
Create α
de = αd
while iter < n iter; iter++ do

Create gradient of de

Create conjugate gradient (size of de)
Model update

end while
Output model

iterations. This will be termed ‘dynamic’ phase encoding (Boonyasiriwat et al., 2010).

This creates a huge advantage for cross-talk reduction: these artifacts will now be

incoherent between iterations, causing them to stack-out rapidly. The solver will

search for common model components between iterations and thus residual reduction,

especially for early iterations, will be accelerated.

The caveat with dynamic phase encoding, however, is that by changing the encod-

ing between iterations the ‘observed data,’ that each loop is implicitly considering,

are changed. Thus the solver cannot update the data-space residual, which is needed

to calculate the subsequent gradient. This process is now non-linear, and before the

gradient calculation an additional forward modeling step is needed to estimate the

updated data-space residual. The consequence of these attributes is that a non-linear

solver must be used, and the cost (per iteration) is roughly 1.5x that of the static

algorithm. The dynamic sequence is summarized in algorithm 3.

Algorithm 3 Dynamic phase encoding

while iter < n iter; iter++ do
Create α
de = αd
Forward model to estimate de residual
Create gradient of de

Create conjugate gradient (size of de)
Model update

end while
Output model
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The relative advantage of phase encoded inversion is tightly tied to survey type and

geometry. Under certain circumstances, the advantage over linearized inversion can

be prodigious, under other conditions it can be detrimental. These will be considered

for a variety of marine conditions.

For a streamer type geometry, phase-encoding causes two issues. Firstly, the aper-

ture of each supershot is increased as a function of the number of combined shots.

The receivers are constantly moving, and each must be considered when forward mod-

eling. As a result, for streamer surveys, the choice of how many shots to combine,

or indeed whether phase encoding is advantageous at all, can be hard to determine.

Secondly, since the receivers are not static, some shots will not have the full comple-

ment of recorded data in order to calculate residuals. This can thought of as: when

combining shots together, not each shot is present in each receiver.

For Ocean Bottom Cable (OBC) or Ocean Bottom Node (OBN) type surveys the

receivers are spatially fixed (at least for a group of shots). Subsequently, for each

combined shot there may be no aperture increase. For inversion, under the most

extreme condition, all shots can be summed into one supershot. Also, each receiver

has the full complement of shots. The cost of migrating this single supershot will be

the same cost as migrating any of the individual shots.

Initially, this latter type of survey will be analyzed. A section of the SEAM model

will be used again, with fixed receivers and source positions. Using synthetic modeling

120 shots were simulated over the same model section in the previous chapter and

the same linearized results from that chapter will be used for comparison. To push

the algorithm, and to reduce data movement as much as possible, all shots will be

scaled by a randomly selected single bit function and combined into a single super

shot, with no time shifts. Dynamic phase-encoding will be the method used, and this

will create a scheme that maximally favors computation over data movement.
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Figure 3.1: The result after one iteration of phase encoded inversion, (a), and after 50 iterations, (b). Here 120

shots were combined into one supershot. [CR] chap3/. enc1v50



45

Unsurprisingly, early images for this choice of data combination are noisy, al-

though macroscopic structure is discernible, and many keys reflectors can be mapped.

A comparison between the first iteration image and the 50th can be seen in Figure 3.1.

Figure 3.2 then shows the first iteration image from LSRTM compared to the equiv-

alent cost image from phase encoding. It is immediately apparent that the image

from phase encoding has improved amplitude balancing, features higher wavenumber

content, a reduced acquisition footprint, and an increase in high wavenumber arti-

facts. Phase encoding preserves all dips present in the data, however it noticeable

(particularly in the top panel) that resolution is lost towards the edge of the model,

where data redundancy is reduced. This is fairly intuitive, since the phase encoding

scheme is more reliant on stacking for coherency.



46C
H

A
P

T
E

R
3.

P
H

A
S
E

-E
N

C
O

D
E

D
IN

V
E

R
S
IO

N
A

N
D

R
A

N
D

O
M

IZ
E

D
S
A

M
P

L
IN

G

Figure 3.2: The result after one iteration of LSRTM, (a), and after 50 iterations of phase encoded inversion, (b).

[CR] chap3/. li1venc50
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[CR] chap3/. li10venc50
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Next, Figure 3.3 shows a comparison of ten iterations of LSRTM against the

equivalent cost image of phase encoded inversion. At this stage the amplitude and

wavenumber fidelity of the LSRTM image is much improved, and the relative differ-

ences between the images to harder to ascertain. This makes sense by comparing the

relative convergence properties as a function of cost, Figure 3.4 and Figure 3.5. This

shows that phase encoding falls to a lower residual quickly, but can then plateau. As

a function of iteration number, phase encoding is less favourable (in terms of data

space residual reduction.) However, when this is posed as a cost comparison, phase

encoding can exhibit significant residual reduction before LSRTM has completed a

single iteration. A viable strategy would be to use phase encoding to estimate an

initial model, and then perform several iterations of LSRTM to reduce noise and

represent the amplitude character more representatively.
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Parallel data encoding

Although within each iteration data movement is massively reduced, however, consid-

ering the cost of the encoding can be important. When combining (reading, summing

and writing) 120 shots from disk, which are then imaged and modeled, the cost of

the encoding is almost as expensive as the rest of the procedure. This is because

disk access can be very slow, especially when compared to an optimized GPU based

propagator. To illustrate, a typical hard-disk used for this study could transfer to the

CPU at around 200 Mb/s, then the CPU-GPU transfer speed saturates at 2 Gb/s,

and the GPU (Fermi M2090) can operate at a bandwidth of 177 Gb/s.

Fortunately, there is a viable solution, which takes advantage of the multi-threading

capability of CPUs. The encoding matrix α changes between each iteration, but each

subsequent α is independent of previous choices, and of previous iterations. During

GPU propagation, a separate compute thread can be used to prepare the encoded
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data for the next iteration. Assuming encoding time is faster than the cost of the

iteration, this will be hidden for all subsequent loops. For the first iteration waiting

for encoding to complete is unavoidable.

RANDOMIZED SAMPLING

A different class of data-space reduction known as randomized sampling (Friedlander

and Schmidt, 2012). This is often also referred to as stochastic dimensionality re-

duction, or as stochastic gradient methods (van Leeuwen et al. (2011); Aravkin et al.

(2012a)). Conceptually, randomized sampling is very simple; between iterations a

different subsection of the data is ignored. How much data is ignored, and how many

iterations are required, will again be a function of survey geometry and shot density.

This concept has been analysed for both LSRTM (Dai et al. (2014); Leader et al.

(2014)) and Full Waveform Inversion (FWI) (Aravkin et al. (2012b); van Leeuwen

et al. (2011)). This discussion will briefly look at recreating similar results to these,

and to then extend the concept to incorporate phase encoding.

How much data do we need?

Selecting the subset of the data is simply done by designing random function of zeroes

and ones, with the number of ones corresponding to the percent of the input data to be

used for the given iteration. This can be thought of as a separate encoding sequence of

zeroes and ones. The same SEAM 120 shot 3D dataset was used, validating equivalent

comparisons to the LSRTM and phase encoding results. Stochastic inversion was run

using 75%, 50% and 25% of the data over a range of iterations and each was then

normalized to the cost of one iteration using 100% of the data.

Figure 3.6 shows the same SEAM section after a single iteration for each subset.

Predictably, using more data provides a better image for a single iteration. This is

particularly noticeable in the depth slice. The same section after ten and 50 iterations

are shown in Figure 3.7 and Figure 3.8. At high iteration counts, the difference
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Figure 3.6: Images obtained after one iteration using 75%, 50% and 25% of the data,
respectively. [CR] chap3/. randsamp1st
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Figure 3.7: Images obtained after ten iterations using 75%, 50% and 25% of the data,
respectively. [CR] chap3/. randsamp10th
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Figure 3.8: Images obtained after 50 iterations using 75%, 50% and 25% of the data,
respectively. [CR] chap3/. randsamp50th
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between these images becomes marginal, despite the widely favouring amount of data

used per iteration. This shows that there will likely be a cost reduction for a given

level of convergence.

Figure 3.9 shows some of these convergence curves, as a function of iteration

number and quantity of data used. Similarly to phase-encoding, the ‘observed’ data

change between iterations, creating a non-linear problem. This means that conver-

gence properties are not smooth, and the residual can locally increase. It is noticeable

that the trend for all subsets is a residual reduction. Also, if less data is used, then the

less predictable the residual properties. This is because, at early iterations, sections

of the model may not be well resolved, since only 25% of these data are being used.

This unbalanced, noisy image, is then used for forward simulation.

It should also be noted that there is a concern with fair comparison. The raw

initial residuals for these four sets of simulations were wildly different, and when

plotted on the same scale, can be hard to interpret. For the sake of demonstration,

these have all been scaled to percentages of data misfit. However, it should be noted

that a given level of misfit for these varying data sizes are not directly comparable.
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Figure 3.10: The same plot as in Figure 3.4, but as a function of cost. [NR]

chap3/. randsampcost

Residual reduction as a function of relative cost can then be seen in Figure 3.10.

It is clear, once again, that this stochastic dimensionality reduction has induced some

local non-linearity, since microscopically the residual can often increase.

Making firm conclusions is difficult, since the problem is so dependent on source

sampling. A dense source carpet would lend itself more easily to encouraging to

a randomized sampling methodology than a sparse survey. The input dataset was

relatively sparse, especially in the crossline, compared to many modern datasets.

Since several iterations are being performed then in this case using 50% of the data

gives the most favorable, and trustworthy, convergence. This ratio provided the right

balance between source-sampling and inversion cost.

A more pronounced reduction would be seen for a denser survey, so these results

show that even for a fairly sparse survey randomized sampling can be a powerful

method to improve inversion feasibility.
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PHASE ENCODING AND RANDOMIZED SAMPLING

When multiple super-shots are used for phase encoding, these two techniques can be

combined. There will now be two loops of encoding, the inner loop being the phase

encoding, and the outer loop being the randomized sampling.

Combining phase encoding with randomized sampling may have advantages since

artifacts from phase encoding are incoherent between inner loop iterations, and the

data reduction from the outer loop should save additional computation time.

CONCLUSIONS

Conventional linearized inversion is a very powerful method, however for large datasets,

computational requirements can become unfeasible. By trying to reduce data move-

ment, and the work done within each iteration, this feasibility can be improved.

Phase encoding addresses this by reducing the data-space dimensionality, without

losing any information contained within these data. Shots are combined, imaged,

and modeled concurrently. Crosstalk artifacts slow convergence as a function of it-

eration number, but by changing the encoding sequence between iterations, excellent

convergence as a function of cost is observed relative to LSRTM (for a fixed receiver

geometry.)

Optionally, a rolling subset of these data can be ignored within each iteration

(randomized sampling.) This is quite different to the concept of phase encoding

- some data is ignored, but no crosstalk artifacts are reduced. For dense source

sampling an improvement in convergence as a function of cost is seen.

It is possible to augment these techniques. For certain survey geometries, this

combination gives the most favourable data-space convergence, as a function of overall

cost.



Chapter 4

Simultaneous shot separation

Typically, in seismic acquisition an active source is shot, and then a set waiting

time must elapse before the next source point is acquired. This is to allow the

energy to sufficiently dissipate, such that adjacent sources do not actively interfere.

In simultaneous shooting, this restriction is relaxed (Beasley et al. (1998b); Stefani

et al. (2007); Beasley (2008)). Despite this unvaoidable high energy overlap, many

methods exist, or have been postulated, that can use these data very effectively. There

are ways to design these surveys to minimise types of interference (Ikelle, 2001), to

maximise acquisition potential (Abma and Ross, 2014), or to simply ignore the fact

other sources are present (Krohn and Neelamani, 2008).

The concept of recording overlapping data has many terms in modern nomencla-

ture, often meaning subtly different things. Allowing active sources to overlap may

be called blending, simultaneous shooting, or continuous recording, amongst others.

Chapter 3 discussed phase-encoding in detail. Of course, there are stark similari-

ties between simultaneous acquisition and phase-encoding. From hereon, the former

will be referred to as ‘primary’ blending, and the latter as ‘secondary’ blending. This

language is intuitive, since during phase-encoding the data provided were acquired

conventionally, making the blending a secondary process.

For phase-encoding, how to blend and combine these data was a key consideration.

57
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For field blended data, post-acquisition, the blending is fixed. There are encoding

options available during acquisition - randomness of delays, waiting times, amplitudes,

relative frequency contents etc, but once the user is given these data the blending can

not be changed. This poses a variety of new problems for how to eventually image

these simultaneously shot data, and how to optimally design a blended survey. This

chapter will focus on designing a robust method for separating simultaneously shot

data, under a variety of shooting patterns.

Initially, assuming the desired, final output is a clean, high-fidelity image, com-

parable to the image obtained from an unblended survey, then there are two clear

options. One can attempt to directly image these data, or attempt to separate these

overlapping data to approximate a conventionally acquired data-set, and image sub-

sequently. The following sections will discuss the benefits and pitfalls from these two

approaches.

IMAGING BLENDED DATA

Firstly, direct imaging of a simultaneously acquired data-set will be explored. As

discussed in Chapter 2, either Reverse Time Migration (RTM), or linearised inversion

can be used, the former being the first adjoint procedure of the latter.

Passive imaging

Naive migration of these data, as if they were unblended, has been increasingly re-

ferred to as ‘passive’ imaging of blended data (not be confused with the imaging of

passive data). It follows from some simple algebra (and intuition) that the image will

be plagued with cross-talk artifacts.

n∑
i=1

Lim = d (4.1)
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If an operator, L, describes all these data, as Lm = d, then L can be decomposed

into individual shots, as shown in equation 4.1. Here, m describes the scattering

potential field, d describes the entire data-set, and L1 relates the first shot, d1 to m

etc., up to shot n.

Now, consider the case where d1 and d2 overlap, such that d̃ = d1 + d2. Conven-

tional migration applies L′ to these data, where L′ = L′
1 +L′

2, and sums the result to

form an estimate of m. The result of this operation is formulated in equation 4.5.

m ≈ L′d̃ (4.2)

≈ L′
1d̃ + L′

2d̃ (4.3)

≈ L′
1d1 + (L′

1d2 + L′
2d1+)L′

2d2 (4.4)

≈ m0 + m̃0 (4.5)

The imaging artifacts come from the operator that images d1 being applied to d2,

and vice-versa. It is clear why this interference is known as crosstalk, since it comes

from these cross-terms.

There are circumstances under which direct migration of these data results in

an acceptable image. If shots are well separated by distance (Distance Separated

Simultaneous Source, or DS3, Bouska et al. (2009)), then this operator overlap is

small, and crosstalk artifacts migrate outside of the domain of interest (or at least

far from the imaging target). Furthermore, if the blending power is low (a relative

measure of interference quantity), and the shooting dense, then the power of the stack

will often mitigate these crosstalk artifacts. Since, whilst they are high amplitude on

a shot-by-shot basis, they are incoherent between shots. The image may be unreliable

for amplitude analysis, but for structural information, or for an initial model during

inversion, it will be adequate. This is contingent on random time delays between

sources, constant delays may not result in these artifacts stacking out as efficiently.
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Whilst these two situations may result in adequate structural images, two prob-

lems remain. A better solution is needed for trustworthy amplitudes, and there is

an implicit background velocity model assumption. For direct imaging, especially

linearised inversion, a representative velocity model is needed. This point will be

elaborated upon during the rest of this chapter.

Imaging through inversion

Passive imaging of blended data can be improved by simultaneous inversion. Options

include direct inversion for the scattering model (Berkhout (2008); Tang et al. (2009)),

target oriented simultaneous inversion (Verschuur et al., 2009), inversion for separate

time-lapse vintages (Ayeni et al., 2009), amongst others. Conceptually, this is similar

to phase encoding, where the encoding is fixed, and α is a vector filled with ones.

From the discussion in Chapter 3, one can conjecture that convergence for this

encoding sequence would be slow. Meaningful results can be recovered, however, by

virtue of the fact the model space is still vastly smaller than the data space.

However, there is a more fundamental limitation with inverting blended data di-

rectly than slow convergence. Such a methodology would require accurate velocity

control, which is crucial for linearised inversion and it’s subclasses. If the velocity is

not well constrained then the inverted scattering potential will be imaged incorrectly,

and information will be lost. As an acquisition solution a stringent velocity require-

ment is unacceptable. Consequently, using direct inversion to image blended data

is an interesting academic problem, but ultimately other solutions must be sought.

This leads to the problem of simultaneous data separation.

SEPARATING BLENDED DATA

The most flexible, and velocity independent, option for processing overlapping data

is to separate shots to individual records. Once this has been achieved a conventional

processing flow can be followed. A methodology that is not strongly dependent on
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velocity or Earth model knowledge is desirable, since for exploration surveying a

strong control on subsurface geology is an unreasonable expectation.

For shot separation, several approaches are possible. The concept of image space

inversion will be the focus of this thesis discussion; other, existing, options will be

briefly discussed and contrasted first.

Data space filtering

A cursory glance at simultaneous shot records may give an observer the notion that

simple data space filtering could be used. For relatively flat geology, and with well

distance-separated simultaneous sources, this is often the case. Successful data space

filtering methods rely on either conflicting dips, or using the apex of events to ascertain

the shot of origin. However, once sources are proximate in both time and space,

correctly identifying the origin of certain events in a shot record becomes difficult,

and the dips of events can become more aligned. If the human eye is not able to

distinguish these events, assuming there is limited prior model knowledge, then an

algorithm will similarly fail. This is exacerbated for certain geologies, for example

steeply dipping salt bodies. Reflections from these will appear at large offsets and

late times, potentially causing them to become confused with other sources.

As an example, a group of randomly delayed shots are shown in Figure 4.1. In this

figure it is largely possible to distinguish which shots are related with which reflection

events. This can be contrasted with Figure 4.2, which shows two shots simulated over

the same model, adjacent to a steep salt body.

The concept of separating well distance-separated shots is almost moot. Filtering

antithetic events is trivial, and often simply migrating these data as if there was no

overlap provides reasonable result.

The majority of existing and effective techniques rely on using a domain transform,

or series of transforms, which can isolate coherent parts of the signal. These all orig-

inate from the concept of randomised source intervals and receiver gathers (Beasley
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3	  

Tim
e(s) 

Figure 4.1: Five randomly delayed shots, while the record is noisy it is possible to
distinguish which shot caused which event. [CR] chap4/. seamranddelays

et al., 1998b). The pinciple of seismic reciprocity concludes that, for a given shot

record, the same data would be recorded if all sources and receivers were swapped. In

the situation where overlapping shot points are randomized, in time and space, then

transforming to the common receiver domain will scramble much of the overlapping

energy, resulting in what could be considered as a shot gather plagued with random

noise. A variety of random noise reduction technqiues can now be invoked.

This can be further illustrated by looking at 2D gathers, for example in Figure 4.3

and Figure 4.4. Here the right hand panel is a corollary to the receiver domain,

the left to the shot domain. The difference in coherency is extremely evident when

comparing the top and bottom panels.

The bottom panel in Figure 4.4 highlights another potential pitfall, if the delays

are constant then there are no coherency differences between these domains. As a

result, any attempt to treat overlapping shots in the receiver domain as random noise

will fail, and primary information will be lost.
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Figure 4.2: Two shots, simulated over the same model as Figure 4.1. At late times,
it becomes impossible to ascertain which shots given events originated from. [CR]

chap4/. couldweseparate

Figure 4.3: A simple dataset, from a two layer model. The left side panel is a shot
gather example, the right side panel is a receiver gather. [CR] chap4/. simpledata
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Figure 4.4: The same dataset as in Figure 4.3, after random blending (top) and linear

blending (bottom). [CR] chap4/. receivergathers
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Data space inversion

For randomised source timings, inverse methods based in the data space can be very

effective in the field of simultaneous source separation; most of these use a variety of

domain transformation, as mentioned above. Abma et al. (2010) showed that using a

Projection Onto Convex Sets (POCS) methodology, in the common receiver domain,

results in a high degree of separation. Whilst effective, this technique involves many

multi-dimensional Fourier transforms (Abma, 2012), so for certain geometries and

blending schemes separation as a function of compute time may be slow.

Other receiver-gather projections can also be used. Both median filtering (Huo

et al., 2009) and sparse radon transforms (Akerberg et al., 2008) are effective for many

survey types and can be powerful tools for noise reduction. Additionally, threshholded

interference reduction (Doulgeris et al., 2010) and interference estimation (Mahdad

et al., 2012) show promising results for data blended in 2D. Approaches borrowed

from multiple prediction literature have been shown to have varying results, but

often prediction-and-subtraction methods have yielded excellent separation (Spitz

et al., 2008).

Ikelle (2010) looked at a variety of advanced blending patterns and analysed how

to invert for the transform that will link the source and receiver domains. Other

successful methods use a compressive sensing approach (Herrmann et al., 2009), where

many wavelet transforms can be used to separate these data.

All these existing methods strongly rely on random source delays, and any rep-

etition or predictability in the source timings can induce surprisingly detrimental

artifacts. Abma et al. (2012) showed a number of interesting observations from field

blending tests. Natural variation in the recharge time of these airguns can often

provide a sufficient level of shot randomness. However, as survey size increases, so

does the risk of underlying shooting predictability occurring in certain shot sequences.

This is counter-intuitive in the field of seismic imaging, since generally an increase in

survey size results in more redundancy and higher fidelity. It is possible to mitigate
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this potential repetition by inducing more unpredictability, such as by adding an ex-

tra time delay. This can be determined from a random number table, and induced

once the airgun is recharged.

Theoretically, these inverse methods can handle many interfering shots. In prac-

tice, for marine acquisition, no more than three or four interfering sources are present

at a given instant. This is a function of physical space, and availability of source

boats. On land many vibroseis trucks have been used at once for a high degree of

parallel acquisition (Jack et al. (2008); Pecholcs et al. (2010)). It should also be

noted that land acquisition provides a few other advantages for separation; different

sweeps can be encoded to encourage orthogonalit and source positions are easier to

randomise.

For these reasons, simultaneous land acquisition has been used extensively, and

shown to give impressive results. There has been a marked increase in simultaneous

marine acquisition, but some issues remain. For these reasons subsequent sections

will be limited to the discussion of marine surveys, and will focus on a blending power

of around three.

The image space

It is desirable to choose a domain, or inversion technique, which is less restrictive

of blending pattern. In particular, developing a scheme which is robust while sepa-

rating data acquired with constant or pseudo-constant delays is sought, since these

aforementioned data-space methods fail under these conditions. By projecting the

problem into the extended image space, these previous shortcomings can be circum-

vented. Although RTM is used as the transform operator, the use of an extended

domain (either in offset or angle) loosens the restriction of having an accurate veloc-

ity model, which was alluded to in Chapter 2. No information is lost this way, and

correct data reconstruction is achievable.

Furthermore, a technique that uses the image space can be easily augmented with

a velocity update scheme - most of the necessary computation will already be done.
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This strengthens the potential of such an approach, as an improved velocity model

will allow for cheaper, more accurate shot separation, during the next set of iterations.

This will be elaborated upon subsequently.

Through image space projection, ‘primary’ shots of interest can be focused on

(migrated, essentially), while overlapping energy, from ‘secondary’ shots, will be dis-

persed. This allows separation criteria to focus on both move-out differences and

focusing contrasts. This is simply done by combing the input data into discrete shot

records, according to a suggested recording time length and a set of shot timings.

This results in a data-set which is the size of the would-be conventional data, but

plagued with overlapping, coherent events.

Using the extended image space to remove coherent noise sources has been previ-

ously analysed, albeit under other objectives. Alvarez (2007) looked at using apex-

shifted parabolic-Radon transforms to successfully remove surface related multiples.

Wong (2014) looked at using F-K transforms from the extended image space to suc-

cessfully remove imaging noise. However, in these cases the final imaging procedure

had been completed, and this step was to remove some coherent artifacts before

stacking to the zero-offset image.

The implicit goal herein is a separated dataset. As a result, transforming from the

extended image space back to the data space is necessary - this is sometimes termed

demigration (Tang and Biondi, 2011). Using demigration for multiple removal has

been effective in several studies (Sava and Guitton (2005); Zhang and Duan (2013)),

and this is a similar problem to that of source separation. For amplitude consistent

recovery, one pass of extended Born modeling (demigration) is insufficient, and inverse

demigration is necessary (Chauris and Benjemaa, 2010). The process of demigration

is equivalent to Born modeling, so for clarity the term inverse Born modeling will

be used to describe linearized forward modeling as an inverse process, rather than

inverse demigration.

Such inverse Born modeling methods have been shown to give full data recovery

(Sava and Vasconcelos, 2011), and to remove multiples (Weibull and Arntsen, 2014),
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although it has been an only lightly explored subject. To formally introduce this

concept Born modeling must be revisited, and the extended image space will be

introduced in full.

The extended image space and Born modeling

I(x, y, z) =
nshots∑

i

∑
t

Ps(x, y, z, t; si)Pr(x, y, z, t; si), (4.6)

I(x, y, z, xh, yh) =
nshots∑

i

∑
t

Ps(x + xh, y + yh, z, t; si) ∗ (4.7)

Pr(x− xh, y − yh, z, t; si).

If equation 4.6 describes Claerbout’s zero-offset imaging condition, then an exam-

ple of extended imaging can be described by equation 4.7. Here, I(x, y, z) is the image

in space, Ps is the source wavefield and Pr is the receiver wavefield; si represents the

current shot of interest. If lag coordinates (known as subsurface offsets) in x and y

are introduced (xh and yh), a 5D image can be created. It is possible to have lags in

both t and z to create a 7D image, or any combination thereof.

If the correct velocity is used for extended migration, then an image sharply fo-

cused at zero-subsurface-offset is created. All the necessary kinematic and amplitude

information for data reconstruction is contained in this zero-subsurface-offset image

panel, an example can be seen in Figure 4.5. Artifacts present are a result of limited

acquisition and data truncation, and will not hinder reconstruction. Next, Figure 4.6

shows the same data, but migrated using a constant velocity model (incorrect up

to 20%). This zero-offset panel is now not sharply focused, and coherency over a

range of subsurface offsets is observable. In this case much of the necessary kinematic

and amplitude information, critical for accurate extended Born modeling, is spread

over these offsets. Consequently, these must also be back-projected for accurate data
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Figure 4.5: The unblended simple dataset, as seen in Figure 4.3, migrated into the
extended domain with the correct velocity. [CR] chap4/. extsimpimgcv
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Figure 4.6: The unblended simple dataset, as seen in Figure 4.3, migrated into the ex-
tended domain with using a constant velocity model. [CR] chap4/. extsimpimgincv
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recovery.

It is possible to apply an additional transform from subsurface offset to the angle

domain. By measuring event curvature as a function of this opening angle, velocity

model updates can be estimated. It is by this approach that Wave-Equation Migration

Velocity Analysis (WEMVA) works (Sava et al., 2003). For many algorithms the angle

domain is used instead of the subsurface offset domain, since this parameterisation is

directly relatable to surface geometry and velocity. The concept of suburface offset

itself is somewhat unphysical, but during extended imaging it provides the necessary

degrees of freedom to preserve input wavefield information.

In addition to this simple, two-layer dataset, two more complex and geologically

representative models will be used. These are a slightly modified version of the

reference Marmousi model (Versteeg, 1994) (padded with a water layer), and a win-

dowed subsection of the latest SEAM model (Fehler and Larner, 2008). Initially, the

Marmousi model will be used to investigate if this added complexity poses additional

difficulty for inverse Born modeling, and how these results vary under different blend-

ing experiments. The velocity models used, and the reference unblended dataset, are

shown in Figure 4.7 and Figure 4.8. For this dataset, 60 shots were simulated with a

spacing of 100 m, receivers were all along the top of the model.

Random delays

Random delays between source times and positions provides the most options for

data separation. Figure 4.2 already showed the simple two-layer dataset, with both

random and constant delays simulated. The implications of these scenarios will now

we analysed in more detail.

The left-side panels (of Figure 4.2) show examples of shot gathers, there is a

significant amount of highly coherent noise throughout these records. The right-side

panel shows example receive gathers (since the recorders were fixed.) Noticeably, for

random delays the overlapping noise takes on a highly different characteristic - the

data of interest (primary events) are coherent, and all of the contamination has now
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Figure 4.7: Accurate and smoothed representations of the Marmousi velocity model.
[ER] chap4/. marmvels
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Figure 4.8: Data acquired over the Marmousi model. [CR] chap4/. marmdata
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been incoherently scrambled.

Figure 4.9: Data acquired over the Marmousi model using a random delay function.
[CR] chap4/. marmrndblnd

Inducing small delays between sources was an early style of simultaneous acqui-

sition, known as dithering (Moore et al., 2008). Scrambling this noise was done

through a simple, and very cheap, domain transformation, typically to an F-K space.

The noise is spread over a large range of spatial and temporal frequencies, whilst the

primary information is more tightly contained. This can be exploited in a number of

ways - filtering, threshholding, inversion etc.

Figure 4.10 then show these randomly delayed data after imaging, migrated with

the correct velocity model. The majority of this overlapping energy has stacked out,

but there is a significant amount of high-wavenumber noise remaining in the image.
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This makes this simple imaging acceptable for structural / model building work flows,

but will be insufficient if any amplitude work is desired.

Figure 4.10: The extended image from migrating Figure 4.9 (data acquired using a

random blending function) [CR] chap4/. marmrndblndim

Linear delays

A constant shift between source locations and timings will be denoted as ‘linearly’

delayed data, and this can pose some interesting, additional problems.

Figure 4.11 shows these Marmousi data, but this time the shooting pattern fea-

tures a constant delay. Thus, there is no incoherency to exploit in the common

receiver domain. This is further illustrated by looking in the F-K domain, the signal
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Figure 4.11: Data acquired over the Marmousi model using a linear delay function.
[CR] chap4/. marmlinblnd
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and the noise remain tangled, and techniques like filtering and threshholding will fail

at removing the noise, and may remove primary information.

Figure 4.12: The extended image from migrating Figure 4.11. [CR]

chap4/. marmlinblndim

Imaging these data, with the correct velocity, gives the result in Figure 4.12.

Somewhat surprisingly, the image is not plagued with high-amplitude artifacts. The

reason for this is a little more subtle - because the blending style was not very aggres-

sive, a lot of the noise either does not correlated into the image, or migrates outside of

the domain of interest. These is still some noise, relative to the conventional image,

but this is less damaging than in the random case. Additionally, these artifacts are

comparably high-amplitude if single-shot images are observed, however these artifacts

are still incoherent between images. Thus, stacking removes much of the noise which
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was migrated into the target area.

Pseudo-linear delays

The most realistic marine acquisition scenario is often that of pseudo-linear delays.

These are close to constant shifts, but with a jitter of around 5% between times.

Figure 4.13: Data acquired over the Marmousi model using a pseudo-linear delay
function. [CR] chap4/. marmplinblnd

This small amount of randomness creates a high level of incoherency between do-

mains; migrating these data gives similar results to the linear delays, and again, these

are cleaner than for random delays. Largely, this is due to the temporal separation of

the signal and noise. The slight randomness then provides the additional incoherency
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Figure 4.14: The extended image from migrating Figure 4.13 (data acquired using

pseudo-linear delays). [CR] chap4/. marmplinblndim
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needed to largely stack out the noise.

Angle domain inversion

From studying the two-layer model subsurface offset panels, particularly under linear

blending conditions, it appears that blended energy could be isolated as a function of

curvature, and hence removed. If it is possible to remove contaminated energy from

these panels, then the images could be demigrated, and data separation achieved. To

test this theory, this two-layer dataset, with linear blending, will be used. Figure 4.15

shows the correct velocity image, and an image constructed from a velocity which

was scaled to be too slow. In both of the subsurface offset panels, events from the

data of interest (‘primary’ events) and events from the blended energy (‘secondary’

energy) are both easily identifiable. However, for the incorrect model the events now

all have significant curvature, and the focusing contrasts are less pronounced.

A second domain transform is necessary, such that events can be isolated as a

function of curvature. A parabolic Radon transfrom was selected, since for a flat

reflector the curvature of these events should approximate to a parabola. However,

applying a parabolic Radon transform to the top panel will be problematic, since

some events have been focused to a point - this will cause this information to become

spread out in the Radon domain. Instead, another transfrom must be used before

moving to the Radon domain, and this is a transform to the angle domain. Measur-

ing the curvature of these events in the angle domain is how WEMVA updates are

constructed.

The angle domain representation is shown in Figure 4.16. The previously well-

focused events now appear flat, and the curvature of other events have become more

extreme. It is now possible to transfrom to the parabolic Radon domain, and isolate

events by this curvature.

However, a parabola is not an ideal representation of these events, and nor is the

Radon transform used very exact (due to aperture restrictions). These limitations

are manifested in Figure 4.17; whilst some curvature separation has been achieved,
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Figure 4.15: Linearly blended data migrated into the subsurface offset domain us-
ing the correct velocity model (top) and a model 10% too slow (bottom.) [CR]

chap4/. offimgs
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Figure 4.16: The same images as Figure 4.15 but with the third axis transformed into
the subsurface angle domain, rather than subsurface offset. [CR] chap4/. angimgs
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Figure 4.17: The angle domain image with the correct velocity model after a single
parabolic transform (top) and the slow velocity image after a single parabolic radon

transform. [CR] chap4/. anghypcomp
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events have not been well focused as function of their curvature, and there is a lot of

contamination across this space. It is possible to extend this domain transformation

to an inverse process, and the result is shown in Figure 4.18. After ten iterations of

this process, coherent events are now well focused at a given measure of curvature.

It would be possible to window these events and reverse these processes, resulting in

a separated dataset.

This process has two key problems implicit in these assumptions. One, is that

subsurface reflection events will exhibit a measurable, single-parameter curvature in

the angle domain. The other, is that primary events will focus at a similar level of

curvature.

The former of these can be quickly disproved by imaging a more complex dataset,

with steep structures and discontinuous reflectors. Under these conditions, events in

subsurface offset exhibit a far less parabolic nature. Attempts to transform these to

the angle domain and isolate primary reflections according to their move-out yielded

no success. This is not as severe a limitation for WEMVA, since not every reflector’s

curvature is needed to be measured in order to back-project a meaningful model

update. However, for deblending the loss of reflector information is unnacceptable.

Additionally, to build these angle domain panels a regular and dense acquisition

geometry is desirable, and this is not a good requirement for a separation engine.

Secondly, the fact that in this example the two events focused at the same measure

of curvature was because the velocity model was a scaled version of the true model.

If this was not the case, these events would focus to different amounts of curvature.

This is not as strict a limitation, since a predetermined range of curvatures could be

retained, and significant data-separation still achieved. However, these limitatations

coupled imply that curvature-based image-space separation will fail under a variety

of conditions.

Instead, posing the separation problem as an inversion will be investigated, where

the minimization is posed as a function of these separated data. Initially, how these

data behave after demigration will be tested.
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Figure 4.18: The angle domain image with the correct velocity model after a single
parabolic transform (top) and after ten linear iterations of the transform (bottom.)
Note the focusing at zero curvature (corresponding to a flat angle gather.) [CR]

chap4/. anghyp
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Adjoint demigration / Born modeling

As in Chapter 2, for linearized inversion, the adjoint procedure of equation 4.7 can

be used to move back to the data domain. In this case, the forward procedure is

now extended Born modeling. For Born modeling, during each imaging time step the

receiver wavefield is convolved with the scattering estimate and then propagated. For

extended Born modeling, during each imaging time step the receiver wavefield must

now be convolved with the extended scattering estimate (this is the extended image.)

This is, of course, both more computationally expensive, and requires additional

memory. There are additional computation complications involved with extended

Born modeling, when compared to extended RTM, and these are discussed at the

end of Chapter 6.

To initially illustrate these processes, the same simple two-layer model will be used.

This is instructive since all events are readily identifiable. The input, unblended data

for these tests is the same as shown in Figure 4.3, and the correct and incorrect

velocity migrations used for forward modeling are the results plotted in Figure 4.5

and Figure 4.6.

Applying the adjoint of this extended migration process gives the result in Fig-

ure 4.19, which resembles these input data fairly well. This result is informative of

several attributes of this data recovery process. Amplitudes at early times and short

offsets are under-represented; this is indicative of the need to extend the procedure

to inversion.

Inverse Born modeling

While extended Born modeling results in the correct kinematic recovery of the input

data, the amplitudes are inconsistent. Especially at early times and short offsets; this

can be improved upon by extending forward modeling to an inverse procedure. Chap-

ter 2 discussed linearised inversion at length, with the goal of recovering an accurate

scattering model. What can be considered as the adjoint and forward procedures can



87

Figure 4.19: The ouput dataset from one pass of forward modeling, using the correct
velocity model. [CR] chap4/. simpdemcv
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be simply exchanged, and the laws of linear algebra and inversion are all still valid

(Chauris and Benjemaa, 2010). Now, what was considered the model (the image)

can be considered as the reference data, and what was previously considered the data

(the recorded seismic reflections) are contained in what will be considered the model.

The inversion scheme will act to recover the dataset that will migrate to provide the

(cleaned) input image.

J(m) = ‖d− Lm‖2
2 (4.8)

J(d) = ‖m− L′d‖2
2 (4.9)

Equation 4.8 shows the same objective function which was minimised in Chapter

2, where L is the Born modeling operator, d is the input data and m the scat-

tering model. For inverse Born modeling, the objective function is formulated in

equation 4.9. These will now be expanded into minimization algorithms to explicitly

analyse the differences.

Algorithm 4 Extended linearized inversion

Calculate initial data-space residual r = Em0 − d
while iter < n iter; iter++ do

Create gradient ge = E ′r
Create conjugate gradient cg = Ege

Calculate step length
Update m and data residual

end while
Output model

The algorithm for LSRTM is shown again in algorithm 4. Now, however, L has

been replaced with E, to denote the extended imaging operator, and g with ge, to

clarify the increase in dimensionality. The size of the residual and the conjugate

gradient are not changed. By switching the sense of the operators, data, model,

residual and conjugate gradient, these scheme can be adapted to perform inverse

modeling. This is summarized in algorithm 5.
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Algorithm 5 Extended inverse Born modeling

Calculate reference extended image ie = E ′d
Calculate initial residual r = E ′d0 − ie
while iter < n iter; iter++ do

Create gradient g = Er
Create conjugate gradient cg = E ′g
Calculate step length
Update dout and image-space residual

end while
Output dataset

Weibull and Arntsen (2014) used a similar procedure to remove multiples in the

unfocused extended image space, and then used an inverse demigration scheme to

recover amplitude consistent, multiple free data. A very similar methodology will be

used in this thesis, in the context of data separation.

It is possible to approximate this extended operator, as shown in Hou and Symes

(2015). This scheme can give an approximate, forward modeled dataset at a sub-

stantially lower cost than the full extended operator. However, in a strict inversion

formulation it is not an exact adjoint to the imaging procedure. Such an approach

could provie a valuable preconditioner to inverse Born modeling, and should be in-

vestigated.

Conventional, extended RTM of Figure 4.3 gave the image seen in Figure 4.5. In

the previous section, a single pass of linearized forward modeling was applied and the

output dataset analysed. For inverse Born modeling, this image can be considered the

‘data’ of the inversion - meaning it is a fixed reference, and is used to calculated the

intial residual. Exactly the same procedure as Chapter 2 is run, but with the forward

and adjoint operators swapped. The first gradient of the scheme (the adjoint result)

is shown in Figure 4.19. It is immediately clear that the kinematics of the input data

have been resolved, but the amplitudes are not correctly balance. As before, the error

in the event positioning is incredibly low; the amplitude inconsistencies occur mostly

at short offsets and early times.
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After running inverse Born modeling for ten iterations the output dataset in Fig-

ure 4.20 is achieved. The amplitude inaccuracies are all fixed, and the error between

these data and the input is very low. After only a couple of iterations the normalised

residual is below 10%, and after ten iterations this measure is less than 0.03%.

Figure 4.20: Inverse Born modeling using the correct velocity model, after ten itera-
tions. [CR] chap4/. simpinvdemcv

To test the algorithm, a very inaccurate velocity model will now be used. The

same constant velocity model will be used, which is inaccurate up to 20% in areas.

The first gradient (adjoint) result from incorrect velocity model extended demgra-

tion is in Figure 4.21. Similar to the exact velocity case, the kinematics are (largely)

correct, however the amplitudes are not well balanced. This is exacerbated in the

rough model case, and in addition to these amplitude inconsistencies, there are more

artifacts induced. These arise, from the extended Born modeling. The recovered data

after ten iterations are plotted in Figure 4.22. As before, the inversion has acted to
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Figure 4.21: Adjoint Born modeling using an incorrect velocity model, after ten
iterations. [CR] chap4/. simpdemincv
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Figure 4.22: Adjoint Born modeling using an incorrect velocity model, after ten
iterations. [CR] chap4/. simpinvdemincv
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correctly balance these amplitudes and the output dataset closely resembles to input

data, to within 0.3% error.

0	  
10000	  
20000	  
30000	  
40000	  
50000	  
60000	  
70000	  
80000	  
90000	  
100000	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

N
or
m
al
is
ed

	  re
si
du

al
	  

Itera/on	  

Inverse	  demigra/on	  convergence	  

Correct	  model	  

Incorrect	  0.039% residual 

0.31% residual 

Figure 4.23: Convergence of inverse Born modeling as a function of iteration number.
The normalised residual is measured in the image space. [NR] chap4/. simpinvconv

The convergence curve for both schemes are plotted in Figure 4.23. Unsurprisingly,

the extended scheme is slower to converge than the exact model scheme. Again, within

one iteration a residual of less than 10% is achieved, and after ten iterations these

output data are correct to within 0.3%. This is a very acceptable level of error,

particularly for a scheme which will be augmented with velocity updates.

These results demonstrate that extended inverse Born modeling can successfully

recover input data, even after imaging with an incorrect velocity model. A similar

approach can now be used, with the goal of data separation, rather than simple

amplitude recovery.

IMAGE SPACE DEBLENDING

While primary blending is fixed post-acquisition, the style of proposed processing

can influence how these data are initially acquired. Intuitively, the factors that will



94 CHAPTER 4. SIMULTANEOUS SHOT SEPARATION

influence these blended data are: the number of sources, the minimum recharge time

for the airguns, the randomness of shot positionings, the randomness of shot timings,

receiver geometry, and to a lesser extent, the number of receivers and the proposed

recording length.

As mentioned earlier in this chapter, existing separation methods are critically

dependent on the randomness of the source timings. Any induced repetition or pre-

dictability in these can induce debilitating artifacts (Abma et al., 2012). In the case

of constant delays between shots, these methods entirely fail. For both flexibility, and

confidence, in acquiring simultaneous data, it is desirable to relinquish these restric-

tions. The aforementioned three styles of shooting will be analysed in these upcoming

sections: random delays, linear delays, and pseudo-linear delays.

Marmousi data separation

Figure 4.10, Figure 4.12 and Figure 4.14 show the extended images produced from

these three datasets using the correct velocity. The differences in blending are mani-

fested in the image space, although the coherency differences are not as pronounced

as intuition may suggest. Even the linearly blended data becomes well dispersed in

the image space. The artifacts are more coherent, but the focusing characteristics of

the primary events, and the differences in contrast, suggest that separation should be

possible.

The recovered datasets after adjoint separation can be seen in Figure 4.24, Fig-

ure 4.25 and Figure 4.26. These can be contrasted with the reference, unblended

dataset, in Figure 4.8. Each of the blending schemes have been well separated and

the resultant datasets could be used for conventional velocity estimation and imag-

ing. Again, amplitudes at early times and shot offsets are weaker than in Figure 4.8,

which should be the result if the separation was exact. This can be improved upon

by using the inverse scheme.

It should be noted that there are some fractionally more coherent artifacts in the

recovered data from the linear encoding. Nonetheless this methodology separated
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Figure 4.24: The output dataset after applying one pass of Born modeling to Fig-
ure 4.10, which was the image created from a randomly delayed dataset. [CR]

chap4/. marmrndblndidem
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Figure 4.25: The output dataset after applying one pass of Born modeling to Fig-
ure 4.12, which was the image created from a linearly delayed dataset. [CR]

chap4/. marmlinblndidem
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Figure 4.26: The output dataset after applying one pass of Born modeling to Fig-
ure 4.14, which was the image created from a pseudo-linearly delayed dataset. [CR]

chap4/. marmplinblndidem
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these linearly delayed data very accurately.

Figure 4.27: The extended image from migrating Figure 4.13 (data with constant

delays) using a rough velocity model. [CR] chap4/. marmplinblndiminc

Figure 4.27 shows the result from migrating these data, but using an inaccurate

velocity model. The primary events are now not well focused at zero-subsurface offset,

and the focusing contrasts between primary and secondary events is far less. Energy of

interest now spans many of the acquired subsurface offsets and distinguishing events

from primary and secondary energy is less obvious. Separation as an inverse problem

was not run on these data, a more complicated model was used instead.

Using data acquired over the Marmousi model gives informative results about the

suggested procedure, but to further confidence over this methodology a more difficult

example must be used. A section of the SEAM model was windowed, featuring

rugose reflectors, continuous reflectors and a steep salt body with carbonate top

and sedimentary inclusions. These attributes comprise many of the difficulties of
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contemporary imaging targets. If this separation method can perform well over these

data then much stronger conclusions can be made.

Blended inversion

Adapting linearised inversion to inverse forward modeling involved reversing the op-

erators, and the sense of what was the model and what was the data. Creating a

blended inversion scheme to recover separated data involves an extra step, since the

blending must be accounted for.

db = Γds (4.10)

If ds denoted the separated data, db the blended data, and Γ the operator that

creates these blended data (applies the time shifts), then the blending can be de-

scribed as equation 4.10. This operator, Γ, contains all the necessary time shifts to

move between the domains, and takes an continuous, input dataset. It windows this

input dataset according the source times and a desired recorded length, and outputs

a series of shot gathers. Of course, these shot gathers will contain blended contam-

ination, since individual shots have simply been windowed and no separation has

been attempted. This process of windowing and aligning is sometimes referred to as

pseudo-deblending.

m = L′Γ′db (4.11)

me = E′Γ′db (4.12)

As earlier, L′ can represent the zero-offset imaging operator, and E′ the extended

imaging operator. The input, blended data can be cut and aligned, using Γ, and

then migrated, using either operator. This results in either a zero-offset image or an

extended image, shown in equation 4.11 and equation 4.12 respectively. These images
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can then be used for forward modeling, or for inverse Born modeling. Cost functions,

similar to those in Chapter 2, can then be minimized. Now, the function will aim to

reduce the misfit related to ds, the separated dataset.

J(ds) = ‖L′ds −m‖2
2 (4.13)

J(ds) = ‖E′ds −me‖2
2 (4.14)

A similar algorithm to algorithm 5 is then used; the new zero-offset and extended

objective functions to be solved are formulated in equation 4.13 and equation 4.14,

and this adapting algorithm expanded as algorithm 6. These new objective functions

are extensions of equation 4.9, with Γ included. By making this extended image the

input for an inverse Born modeling scheme, these data can be effectively separated

into individual shot records.

Algorithm 6 Inverse deblending

Calculate reference extended image ie = E ′Γ′d
Calculate initial residual r = E ′d0 − ie
while iter < n iter; iter++ do

Create gradient g = Er
Create conjugate gradient cg = E ′g
Calculate step length
Update dout and image-space residual

end while
Output dataset

To demonstrate the effectiveness of minimising equation 4.14 for shot separation,

a model and dataset more complex than Marmousi will be used. A same section of

the SEAM model that was used in Chapters 2 and 3 was used, since this features

steep deeps, high velocities, and a range of scattering contrasts. While the Marmousi

tests were informative, it does not feature these final two attributes.

As a reminder, the velocity model used for simulating the comparison, unblended

data is shown in Figure 4.28, and the reference dataset can be seen in Figure 4.29. A
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Figure 4.28: The velocity model windowed from the SEAM model, used for a more
realistic separation test. [ER] chap4/. seamvel

pseudo-linear blending scheme was implemented, since this is the most realistic and

can pose separation problems. These data after blending are plotted in Figure 4.31.

An approximate, unfocused image was created in the extended image space by

massively smoothing the input velocity model, creating some regions where the ve-

locity is approximately, and some regions where the velocity incorrect up to 15%. This

is more realistic than simply scaling the full model, and will create a very loosely fo-

cused salt boundary, creating a valid separation test. The inaccurate model used

is plotted in Figure 4.30, and the loosely focused, noisy image after migration, in

Figure 4.32. After ten iterations of this inverse deblending process (algorithm 6), the

output, separated dataset is shown in Figure 4.34. Through comparison to the input,

blended dataset, this scheme has been very successful in separating these shots into

uncontaminated gathers. No remaining energy from the interfering data remain in

these separated shots, however a few, minor artifacts from extended modeling remain.

Figure 4.35 shows the results of applying RTM to Figure 4.29, Figure 4.33 and

Figure 4.34 respectively. It is clear that all images are directly comparable, although a
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Figure 4.29: A conventional dataset acquired using the section of the SEAM model.
[CR] chap4/. seamdata
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Figure 4.30: A heavily smoothed version of Figure 4.28, used for inaccurate model
separation. A rectangle filter of 30 model points x 30 model points was used. [ER]

chap4/. seamvs

small amount of noise is noticeable within the salt body in the two lower images. The

salt boundary is slightly less smooth in the image using the data separated with the

inaccurate model, however this is the only obvious imperfection. Using the heavily

smoothed model does not appear to have resulted in the loss of any information.

Extended images produced by migrating 30 shots before and after deblending

are shown in Figure 4.36 and Figure 4.37, using the rough migrating velocity. Due

to the inaccurate model, both images are unfocused and noisy, but the image after

deblending is substantially cleaner, and would be easier to perform preliminary inter-

pretations on, as well as moveout based estimations. Often for quick velocity updates

/ QC checks a subset of the data will be used, and this demonstrates the effectiveness

of performing separation first.

The convergence to the input dataset is shown in Figure 4.38. This was calculated

by reblending the output data, and comparing to the input blended data. Since

the only input is the blended data, db, then to measure separation these output
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Figure 4.31: A pseudo-linearly blended dataset acquired using the section of the
SEAM model. [CR] chap4/. seamdatain
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Figure 4.32: The extended image created by migrating the blended dataset with the
velocity model shown in Figure 4.30. [CR] chap4/. seam2dextimg
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Figure 4.33: The output separated data after 10 iterations of inverse deimgration
using the correct velocity model. [CR] chap4/. seamcdataout
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Figure 4.34: The output separated data after 10 iterations of inverse deimgration
using an inaccurate velocity model. [CR] chap4/. seamdataout
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Figure 4.35: Images created from conventionally acquired data, blended data sep-
arated using the correct velocity, and blended data separated using an inaccurate
velocity model respectively. chap4/. imagesafterseparation
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Figure 4.36: Thirty shots migrated into the extended domain before deblending, using
the inaccuarte separation velocity. [CR] chap4/. seamextpresep
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Figure 4.37: Thirty shots migrated into the extended domain after deblending, using
the inaccurate separation velocity. [CR] chap4/. seamextpostsep
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data, ds, should be reblended, and the output compared to db. Other quantitative

measures could be misleading, so ‖db − Γds‖2
2 is plotted. The system deblends the

data almost immediately, and requires iterations to recover the amplitude content of

the input data, and to reduce modeling artifacts. This process does not converge to

as low a residual as unblended inverse linearized forward modeling (Figure 4.23), but

considering how much more complex the model and data were for this SEAM test, it

does a very comparable job.
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Figure 4.38: How the separation algorithm performs, for SEAM, as a function of
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the input, blended data, and the output, separated data after reblending. [NR]
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CONCLUSIONS

Primary blending poses many more processing and imaging challenges than secondary

blending, due to the fact the the blending is fixed. For field blended data to integrate

well into existing processing and imaging work flows, the ability to separate these

data into their conventionally acquired equivalent dataset is desirable.



112 CHAPTER 4. SIMULTANEOUS SHOT SEPARATION

The image space provides a powerful transform for this separation, since even with

constantly delayed data many high amplitude blending-related artifacts are stacked

out, and for randomly blended data the separation is provided almost immediately.

By formulating the imaging in the extended image space a good velocity model re-

quirement can be relaxed, since all kinematic and amplitude information for the

primary data is saved, and the overlapping data is still massively reduced in both

focusing and moveout characteristics.

For simple, layered models it is possible to isolate these overlapping data as a

function of their curvature, however for more complex data this is not possible. In-

stead, by fixing this extended image and posing data recovery as an inverse, extended

Born modeling problem, a separated dataset with comparable amplitudes and correct

kinematics can be constructed.



Chapter 5

Field data example

The results thus far have been created using synthetically generated data. Whilst this

is a useful exercise to validate and test concepts, it is necessary to demonstrate how

this approach works on a 3D field data set. Field data features a range of attributes

that were missing from these synthetic data, including converted waves, incoherent

noise, coherent noise, processing artifacts, irregular sampling of receiver and source

points, anisotropy, attenuation, and more. Each of these will pose new challenges for

the process of inverse Born modeling, and the procedure must be robust enough to

handle these real-world imperfections.

THE DATASET

The dataset used was acquired using Ocean Bottom Node (OBN) acquisition, will a

total of 1195 receivers. Each receiver had a maximum offset (source position range)

of 20 km in both inline and crossline directions, and the time sampling was 4 ms.

The full imaging cube was 30 km x 30 km x 18 km, although for the purpose of

demonstrating image-based shot separation, a smaller section was windowed.

An area of 20 km x 20 km x 8 km was targeted for imaging, using 103 receivers,

which featured a concurrent shooting pattern. From the principal of reciprocity, these

113
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can be considered as 103 shot gathers. Initially, RTM and linearized inversion were

applied to these gathers. The benefits of this were twofold: the concept of LSRTM

could be tested on field data, and a reference image to compare post-separation results

and be created. The nature of both the Earth models provided and the acquisition

necessitated several changes to the imaging approach from the last three chapters.

Firstly, the survey area featured a variety of dips, salt bodies, and subsurface stress

states. This meant that earlier efforts at imaging the target described the subsurface

as a Tilted Transverse Isotropic (TTI) medium (Tsvankin and Thomsen, 1995). The

previous chapters stated that the subsurface could be described using a velocity field,

v(x, y, z), which could be split into high-wavenumber and low-wavenumber compo-

nents. This assumed an acoustic, isotropic subsurface (discussed in Chapter 2.) For

a TTI medium, four additional parameter fields (as well as velocity) are needed to

simulate wave propagation and perform imaging. There is some flexibility with the

exact parameterisation; however the method herein used two Thomsen’s anisotropic

parameters (Thomsen, 1986), ε and δ, as well as two angular fields, φ and θ, describ-

ing dip and azimuth. These are each represented on the same gridded volume as the

velocity field, resulting in significant additional necessary memory allocation. In ad-

dition to the memory required for allocating the Earth models, more wavefields must

be allocated to accurately track these waves, as well as a more intense computational

kernel.

When compared to acoustic propagation, TTI uses roughly four times the memory,

and is overall around five times slower. This will elaborated upon at the end of

Chapter 6. A propagation engine similar to those proposed in Alkhalifah (2000) and

Zhang et al. (2003) was used. Such methods have been demonstrated to work on

migrating field data using RTM by Fletcher et al. (2009).

Secondly, these data had been processed into down-going receiver gathers, which is

typical for OBN imaging (Grion et al., 2007). This approach uses the first sea-surface

related multiple for imaging, since this provides a significant increase in aperture

for imaging, with no reduction in signal (since the sea surface is almost a perfect

reflector) (Dash et al., 2009). A schematic detailing the difference between upgoing
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and downgoing signals for OBN acquisition can be seen in Figure 5.1. For practical

imaging, this is simulated by doubling the water column above the model, and using

the sea surface as a mirror - placing the source in this new layer (Wong, 2014). This

approach correctly simulates the down-going wavefield, without any up-going events,

and is shown in Figure 5.2.

Reflector 

Downgoing 

Upgoing 

Sea 
bed 

Figure 5.1: A diagram of upgoing and downgoing rays for OBN acquisition. [NR]

chap5/. allgoing

Padded water 
column 

Figure 5.2: A diagram of how only downgoing rays can be simulated, and the principle
of reciprocity. [NR] chap5/. mirroracq
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TTI IMAGES

Figure 5.3 shows a rotated section of the image produced using TTI RTM on these 103

down-going receiver gathers. The inline aperture (in terms of source positioning) was

greater than the crossline, and this is noticeable. Several salt bodies are identifiable,

with well resolved edges, and a variety of reflectors have also been imaged. These

events align well in both depth and lateral positioning with a provided reference

image. Figure 5.5 then shows this section after Automatic Gain Control (AGC) has

been applied. This is a useful tool on occasion, since it uses a rolling window to

artifically boost energy in poorly illuminated areas, and this demonstrates that there

are coherent reflectors throughout the entire model. Although there is a significant

quantity of imaging induced noise.

Next, Figure 5.4 shows this same section after five iterations of linearized inversion.

The inversion result after AGC is also shown, in Figure 5.6. There are numerous

improvements, but the most pronounced benefits are seen around the salt bodies.

The edges and bottoms of these salt bodies are very sharply resolved, with subsalt

reflectors becoming more coherent and higher in amplitude. Many contemporary

imaging targets are sub-salt, and so a procedure which can improve sub-salt resolution

is oft sought after.

Other improvements are the general balancing of reflector amplitudes with depth,

improved overall coherency of events, higher wavenumber boundaries, and a reduction

in imaging related artifacts. It should also be noted that the inversion does struggle

in some areas - particularly shallow sediments away from the source lines along the

inline direction. This is due in part to the limited aperture in these directions, and

due to salt-related refraction events, incorrectly included during imaging.

Nonetheless, given a very large, undersampled model and a relatively sparse set of

receivers, the improvements of inversion over adjoint imaging are very encouraging.
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Figure 5.3: A rotated section of the RTM image, computed from the 103 OBNs.
[NR] chap5/. fielddatartm
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Figure 5.4: A 3D image at the same coordinates as Figure 5.3, after five iterations of
LSRTM. [NR] chap5/. fielddatalsrtm
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Figure 5.5: The same result as Figure 5.3, with AGC applied. [NR]

chap5/. fielddatartmagc
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Figure 5.6: The same result as Figure 5.4, with AGC applied. [NR]

chap5/. fielddatalsrtmagc



121

SOURCE SEPARATION

Simultaneous source shooting can be simply simulated with an OBN dataset, because

the receivers are fixed and feature the same (or at least very similar) shooting pattern.

Consequently, receiver gathers can be shifted and summed together, due to the linear

superposition of these wavefields, to simulate blended acquisition. It is useful that

we also have a conventionally imaged result, since we can image these data after

separation and then provide a comparison between results.

The same 103 receivers migrated to create these images were combined into ran-

dom subgroups of five shots, which were then delayed and summed together, with

the delay times recorded. Figure 5.7 shows five such gathers combined, and then Fig-

ure 5.8 shows a windowed shot record from this continuous gathers. These subgroups

were used to conserve some I/O cost (these receiver gathers are each 8 Gbytes in size),

since reading very large time records can be arduous, but this does not invalidate the

simulating of blended acquisition.

The same approach as Chapter 4 was used, which the operator Γ was used to

appropriately window the shot of interest from the continuous recording, and image

each of these separately. The separation approach used an extremely smoothed and

slightly scaled version of the velocity model, and an isotropic, acoustic propagation

kernel. Both of these attributes create a sufficiently inaccurate Earth description

to test separation. The previous chapter simply smoothed and scaled the velocity,

in this case the lack of additional TTI parameters will create further positioning

errors. Separation was also performed using the correct velocity model, albeit with an

isotropic, unextended separation engine. For both of these separations, ten iterations

were used.

Extended imaging was applied in the inline direction, since this featured the dens-

est sampling and the steepest dips. Twenty-five offsets were acquired in total, result-

ing in 625m of subsurface offsets imaged. This was done using a set of GPUs with

a combined memory of about 52 Gbytes. For reasonable runtimes (same order of

magnitude as TTI imaging), the entire image must be allocated on the set of GPUs,
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Figure 5.7: An example receiver gather after five OBNs are blended together. [NR]

chap5/. cdata



123

Figure 5.8: An example input receiver gather for the separation engine, which is a
section of Figure 5.7 after Γ has been applied. [NR] chap5/. blendshot
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as such a smaller area of the velocity model was used. The velocity was reduced to a

cube of 400 Mbytes, selected by windowing around source positions, all 103 receivers

were still used. Tests which offloaded the imaging to allow for more offsets to be

acquired slowed the run time by a factor of thirty.

Figure 5.9 and Figure 5.10 show some inline image panels, windowed from the 4D

image, with subsurface offset panels. Both image panels exhibit some imaging noise,

since these are isotropic migrations of anisotropic data, and for the same reason

neither panel is tightly focused at zero-subsurface-offset. However, Figure 5.10 is

more loosely focused, and has energy spread over a wider range of subsurface offsets

than Figure 5.9. It also shows some energy focused at non-zero subsurface offset.

The zero-offset image from the correct velocity model result, and the full-offset image

from the incorrect velocity model result, will now be used to attempt extended forward

modeling.

Figure 5.9: Isotropic, extended migration of these blended data using the correct
velocity model. [NR] chap5/. cormodgather

An input receiver gather, a gather reconstructed with the correct velocity, and a

gather reconstructed with the incorrect velocity, are shown in Figre 5.11; the location

selected was in the middle of the domain. Whilst the kinematics are largely present in

all three panels, there is some steeply dipping noise at large offsets present in the two
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Figure 5.10: Isotropic, extended migration of these blended data using an incorrect
velocity model. [NR] chap5/. incmodgather

reconstructed panels. Since this noise is present in both of the reconstructions, it is not

due to extended Born modeling artifacts, which were observed in some of the synthetic

tests. It is most likely due to these aforementioned image artifacts, induced from

refractions. The salt bodies in these data often cause high velocity refractions, which

can easily extend beyond reflection arrivals at large offsets. The limited crossline

coverage, in terms of receiver density, means that some of this refraction noise will

not stack out effectively in this dimension. This is an interesting phenomenon due

to the geometry in question - blended energy stacks out easily, since it is random

between shots, and randomly separated in time. Refraction noise, however, is harder

to stack out without a variety of crossline receiver positions (these refractions also

caused problems for LSRTM, above). Panels which include the recovered corssline

data show this more clearly, and can be observed in Figure 5.12, Figure 5.13 and

Figure ??. Nonetheless, key reflection events can be mapped in all three panels, and

the results of migrating these data show that the separation has preserved reflector

information.

For a baseline comparison, these conventional data (unblended receiver gathers)
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Figure 5.11: From left to right: an (unblended) receiver gather, the reconstructed
gather using extended image space separation and an incorrect velocity model and
the reconstructed gather using zero-offset, isotropic image space separation. [NR]

chap5/. shotcomp

Figure 5.12: A raw, unblended receiver gather. [NR] chap5/. rcvclean
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Figure 5.13: A receiver gather after extended unblending. [NR] chap5/. rcvinc
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Figure 5.14: A receiver gather after unextended, isotropic unblending. [NR]

chap5/. rcviso
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were imaged over this smaller domain, and this baseline image can be seen in Fig-

ure 5.15. The image created using the data reconstructed using the accurate velocity

can be seen in Figure 5.16, and the image created using the data with the incorrect

velocity is shown in Figure 5.17. These are all TTI migrations of these respective

datasets, illustrating the best possible image, given the input data.

Figure 5.15: TTI migration of the input data before blending, for a baseline compar-
ison. [NR] chap5/. baseline3dimage

These images are all directly comparable, and the vast majority of reflectors, con-

trasts and structures can be seen in all three. Expectedly, the wavenumber content

in the reconstructed panels is a little lower, and the images obtained from the sepa-

rated data are not quite as well resolved. An series of inlines, for ease of comparison,

is shown in Figure 5.18. For unextended separation, it appears that some informa-

tion around the salt bodies has been lost, from the subsurface offset panels shown

above, this is not entirely surprising. Anisotropic parameters, especially φ, are often

of higher value around salt bodies - thus, positioning errors are to be expected, and

the lack of subsurface offset extension may cause some loss of signal in the image
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Figure 5.16: TTI migration of the reconstructed data after 10 iterations of zero-
subsurface-offset, isotropic deblending. [NR] chap5/. zosep3dimage

space. These salt edges are better resolved in the image from extended deblending,

however this image has a few other imperfections. There is some loss of continuity in

the sediments above the salt, and the wavenumber content is lower.

Some of this noise, and continuity disruption, stems from an implementation lim-

itation - only one axis was extended during initial migration. For this dataset, the

choice of axis was obvious, since the source sampling along the inline direction was

much more consistent and dense. Despite the limited dip content of the crossline

direction, it is probable some information was lost at this point. By extending the

migration in both x and y, energy would not be lost in this manner. Another choice

would be to use time lag imaging, as this would capture unfocused arrivals in any

spatial direction. However, the restraints of the computers and the input data size

meant that multiple spatial lags, or time lags, would be close to unfeasible.

Despite only extending one axis, it is encouraging that dipping reflectors at the
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Figure 5.17: TTI migration of the reconcstructed data after 10 iterations of extended,
istropic deblending with a rough velocity model. [NR] chap5/. extsep3dimage

edge of the crossline panels are still imaged in all three cases. This helps to confirm

that only marginal information was lost in the extended deblending, and further

iterations would improve the results.

As discussed in the previous chapter, image-space separation can be augmented

into a model-building and imaging process. In this context, then these results are

even more encouraging. All output images well represent the geology, structure and

amplitude character of the subsurface, and as the model improves, then this represen-

tation will become stronger. Furthermore, all would act as powerful starting models

for any sort of subsequent linearized inversion. If this scheme were to be combined

with, say, migration velocity analysis, then an effective positive feedback loop could

be created. The extended images are already created, which can be used to provide

a velocity model update. This updated model could then be used to improve the

separation fidelity, and the process repeated.
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Figure 5.18: An inline comparison of the images shown in Figure 5.15, Figure 5.16
and Figure 5.17. [NR] chap5/. inlinecomp
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CONCLUSIONS

These results demonstrate that extended image space blended inversion is effective

for shot separation. Given a blended input dataset, this technique was effective in

separating these shots into separated gathers using both an accurate and an inaccurate

velocity model. Furthermore, the separation engine was isotropic, and the velocity

model was built under the assumption of TTI anisotropy, so both attempts will exhibit

inaccuracies in the migration.

Imaging these separated datasets was successful and representative, however, both

results suffered from a reduction in frequency and a variety of implementation arti-

facts.
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Chapter 6

High performance computing

solutions

IMPLEMENTING LINEARIZED INVERSION

As discussed in Chapter 2, and indeed throughout this thesis, practical implementa-

tion of these wave-equation based inversion schemes is not straightforward. Naively

coding such a system would result in impractically long run times; for any signifi-

cantly sized problem large computers much be used and care must be taken to use

them to the best of their ability.

This final section will demonstrate how these operators can be optimally coded for

both a system of CPUs and a system of nodes that contain both CPUs and Graphical

Processing Units (GPUs).

Optimization

As a concept, optimization is an act or process that aims to make something as

effective as possible. In applied mathematics, optimization is posed as a way to max-

imize productivity by finding the values and influences of controllable factors which

135
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determine the behavior of a system. This chapter will address computational, or

programming, optimization. There are two major requirements to consider compu-

tational optimization: intimate knowledge of the computer (or network) that one is

optimizing for, and intimate knowledge of the serial and parallel sections of the algo-

rithm. The ‘controllable factors’ for this variety of optimization are the hardware and

it’s acceleration options (multi-core, vectorization etc), the algorithm (decomposition,

parallel segments etc) and time.

For research code, time is a crucial factor for computational optimization - it is

imperative that the additional time required to optimize the code, topt, is significantly

less than the difference between the new runtime and the unoptimized runtime, say

topt � torig − tnew. Put into words: time saved through optimization must be less

than the time spent to optimise. For production code, that will be run many times,

then optimization can save vast quantities of future compute time.

Furthermore, the abstract conception of optimization implies a final solution.

When it comes to computational considerations 100% optimization is never achieved,

as one could never balance topt � torig− tnew. From hereon the term optimization will

denote an effort to accelerate computational runtime by any increment. This will be

in particular reference to two systems, multi-core CPUs and linked GPUs. The focus

will be primarily on the latter, nonetheless CPU techniques will be discussed in brief

in order to construct a valid comparison.

CPU based linearized inversion

For optimisation, it is imperative to understand the architecture of the given card(s).

Figure 6.1 shows a simplified diagram of the separate memory levels for a typical

four-core CPU node (modern nodes may contain eight or sixteen cores, this is for

illustrative purposes.) Each core features an FPU (Floating Point Unit), which per-

forms the arithmetic, three individual memory levels (local to each FPU and only

accessible from that FPU) and two larger memory levels, accessible to all FPUs on

the node. As ‘distance’ from the FPU increases so does both size and latency of the
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memory level; latency is a measure of the time taken to transfer a byte from a given

memory location to the FPU.

Figure 6.1: Diagram of the memory layout of a typical multi-core CPU node. As
distance from the Floating Point Unit (FPU) increases, so does both the size and

latency of the memory unit. [NR] chap6/. multicpu

From this model there are already two options to consider - the fact there are

multiple arithmetic units, and the fact there are memory levels of different latencies.

Initially, making use of the additional FPUs will be addressed. There are many

programming languages that can take advantage of multiple CPU cores on a single

node - MPI, POSIX, Python etc, however this discussion will be limited to OpenMP

(Chapman et al., 2008). OpenMP is an advantageous choice due to the ease of its

initial implementation; only a few additional directives are required in order to make

a code run over all available cores. For high performance optimization this is also

it’s disadvantage, since these compute threads are not strictly independent and speed

up saturates. However, the goal of this discussion is to provide a semi-optimized

CPU code for reasonable GPU comparison, hence OpenMP plus some additional

optimization is acceptable. Of course, when it comes to parallel programming one is

fundamentally limited by the serial sections of the process, and speed up saturation is
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also seen due to this. This phenomenon is known as Amdahl’s Law (Amdahl, 1967).

Modern CPU nodes allow multi-threading, whereby a given core can run multiple

threads. For some applications this can be an advantage, but due to the size of the

fields allocated in seismic wave propagation and the relative operation-to-read count

more often than not multi-threading results in a performance decrease. Due to this

only one thread per core will be used, so during CPU discussions these terms can

be considered interchangeable. OpenMP directives were added to the outer (slowest)

loop of the propagation kernel (Chapman et al., 2008). The node used comprised of

an Intel Nehalem CPU running eight independent cores, tests were run on one, two,

four and eight cores. The results of improved run times can be seen in Figure 6.2.
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Figure 6.2: Compute speed (million models pts calculated per second) against imple-

mentation. [NR] chap6/. cpuspeeds

Noticeably, run times improved. However we see the relative speed up as a function

of number-of-cores saturate very quickly; this is due to a number of reasons specific

to CPU architecture. These explanations revolve around moving between shared

memory spaces and the context switching necessary to do this. While the latter of

these issues is unavoidable, the former can be addressed by further considering the

memory levels shown in Figure 6.1.

To make full use of these low latency (cached) memories it is desirable to fill
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them with information that will either be re-used in the algorithm, or fill them with

values that are aligned for computation (contiguous). This is called temporal and

spatial locality (Denning, 2005). Spatial locality refers to values close to each other

in physical memory, particularly those that may be read in a cache line; temporal

locality refers to values that have been read into a cached memory already and can

be efficiently reused before they are flushed.

For wave propagation, values that could be reused are local wavefield values (used

for the derivative) and local velocity values (reused during adjoint propagation).

When convolving with the finite-difference stencil run-times will be much faster if

the information needed resides on L1 or L2 memory. Once the code reaches for values

in L3 or global memory then run times can increase dramatically. Whilst L1, L2

and register memory feature very low latency they are both very limited in size and

for generic (non-machine specific) coding there is no explicit control over how the

memories are used. It is possible to encourage the CPU to fill and re-use the cache

levels in certain ways however it is very easy to pollute these cached memories.

A typical velocity field is of the order of 1000x1000x1000 model points in the three

Cartesian directions, stored in 4-bit precision, giving a total size of 4 Gbytes. This

is clearly vastly larger than even L3 memory so the problem must be divided into

smaller blocks, this is called ‘blocking’ which is a type of ‘domain decomposition.’

The stencil used is a symmetric 8th order finite difference stencil, making it 25 pts

(in 3D).

Initial estimates of how large to construct these blocks is to ensure they fit into L2

memory, thus individual FPUs do not have to access shared memory spaces in order to

perform the key computations. Secondly, the shape of the blocks must be considered.

The stencil is applied by looping over the three principle axes, with the loop over the

inner axis being the ‘fast’ axis (the axis along which memory is contiguous.) This

is the only axis for which it is possible to be confident over efficient memory reuse

(spatial locality), so the most efficient cache coherency is observed by constructing

long, thing, ‘pencil’ shaped blocks. In this working example the fastest axis is the

depth (z) axis; by making the length of this axis substantially longer than the other
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two (x and y) then a speed up of around double is observed, purely through blocking.

Doubling the compute speed is a promising result, however it is far below the

maximum possible speed up. A new plot detailing how blocking can assist in prop-

agation speeds can be seen in Figure 6.3. It would be possible to further optimize

the block size and the way the third axis is looped over; it would also be possible

to extend the optimization attempt to take advantage of the vector units contained

within the CPU cores. However the next step within this thesis will be to consider

how GPU computing can assist the acceleration of acoustic wave propagation. The

attempt described herein for CPU optimization creates a valid comparison to GPU

run times, since both multi-threading and memory caches have been used to improve

run times.
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Figure 6.3: Compute speed (million models pts calculated per second) against imple-

mentation. [NR] chap6/. blockspeeds

GPU BASED LINEARIZED INVERSION

Graphical Processing Units (GPUs) have been present inside computers for decades.

They feature a highly parallel specialized electronic circuit which traditionally is used

to output graphics to a display. The inception of General Purpose GPUs (GPG-

PUs) in the early 2000s allowed practical computing on these devices by virtue of
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manipulatable floating point support (Fung et al., 2002), however it wasn’t until the

advent of CUDA (Compute Unified Device Architecture), by NVIDIA in 2007, that

the potential of this new programming paradigm could be easily harnessed by general

developers (Manavski and Valle, 2008).

Many of the world’s largest supercomputers now feature CPU-GPU hybrid capa-

bility. CUDA is very similar to C, but also allows GPU specific routines (kernels) to

be written and run. Generally the CPU is referred to as the ‘host,’ and the GPU

as the ‘device.’ For efficient GPU implementation an algorithm must feature two

key characteristics: it must be scalable and parallelizable. The former of these simply

means that as the problem size is reduced or increased the relative performance should

be roughly preserved; this requirement is needed because the GPU primarily relies on

fine-grain parallelization. The latter means that the problem must be able to broken

into smaller sections that can operate, at least for a period, independently. Any al-

gorithm that fits these criteria should be accelerated via GPU computation ((Ohmer

et al., 2005); (Foltinek et al., 2009)). Certain methodologies, such as some classes of

triangulation, can be slowed down when ported to a GPU, but the vast majority of

algorithms can be adapted to harness the parallel power of GPU computing.

Figure 6.4 demonstrates the layout for a simplified GPU, and this can be compared

to Figure 6.1, which shows the layout for a simplified multi-core CPU (the corol-

lary, in this case). The GPU layout features many more Streaming Multi-Processors

(SMPs) than that CPU; whilst a typical CPU will have around 8 cores (without

multi-threading), a given GPU can have upwards of 1536. The exact cards used for

the majority of this study were the Nvidia Fermi M2090 cards, which each feature 512

SMPs. However the true parallel power of the GPU is not exhibited solely due to these

increased numbers, but by the fact that these individual SMPs (or thread-blocks) can

operate 100% independently, without the need for context switching. Whereas the

individual FPUs on a CPU node can operate simultaneously, the layout requires con-

stant communication between memory levels and FPUs, which (especially for a naive

implementation) severely inhibits performance (Mallón et al., 2009).

Furthermore, each of these thread-blocks is divided into a two-dimensional grid
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Figure 6.4: Schematic for a given GPU architecture, demonstrating how the grid
is broken into two-dimensional thread blocks, which are broken up into individual
threads. [NR] chap6/. GPUarch
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of threads (figure 6.4). These ‘threads’ are the individual processors that perform

the work; similarly to the thread-blocks, many threads can run independently and

simultaneously. The caveat is that each thread must be performing exactly the same

task (both within and across SMPs) on a reduced portion of the problem - hence, the

algorithm must be scalable and parallelizable. By executing thousands of these indi-

vidual threads simultaneously all latency is effectively hidden, and very high levels of

multiple parallelism are possible. This latency hiding through mass thread execution

is what allows the GPU to operate at such a high bandwidth.

The different memory levels of the GPU are shown in figure 6.5, again this can

be compared to figure 6.1. Each thread-block features an individual and unique

shared memory level, values stored here can be different between thread-blocks. This

is analogous to the L1 cache in the CPU - only around 16kb or 32kb in size, and

very low latency. Additionally, each thread has a separate local memory and set of

registers, but these have to same for every thread across the whole GPU. The memory

levels of significant size are global, texture, and constant memory, and these all share

the 6 Gbytes of DRAM on the card (for the M2090, other vintages vary in DRAM

size). These are similar to the global memory on the CPU; they are shared between

all SMPs and have a much larger latency. In fact the latency for a thread to access

data from the GPU global memory can be up to four times as large as that for a given

FPU to access data in the CPU global memory. Thus for the GPU to out-perform

the CPU intelligent use of shared memory is imperative, in addition to concurrent

thread execution.

Single card GPU optimization

The global memory on a single GPU card is drastically smaller than a CPU. A Fermi

M2090 features 6 Gbytes of addressable RAM, whereas a typical CPU node might

feature 16x, 32x, or even more times this. Concordantly, a solution that uses multiple

GPUs must be used, such that large 3D problems can be solved. However, developing

an optimized single card solution for a modest problem size is the first step for both
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code testing and strong scaling performance evaluation.

To maximize single card performance it is important to understand how groups

of threads are executed. When a kernel is written and called it gives each thread the

same set of instructions to execute, and understanding which memory points these

threads access is crucial. During execution threads are grouped into warps, which

are simply a set of 32 aligned threads. A single warp is able to access 32 bytes (a

GPU cache line), essentially for free. Any thread within this warp can access any of

these bytes with negligible latency, however if a thread tries to access an address that

belongs to a different warp then context switching must be used, which briefly stalls

the bus. Figure 6.6 demonstrates this pictorially. Initially each thread is accessing a

single memory point within it’s warp, and bus utilization is 100%. Next, each thread

is operating on scattered memory points within the warp, but because it does not

reach outside the given 32 bytes bus utilization is still 100%. In the third case the

address that the threads are instructed to access do not all lie within the correct warp

and there is a systematic shift, this creates a stall and utilization is reduced to 80%.

Fortunately, for finite-difference type operations warp alignment can be often be

achieved by simple padding. In the case of applying an 8th order finite difference

stencil out-of-warp access occurs due to the half-stencil width (halo) reaching outside

of the warp, the case shown in figure 6.6. Padding the computational domain, at the

beginning, by 28 points instigated a performance increase of almost 20% because this

systematic shift was negated.

Whilst warp alignment is important for maximizing GPU performance potential,

ensuring that the memory levels are used optimally is far more crucial. If, for ex-

ample, an RTM implementation does not make use of shared memory then the GPU

exhibits a worse performance than an eight core CPU node. This is entirely due to

the aforementioned high latency of GPU global memory, despite the high level of

parallelism. The implementation must aim to minimize any global memory access

during thread execution. For the propagator the difference between CPU and GPU

compute speeds can be seen in Figure 6.11. Note that the most naive GPU method-

ology, which does not use shared memory, is slower than the 8-core, blocked CPU
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Figure 6.6: Diagram of warp alignment with memory requests. The above two cases
feature 100% bus utilization, the bottom case has 80% due to misaligned memory
accesses. [NR] chap6/. warps
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Figure 6.7: Compute speed (million models pts calculated per second) against imple-

mentation. [NR] chap6/. gpuspeeds

Random boundaries

A major bottleneck in RTM stems from the complex conjugate in equation 2.5. The

consequence of this is that the sense of time for the source wavefield is opposite to

the receiver (data) wavefield, thus one of these must either be stored or propagated

twice (Baysal et al., 1983).

There have been multiple solutions to this source wavefield problem, such as

source wavefield saving, checkpointing (Symes, 2007), compressive sensing and ran-

dom boundaries (Clapp, 2008). The most intuitive solution is the first of these - to

simply save the entire source wavefield and read back the correct sections as neces-

sary. This will often cause an I/O bottleneck as disk access can be very slow. This

methodology when using a GPU is disadvantageous; the GPU can not read from the



147

disk so all disk access must be first routed through the CPU. This creates even more

of a bottleneck, especially since now propagation is accelerated, disk access appears

as a larger time fraction. On the system used for these tests, disk access stagnates

at around 200 Mbytes/second. Checkpointing is a way of favoring extra computa-

tion over disk access, and under certain circumstances can provide advantages for

CPU based RTM. However it requires multiples source wavefield slices to be held in

memory concurrently, and the global memory of the GPU cannot support this.

Random boundary based RTM favors extra computation over disk access; all disk

based wavefield access can be mitigated. Generally, absorbing domain boundaries are

used, this is to avoid high-amplitude, coherent and non-physical boundary reflections.

Simply put, any wavefield incident on the computational boundary is artificially re-

moved before it can reflect. These conditions work well for artifact reduction, however

the conservation of energy is violated and this propagation is not time reversible. If

source propagation was time reversible then disk access during the adjoint process

could be avoided. It is possible to instead pad the domain with an increasingly ran-

dom velocity field. An incident wave will scatter incoherently as it approaches the

boundary, and no energy is artificially removed.

Thus, by randomly padding the domain, propagating the wavefield to the final

two time slices and saving these, it is possible to reverse the sense of time and exactly

recover the initial wavefield (to within machine precision.) Practically, for RTM the

source wavefield can first be propagated and the final slices saved, then when back

propagating the receiver the source can be back propagated concurrently, and the

imaging condition applied at each appropriate time step. This is summarized in

algorithms 7 and 8.

Of course, this technique introduces significant quantities of random noise into the

system. Fortunately, this noise is random and incoherent, and will stack out between

time steps and between stacked shots. This noise reduction follows a random walk

type reduction, and experience shows that by using ten seismic sources or more that

this random noise has already been reduced to background noise levels.
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Algorithm 7 RTM with source reading

while it < nt; it++ do
Propagate source wavefield
if imaging time step then

Save source wavefield slice to disk
end if

end while
while it > 0; it– do

Propagate receiver wavefield
if at imaging time step then

Read source wavefield slice
Correlate source and receiver

end if
end while

Algorithm 8 RTM with random boundaries

while it < nt; it++ do
Propagate source wavefield
if it=nt or it=nt-1 then

Save source wavefield slice to disk
end if

end while
while it > 0; it– do

if it=0 then
Read source wavefield slices

end if
Propagate receiver wavefield
Propagate source wavefield
if at imaging time step then

Correlate source and receiver
end if

end while
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Figure 6.8: Visual representations of how I/O balances relative to other operations
for four GPU based RTM scenarios: disk based wavefield access, asynchronous disk
based wavefield access, CPU DRAM based wavefield access and GPU based random-
boundary wavefield re-computation. [NR] chap6/. ratios

A valid measure of how well a system is being used is to look at how much time

is spent on computation and I/O as a function of the total time. Figure 6.8 shows

such a breakdown for four separate methods (all GPU based). These are disk based

RTM, asynchronous disk based RTM, CPU DRAM based RTM and finally random

boundary based RTM. Only the last of these is computationally dominated. Given

that the random boundary noise is rarely a problem, it can be concluded that this

adaptation is the best suited for the given computers.

Extension to multiple GPUs

The bulk of this research was carried out in 2011 and 2012 when the Fermi M2090

cards and CUDA 4.0 were the state-of-the-art in GPU computing. For the following

discussion the compute nodes used each contained 8 Fermi M2090 GPUs, each with

6 Gbytes of global memory (48 Gbytes combined), and 24 CPU cores, each with with
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8 Gbytes global memory (192 Gbytes combined).

For the most simple RTM implementation seven fields of significant (3D) size

must be allocated on the GPU - two source wavefields, two receiver wavefields, the

velocity model, the image estimate, and the data. Since an individual Fermi M2090

card possesses 6 Gbytes of memory this limits the potential model size to just over

600pts3. Many contemporary imaging targets are far larger than this, so an approach

that can accommodate larger models must be used.

The fact there are multiple GPUs per node can be taken advantage of. They have a

combined global storage of 48 Gbytes, making the new potential image size 1900pts3.

Through domain decomposition the full combined memory space can be utilized.

Given a large 3D volume there are many ways to perform domain decomposition;

for now decomposition into equally sized blocks is assumed. Due to the ‘tree’ layout

of how the GPUs are linked it only makes sense to split the domain along a single

axis, then the overlapping region for a given sub-domain lies on the GPUs ‘left’ and

‘right’ of the current GPU. Furthermore if this decomposition is performed along the

slowest axis then this overlapping region (needed for communication) is contiguous

in memory. Figure 6.9 shows this for the situation where the y-axis is the slow axis.

The domain is split evenly along y and the overlapping regions for, say, GPU 1, lie

on GPU 0 and GPU 2. These sub-domains overlap by the stencil width, so that the

convolution can be applied correctly across these boundaries.

How these regions overlap is shown in Figure 6.10, the overlap is equal to the

stencil width and the half stencil width region is often referred to as the ‘halo’. To

apply the convolution each GPU needs its halo region to be updated; it receives these

values from its neighboring GPU(s).

An additional benefit of CUDA 4.0 is the ability to perform calculations and mem-

ory transfer operations simultaneously. Thus, by staggering some of the calculation

it is possible to almost entirely hide the communication (halo update) part of the

propagation. Initially, each GPU will run a kernel that only calculates the values of

the region that it’s neighbors will need (their halo region.) So GPU 0 will calculate
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Figure 6.9: Breaking the computational domain across multiple GPUs, dark grey
indicates the overlapped area between neighboring GPUs. [NR] chap6/. domdec

the halo region of GPU 1, GPU 1 will calculate the right-side halo region of GPU

0 and the left-side halo region of GPU 2 etc. (Figure 6.10). Once all these transfer

regions have been calculated then a new set of kernels can start running to calculate

the rest of the wavefield (internal regions). While the internal calculation is being

performed a set of asynchronous memory copies can be initiated, which transfers the

halo values between GPUs to their appropriate spots.

The connections between GPUs are known as PCIe links, and these are duplex.

Thus they can send and receive at the same time, as long as the directions are opposite.

GPU 1 can receive information from GPU 0 and send information to GPU 2 at the

same time, but could not send and receive to GPU 0 at the same time. Consequently,

to complete the full set of transfers initially each GPU will send to the right (higher

GPU index) and receive from the left. Then, send left and receive right. After this

has completed each GPU will have its halo regions updated to the correct values. If

this communication time is less than the time to complete the internal calculation

then the communication is effectively hidden - there is no waiting time involved with
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Figure 6.10: Staggered representation for halo region transfer. Initially all GPUs
send to the ‘right’ and receive from the ‘left,’ then the order is reversed. [NR]

chap6/. halos



153

1 

2 

3 

4 

5 

6 

7 

8 

1  2  3  4  5  6  7  8 

N
or
m
al
is
ed

 c
om

pu
te
 s
pe

ed
 

Number of GPUs 

Rela>ve speed vs number of GPUs 

Async source 

Adjoint 

Forward 

Sync source 

Figure 6.11: How the individual linearized inversion operations scale with the number
of GPUs used, relative to normalized computational speeds. [NR] chap6/. speeds

the decomposition scheme. There is a small overhead cost associated with splitting

the halo and internal calculations, but this is just a few percent. The sequence in

abridged CUDA can be seen below for reference.

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaSetDevice(i_gpu);

kernel<<<...halo_region[],halo_stream[i_gpu]>>>(...);

kernel<<<...internal_region[],internal_stream[i_gpu]>>>(...);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaMemcpyPeerAsync(...halo_stream[i_gpu]);

}

for(i_gpu=0; i_gpu < n\_gpus; i_gpu++){

cudaStreamSynchronise(...halo_stream[igpu]);

}
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for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaMemcpyPeerAsync(...halo_stream[i_gpu]);

}

for(i_gpu=0; i_gpu < n_gpus; i_gpu++){

cudaDeviceSynchronise();

}

To judge how well the communication-hidden domain decomposition works one

can begin with a model size that fits on a single GPU. The same imaging procedure

can then be used for two, four and eight GPUs and their normalized compute speeds

can be plotted as function of the number of GPUs used. This is known as a ‘stong

scaling’ test. Figure 6.11 shows the results. In purple the speed-ups observed without

communication hiding are plotted. The speed up quickly saturates, similar to the

naive OpenMP efforts discussed earlier. However, for both the propagation (blue)

the full forward process (green) and the full adjoint process (red) the speed up is

very close to linear. This means the communication has been effectively hidden and

decomposing a problem across 8 GPUs will give close to 8x the computational speed.

BEYOND ACOUSTIC GPU PROPAGATION

The majority of this thesis study used acoustic wave propagation, to describe how

energy moves through the Earth. As discussed in Chapter 5, the field dataset used

was acquired over a section of the Earth where these acoustic assumptions were

too inaccurate. The provided models described the target area as Tilted Transverse

Isotropic (TTI), which results in a more computationally intensive propagation kernel,

and many more significant allocations necessary.

The full mathematical description of TTI based propagation involved many details

unnecessary to this thesis discussion, but an approach as described by Fletcher et al.

(2009) was used, and a kernel written by Paulius Micikevicius was implemented.

The major issue with adapting this provided kernel was that of memory allocation.
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The test example was over a very small model, where many 3D field allocations

was not a concern. For acoustic propagation, seven large fields must be allocation

- two receiver wavefield snapshots, two source wavefield snapshots, the image, the

velocity model, and the recorded data. TTI propagation decomposes both sets of

wavefields into two components, requires an intermediate derivative calucation for

both wavefields, and uses four additional Earth model components. This results in

eight allocations per wavefield, and a total of 23 significant allocations.

This many allocations over 8 GPUs, in terms of memory requirements, is analogous

to four times the memory needed for acoustic propagation. Fortunately, a few tricks

could be used to make 3D GPU based TTI propagation viable for such a large dataset.

Firstly, these aforementioned intermediate derivative fields are not updated be-

tween propagation steps, they depend only on the inputs for a given time. This

means the computation for the source wavefield and the receiver wavefield can be

performed sequentially, and the intermediate fields zeroed and re-used. This saves

two allocations, and only increases propagation time by a fraction of a percent.

Secondly, the four anisotropic parameters do not require a large dynamic range

for storage. The Thomsen parameters (Thomsen, 1986), ε and δ, vary between 0 and

0.3, with a required precision of two decimal places. The angular parameters, φ and

θ, very between 0 and π, with a similar required precision. CUDA provides support

for half-integer storage, and by storing these parameters in unsigned-short arrays, all

four fields take up the equivalent space of two fields - saving another two allocations.

Thirdly, the full shot does not need to be allocated on the GPU at all times, only

the necessary time slices for injection and propagation. This means the shot can be

streamed as it is propagated, requiring much less GPU space. To account for the

fact that the data is more coarsely sampled than the necessary propagation interval,

an eight-point since interpolator is used. Thus, at the minimum, only eight time

slices of the data need to be resident on the GPU. However, if only eight slices are

used then there must be CPU-GPU transfers at every imaging time step, as the next

data time-slice will need to be transferred. Instead, a block of, say, 100 slices can be
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allocated on the GPU. Once these slices have all been propagated into the model, this

array can be flushed and re-filled with the next hundred slices. This method increases

overhead by a few percent, but makes the data allocation essentially negligible.

For the given dataset, these three techniques reduced the necessary allocations to

the point where imaging was now viable.

EXTENDED BORN MODELING

Chapter 4 referenced that extended Born modeling posed an additional computation

issue, when compared to extended RTM. This is, again, due to the asymmetry of the

CPU-GPU compute nodes.

During extended imaging, there is some flexibility when it comes to implemen-

tation. Each shot is independent, as are the source and receiver wavefields, and the

output image is stacked over time, t. This means, given a CPU-GPU node, it is

possible to overlap the propagation of one shot with the imaging of another. The

first shot, Si, is propagated on the GPU, and the wavefields are saved (either to CPU

DRAM or disk, depending on size.) The next shot, Si+1, can begin propagation on

the GPU. Concurrently, a series of CPU threads can perform the extended imaging

for shot Si. This overlapping of imaging and propagation can result in significant

savings.

For extended Born modeling, the source and receiver wavefields are not indepen-

dent. Propagating the receiver wavefield is contingent on the source wavefield, after

convolution with the image. As a result it is not possible to overlap the convolution

of one source with the propagation of another.

CONCLUSIONS

There are many options for accelerating linearized optimization, and the best ap-

proach depends strongly on the computational system at one’s disposal. For a set of
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multi-core CPU nodes then a straight OpenMP solution to accelerating the compu-

tation quickly saturates as a function of cores. By breaking the domain into sets of

blocks to attempt a better cache performance a performance increase is seen, however

it is far from the theoretical performance.

GPUs are a clear option since they are designed to perform with algorithms capa-

ble of fine-grain parallelization, such as time-domain finite-difference wave propaga-

tion. For single card performance fast speeds are observed for the propagator alone,

but for use with RTM the source wavefield I/O problem must be addressed. Disk

access during propagation can be mitigated by using a random boundary condition

and favoring computation over communication. Such a scheme is the only implemen-

tation that is dominated by compute rather than I/O, giving excellent performance

compared to the parallel CPU scheme.

The memory size of a single GPU is restrictive. By attaching several GPUs to a

single node it is possible to break the computational domain across multiple GPUs,

allowing larger models to be used. Such a method requires communication between re-

gions between time steps, which can result in performance saturation with additional

GPUs. By breaking the computation into multiple steps and using asynchronous

memory transfers it is possible to entirely hide the communication, resulting in a

close to linear speed up with additional GPUs.
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Doallo, and J. C. Mouriño, 2009, Performance evaluation of mpi, upc and openmp

on multicore architectures: Proceedings of the 16th European PVM/MPI Users’

Group Meeting on Recent Advances in Parallel Virtual Machine and Message Pass-

ing Interface, 174–184, Springer-Verlag.

Manavski, S. and G. Valle, 2008, Cuda compatible gpu cards as efficient hardware

accelerators for smith-waterman sequence alignment.: BMC Bioinformatics, 9.

Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the

scalar and elastic wave equations: Geophysics, 49, 533–549.

Moczo, P., J. Kristek, M. Galis, P. Pazak, and M. Balazovjech, 2007, The finite-

difference and finite-element modeling of seismic wave propagation and earthquake

motion: Acta physica slovaca, 57.

Moore, I., B. Dragoset, T. Ommundsen, D. Wilson, D. Eke, C. Ward, et al., 2008,

Simultaneous source separation using dithered sources: Presented at the 2008 SEG



164 BIBLIOGRAPHY

Annual Meeting.

Morton, S. A. and C. C. Ober, 1998, Faster shot-record depth migrations using phase

encoding: Technical report, Sandia National Labs., Albuquerque, NM (United

States).

Mulder, W., 2001, Higher-order mass-lumped finite elements for the wave equation:

Journal of Computational Acoustics, 9, 671–680.

Mulder, W. A. and R.-E. Plessix, 2004, A comparison between one-way and two-way

wave-equation migration: Geophysics, 69, 1491–1504.

Neelamani, R., C. E. Krohn, J. R. Krebs, J. K. Romberg, M. Deffenbaugh, and J. E.

Anderson, 2010, Efficient seismic forward modeling using simultaneous random

sources and sparsity: Geophysics, 75, WB15–WB27.

Nemeth, T., 1996, Imaging and filtering by least-squares migration: PhD thesis, The

University of Utah.

Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-squares migration of incomplete

reflection data: Geophysics, 64, 208–221.

Ober, C. C., L. A. Romero, and D. C. Ghiglia, 2000, Method of migrating seismic

records: Technical report, SANDIA CORP.

Ohmer, J., F. Maire, and R. Brown, 2005, Implementation of kernel methods on the

GPU: DICTA’05 Expanded Abstracts, 78.

Pan, G., R. A. Phinney, and R. I. Odom, 1988, Full-waveform inversion of plane-wave

seismograms in stratified acoustic media: Theory and feasibility: Geophysics, 53,

21–31.

Pecholcs, P. I., S. K. Lafon, H. Al-Shammery, P. G. Kelamis, O. Winter, J.-B. Ker-

boul, and T. Klein, 2010, Over 40,000 vps per day–with real-time quality control:

Opportunities and challenges: 80th Annual International Meeting, SEG, Expanded

Abstracts, 111–114.

Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, part 1:

Theory and verification in a physical scale model: Geophysics, 64, 888–901.

Romero, L. A., D. C. Ghiglia, C. C. Ober, and S. A. Morton, 1999, Phase encoding

of shot records in prestack migration: Geophysics, 65, 426–436.

——–, 2000, Phase encoding of shot records in prestack migration: Geophysics, 65,



BIBLIOGRAPHY 165

426–436.

Sava, P., B. Biondi, et al., 2003, Wave-equation migration velocity analysis by in-

version of differential image perturbations: 73rd Ann. Internat. Mtg Soc. of Expl.

Geophys., submitted.

Sava, P. and A. Guitton, 2005, Multiple attenuation in the image space: Geophysics,

70, V10–V20.

Sava, P. and I. Vasconcelos, 2011, Extended imaging conditions for wave-equation

migration: Geophysical Prospecting, 59, 35–55.

Shubin, G. R. and J. B. Bell, 1987, A modified equation approach to constructing

fourth order methods for acoustic wave propagation: SIAM Journal on Scientific

and Statistical Computing, 8, 135–151.

Sirgue, L., J. T. Etgen, U. Albertin, and S. Brandsberg-Dahl, 2010, System and

method for 3d frequency domain waveform inversion based on 3d time-domain

forward modeling. (US Patent 7,725,266).

Spitz, S., A. Pica, G. Hampson, et al., 2008, Simultaneous source separation: a

prediction-subtraction approach: Presented at the 2008 SEG Annual Meeting.

Stefani, J., G. Hampson, and E. Herkenhoff, 2007, Acquisition using simultaneous

sources: Presented at the 69th EAGE Conference & Exhibition.

Steihaug, T., 1983, The conjugate gradient method and trust regions in large scale

optimization: SIAM Journal on Numerical Analysis, 20, 626–637.

Symes, W., 2007, Reverse time migration with optimal check pointing: Geophysics,

72, 213–221.

Symes, W. and J. J. Carazzone, 1991, Velocity inversion by differential semblance

optimization: Geophysics, 56, 654–663.

Tang, Y. and B. Biondi, 2009, Least square migration/inversion of blended data: SEG

Expanded Abstracts, 28, 2859–2863.

——–, 2011, Target-oriented wavefield tomography using synthesized born data: Geo-

physics, 76, WB191–WB207.

Tang, Y., B. Biondi, et al., 2009, Least-squares migration/inversion of blended data:

SEG Technical Program Expanded Abstracts, 2859–2863.



166 BIBLIOGRAPHY

Tarantola, A., 1984a, Inversion of seismic reflection data in the acoustic approxima-

tion: Geophysics, 49, 1259–1266.

——–, 1984b, Linearized inversion of seismic reflection data: Geophysical prospecting,

32, 998–1015.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.

Tsvankin, I. and L. Thomsen, 1995, Inversion of reflection traveltimes for transverse

isotropy: Geophysics, 60, 1095–1107.

van Leeuwen, T., A. Y. Aravkin, and F. J. Herrmann, 2011, Seismic waveform inver-

sion by stochastic optimization: International Journal of Geophysics, 2011.

Verschuur, D., A. Berkhout, et al., 2009, Target-oriented least-squares imaging of

blended data: Presented at the 2009 SEG Annual Meeting.

Versteeg, R., 1994, The marmousi experience: Velocity model determination on a

synthetic complex data set: The Leading Edge, 13, 927–936.

Verwest, B. and D. Lin, 2007, Modelling the impact of wide-azimuth acquisition on

subsalt imaging: Geophysics, 72, 241–250.

Vigh, D., E. W. Starr, and J. Kapoor, 2009, Developing earth models with full wave-

form inversion: The Leading Edge, 28, 432–435.

Weibull, W. W. and B. Arntsen, 2014, Reverse-time demigration using the extended-

imaging condition: Geophysics, 79, WA97–WA105.

Wong, M., 2014, Imaging with multiples by least-squares reverse time migraiton.:

PhD thesis, Stanford University.

Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, 15–26.

Yoon, K., C. Shin, S. Suh, L. R. Lines, and S. Hong, 2003, 3d reverse-time migration

using the acoustic wave equation: An experience with the seg/eage data set: The

Leading Edge, 22, 38–41.

Zhang, L., J. W. Rector III, G. M. Hoversten, et al., 2003, An acoustic wave equation

for modeling in tilted ti media: 73rd Annual International Meeting, Society of

Exploration Geophysics, Expanded Abstracts, 153–156.

Zhang, Y. and L. Duan, 2013, Seismic data processing including predicting multiples

using a reverse time demigration. (US Patent App. 13/860,567).

Zhang, Y., J. Sun, S. Gray, et al., 2007, Reverse-time migration: amplitude and



BIBLIOGRAPHY 167

implementation issues: Presented at the 2007 SEG Annual Meeting.


