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ABSTRACT

Full-waveform inversion (FWI) generates a high-resolution subsurface model. Ro-
bust local minimization algorithms are required for FWI because the objective
function is highly nonlinear. In this paper we compare the nonlinear conju-
gate gradient method, Gauss-Newton method and full Newton method for FWI.
These methods use the gradient of objective function and application of Hes-
sian on a model perturbation vector, which can be calculated efficiently with the
adjoint-state methods. Numerical results suggest Newton-type methods resolve
fine structure faster than the nonlinear conjugate gradient method in terms of
number of wave propagation.

INTRODUCTION

Full-waveform inversion (Tarantola, 1984; Virieux and Operto, 2009) is a challenging
technique that estimates the high-resolution subsurface model by minimizing the
mismatch between observed data and synthetic data. The first order derivative is
usually needed for FWI, and the Hessian is used in Newton-type methods. It is
known that the adjoint-state method is an efficient method to compute the Frechet
derivative (Tromp et al., 2005; Plessix, 2006) and the Hessian (Fichtner, 2011; Fichtner
and Trampert, 2011) for FWI.

In this paper, we implement and compare FWI using three methods: nonlin-
ear conjugate gradient (CG) method (Nocedal and Wright, 2006; Maharramov and
Biondi, 2013), Gauss-Newton method and full Newton method (Pratt et al., 1998).
Nonlinear CG method requires the gradient at each iteration, and the model update
is computed based on the current gradient and previous gradient. For Gauss-Newton
method and full Newton method, the model update is calculated by applying the
approximated inverse of the Hessian to the gradient.

Simple synthetic models are used to test our implementation of FWI algorithms.
A model with pinch-out structures is constructed to test the vertical resolution of
different methods. A model with wells is used to test the horizontal resolution and
the ability to recover vertical structures. Numerical results suggest that Newton-
type methods converge faster than nonlinear CG method in terms of number of wave
propagation.
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We create synthetic model with fine structures based on the Society of Exploration
Geophysicists/European Association of Geoscientists and Engineers (SEG/EAGE)
model. Preliminary results suggest that Newton-type methods recover deeper struc-
ture better than the nonlinear CG method after the same number of wave propagation.

We briefly discuss the different rate of convergence in the last section.

METHOD

Full-waveform inversion for acoustic media

We use the least-squares misfit function for FWI in the time domain, as follows:

J(m) =
1

2

∑
r

∫ T

0

||Sru− dr||22dt, (1)

where Sr is the sampling operator for the receivers, dr is the observed data at the
receiver r, and u is the synthetic pressure wavefield.

The pressure field u is computed using the acoustic approximation of wave equa-
tion with a non-constant density, as follows:

[ 1
K

∂2
t − ∇̃ · (1

ρ
∇)]u = f

u(r, t = 0) = 0

∂tu(r, t = 0) = 0,

(2)

where K is the bulk modulus, ρ is the density, and f is the source wavefield. Numer-
ically, we solve equation 2 in the time domain using staggered-grid finite difference
method, starting from t = 0 to maximum recording time t = T.

We formulate FWI as a nonlinear optimization problem and solve it iteratively.
The Frechet derivate is estimated at each iteration based on the adjoint-state methods,
which requires the correlation of wavefield u with the receiver wavefield λ, which is
defined as follows:


[ 1
K

∂2
t −∇ · (1

ρ
∇̃)]λ = dres

λ(r, t = T ) = 0

∂tλ(r, t = T ) = 0,

(3)

where dres is the difference between synthetic data and observed data. The receiver
wavefield is computed backward in time, starting from the maximum recording time
t = T to t = 0.
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The acoustic wave equation 2 is used to model non-constant density media. We
implemented multi-parameter FWI in acoustic media. However, in this paper ρ is
assumed to be constant, and we estimate bulk modulus K, which is related to velocity
by, as follows:

v =

√
K

ρ
. (4)

Nonlinear conjugate gradient method

We implement the conjugate gradient method to minimize the objective function in
equation 1. A nonlinear CG method generates a sequence of estimated modulus Ki,
i ≥ 0, starting from initial guess K0.

Assume at iteration i, we have obtained the estimated model Ki. For the next
iteration, the gradient is calculated at gi = g(Ki) ≡ ∂J

∂Ki
. From the current gradient

gi and previous gradient gi−1, we get the search direction ∆Ki using the Fletcher
Reeves formula and Polak Ribire formula(Nocedal and Wright, 2006; Maharramov
and Biondi, 2013).

The local minimum of objective J(K) in the vicinity of Ki is estimated with the
line search approach, as follows:

αi = argminαJ(Ki + α∆Ki), (5)

and we update the model with,

Ki+1 = Ki + αi∆Ki. (6)

We do not solve the line search problem in equation 5 exactly because the evalu-
ation of J(Ki + α∆Ki) is expensive. We want an approximated solution with a few
iterations. The line search process is terminated once the Wolfe condition (Nocedal
and Wright, 2006) is satisfied, as follows:

J(Ki + α∆Ki) ≤ J(Ki) + c1αgi
T ∆Ki (7)

|∇J(Ki + α∆Ki)
T ∆Ki| ≤ c2|gi

T ∆Ki|, (8)

where 0 < c1 < c2 < 1, and ∇J is the gradient of objective function.

We continue this process, until the value of the objective function or the norm of
gradient is below a certain threshold.

The gradient used in the nonlinear CG method is computed with the adjoint-state
methods (Fichtner, 2011; Fichtner and Trampert, 2011), shown in the following:

g(K) =
∂J

∂K
= −

∫ T

0

λ
1

K2
∂2

t udt, (9)
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where the source wavefield u satisfies equation 2, and receiver wavefield λ is obtained
from equation 2. The details of derivation are shown in the appendix, with multipa-
rameter model:

m =

[
1/K
1/ρ

]
. (10)

Full Newton method and Gauss-Newton method

Consider the second order expansion of objective function, as follows:

J(K + ∆K) = J(K) +

(
∂J

∂K

)T

∆K +
1

2
∆KH(K)∆K + O(∆K3), (11)

where the full Hessian H is the second order derivative of the objective function,

H =
∂2J

∂K2

=

(
∂J

∂K

)T (
∂J

∂K

)
+ dres

T ∂2(Sru)

∂K2
.

The Hessian is reduced to Gauss-Newton Hessian HGN by dropping the second
term, as follows:

HGN =

(
∂J

∂K

)T (
∂J

∂K

)
(12)

For the full Newton method and Gauss-Newton method, suppose at iteration
i > 0, we have obtained modulus Ki. For the next iteration, the gradient g(Ki) is
calculated with equation 9. We scale the gradient by applying the inverse of Hessian,
as follows:

∆Ki = −H−1g(Ki). (13)

Then we use the line search approach to find the estimate model for the next
iteration,

αi = argminαJ(Ki + α∆Ki) (14)

Ki+1 = Ki + αi∆Ki. (15)

One advantage of the full Newton method is that when Ki is close to the solution,
we will have αi → 1.
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The inverse of Hessian −H−1g(Ki) is approximated iteratively, which requires the
action of Hessian on a model perturbation vector H∆K. The action of Hessian can
be computed efficiently using the adjoint-state method, as follows:

H∆K = −∆K

K2

∫ T

0

(µa(x, t) + µb(x, t))∂2
t u(x, t)dt− ∆K

K2

∫ T

0

λ(x, t)∂2
t δu1(x, t)dt,

(16)

with source wavefield u, λ from the forward wave propagation, and receiver wavefield
µa, µb and λ from the backward wave propagation, as follows:

[mK∂2
t − ∇̃ · (mρ∇)]u = f

[ 1
K

∂2
t − ∇̃ · (1

ρ
∇)]∗λ =

∑
r S∗

r (Sru− dr)

[mK∂2
t − ∇̃ · (mρ∇)]δu1 = [∆mK∂2

t − ∇̃ · (∆mρ∇)]u

[mK∂2
t − ∇̃ · (mρ∇)]∗µa = S∗

rSrδu1

[mK∂2
t − ∇̃ · (mρ∇)]∗µb = [∆mK∂2

t − ∇̃ · (∆mρ∇)]∗λ,

(17)

where we use mK ≡ 1
K

and mρ ≡ 1
ρ
. The corresponding model perturbations are

∆mK = −∆K
K2 and ∆mρ = −∆ρ

ρ2 .

For the Gauss-Newton Hessian, the action can be expressed as the following:

HGN∆K = −∆K

K2

∫ T

0

µa(r, t)∂
2
t u(r, t)dt. (18)

We put the detailed derivation of the Hessian in the appendix with multiparameter
model m = (1/K, 1/ρ). The approximation of the inverse of the Hessian is expensive
both in computation time and memory.

RESULTS

Simple synthetic models

We initially test the nonlinear CG method, Gauss-Newton method and full Newton
method on simple synthetic models. We use 10 sources with 300 m spacing between
neighboring sources. The depth of the sources is 650 m, and the receivers are at the
same depth as the sources.

Each model is solved with nonlinear CG method for 50 iterations (150 wave prop-
agation for pinch-out model and 166 wave propagation for model contains vertical
wells). Four iterations of the full Newton method (160 wave propagation) and Gauss-
Newton method (120 wave propagation) are applied, and at each iteration we solve
∆K = H−1(−g) for 10 CG steps.

The first model Figure 1 contains 5 thin layers with 60−meter(m) thickness, and
pinch-out structure. The model has velocity 2400 m/s with source wavelet centered
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at approximately 30 Hz. The layers are within the resolution of FWI, while the thin
part of the pinch-out is below the resolution. In Figure 3, we plot the objective
function versus the number of wave propagation for different methods. Newton-type
methods converge faster than the nonlinear CG method in terms of computational
cost. We can see the inversion results for the pinch-out model in Figure 2, after 120
wave propagation. Newton-type methods reconstruct sharper boundary comparing
with the nonlinear CG method.

The second model shown in Figure 4 contains two vertical wells with 100 m and
30m width. The objective function versus the number of wave propagation for differ-
ent methods is shown in Figure 6. We can see the inversion results in Figure 5. For
the Newton-type methods, the location of the vertical well is identified properly, while
the parameter within the well cannot be properly estimated. On the other hand, the
nonlinear CG method has not resolved the deeper part of the 100 m well and has not
clearly identified the 30 m well.

SEG/SEAM model

The full Newton method and Gauss-Newton method use the quadratic approximation
of the objective function, and ideally they should have better resolution comparing
with the nonlinear CG method. They should converge faster when we are close to the
true model. In this subsection, we create a synthetic model based on SEG/EAGE
model as in Figure 7. We use 10 sources with 300 m spacing between neighboring
sources. The depth of the sources is 650 m, and the receivers are at the same depth
as the sources.

We run the nonlinear CG method for 100 iterations. We apply Full Newton
method and Gauss-Newton method for 4 iterations; and at each iteration, we solve
∆K = H−1(−g) for 15 CG steps. The objective versus the number of wave propaga-
tion is shown in Figure 9. We can see that the Newton-type methods converge faster
than the nonlinear CG method, at the same computational cost.

We plot the inversion results after 180 wave propagation (56 iterations for the
nonlinear CG method, 4 iterations of Gauss-Newton method, and 3 iterations of full
Newton method) in Figure 8. We can see significant difference below 1100m. The
nonlinear CG method has not resolved the structure, and the Newton-type methods
have reconstructed the fine structure. The Gauss-Newton method has smaller residual
comparing with the full Newton method, and we will discuss it in the next section.

DISCUSSION ON RATE OF CONVERGENCE

We show that Newton-type methods converge faster than nonlinear CG method, in
terms of number of the wave propagation.
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Figure 1: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true
model and starting model.[ER]
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(a) (b)

(c) (d)

Figure 2: Panel (a) shows the difference between the true model and starting model.
Panel (b) is the model update with the nonlinear CG method. Panel (c) is the model
update with the Gauss-Newton method. Panel (d) is the model update with the full
Newton method.[CR]
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Figure 3: The normalized objective function versus the number of wave propagation.
The blue curve represents the nonlinear CG method, black curve represents the Gauss-
Newton method and red curve represents the full Newton method.[CR]
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Figure 4: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true
model and starting model.[CR]
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(a) (b)

(c) (d)

Figure 5: Panel (a) shows the difference between the true model and starting model.
Panel (b) is the model update with the nonlinear CG method. Panel (c) is the model
update with the Gauss-Newton method. Panel (d) is the model update with the full
Newton method.[CR]
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Figure 6: The normalized objective function versus the number of wave propagation.
The blue curve represents the nonlinear CG method, black curve represents the Gauss-
Newton method and red curve represents the full Newton method.[CR]
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Figure 7: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true
model and starting model.[ER]
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Figure 8: The top panel shows the inversion result with the nonlinear CG method.
The middle panel shows the inversion result with the Gauss-Newton method. The
bottom panel shows the inversion result with the full Newton method.[CR]
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Figure 9: The normalized objective function versus the number of wave propagation.
The blue curve represents the nonlinear CG method, black curve represents the Gauss-
Newton method and red curve represents the full Newton method.[CR]
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The nonlinear CG method and the Newton-type methods scale the gradient to
get the search direction. It is interesting to examine how the gradient is scaled.

We take the estimated model Ki from the nonlinear CG method at i = 30 iteration.
The difference between the true model and Ki, which is the ideal search direction, is
shown in Figure 10(e). The gradient gi is shown in Figure 10(a). The gradient can
not be directly used as updating direction because the shallow component is much
stronger than the deep component. This property of gradient result in the failure of
the steepest descent method in FWI.

In Figure 10(b), we show the correction with nonlinear CG method,

∆Ki = −gi + βigi−1, (19)

where βi is obtained from Fletcher Reeves formula. After we scale the gradient in
CG method, the search direction has more weight on the deep part. However, the
component of search direction in the shallow part are not corrected properly. As the
objective function is sensitive to shallow perturbation, we would not expect much
decrease in the objective function.

For the Newton-type methods, we apply ∆Ki,Newton = H−1(−gi) for 15 CG steps,
and the results are shown in Figure 10(c) and 10(d). The shallow component of
the search direction is significantly different for the nonlinear CG method and the
Newton-type methods as shown in Figure 10. The search direction for Newton-type
methods approximate the ideal search direction reasonably well.

We have pointed out in the previous section, that the Gauss-Newton method
converges faster than the Newton method at equivalent number of wave propagation.
One reason is that each application full Hessian uses 4 wave propagation, and each
application of the Gauss-Newton Hessian uses 3 wave propagation. Solver H−1(−g) is
therefore more expensive for the full Newton method. Another reason might be that
because we use single precision float number for wave propagation, the CG algorithm
for H−1(−g) converges slower than the HGN

−1(−g) in terms of CG steps.

CONCLUSION

In this paper, we implemented nonlinear CG method, Gauss-Newton method and full
Newton method for solving FWI. We computed the gradient and Hessian with the
adjoint-state method. Numerical results suggest Newton-type methods resolve fine
structures better than the nonlinear CG method when the computational cost is the
same.
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(a) (b)

(c) (d)

(e)

Figure 10: Panel (a) shows the gradient g(Ki), with Ki estimated from the nonlinear
CG method at i = 30. Panel (b) is the model update ∆Ki with the nonlinear
CG method. Panel (c) is the model update with the Gauss-Newton method after
applying H−1

GN(−g(Ki)). Panel (d) is the model update with the full Newton method
after applying H̃−1(−g(Ki)). Panel (e) is the ideal model updating direction, which
is the difference between true modulus model and current modulus model.[CR]
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APPENDIX A: FULL-WAVEFORM INVERSION
GRADIENT AND HESSIAN

In this appendix, we derive the Frechet derivative (Tromp et al., 2005; Plessix, 2006)
and the Hessian (Fichtner, 2011) for the FWI objective function. We use acoustic
approximation of wave equation with non-constant density. For simplicity, we define
our model parameter as:

mK ≡ 1

K
, (20)

mρ ≡ 1

ρ
, (21)

m ≡
[

mK

mρ

]
. (22)

The corresponding model perturbation can be expressed as follows:

∆mK = −∆K

K2
, (23)

∆mρ = −∆ρ

ρ2
, (24)

The wave equation in acoustic media with non-constant density is shown in the
following: 

[ 1
K

∂2
t − ∇̃ · (1

ρ
∇)]u = f

u(r, t = 0) = 0

∂tu(r, t = 0) = 0,

(25)

where K is the bulk modulus, ρ is the density, and f is the source wavefield. We use
operator L to represent the operator:

L ≡ [
1

K
∂2

t − ∇̃ · (1
ρ
∇)]. (26)

The adjoint of wave equation used to compute receiver wavefield can be written
as follows:


[ 1
K

∂2
t −∇ · (1

ρ
∇̃)]λ = dres

λ(r, t = T ) = 0

∂tλ(r, t = T ) = 0,

(27)

where dres is the difference between synthetic data and observed data. The receiver
wavefield is computed backward in time, starting from maximum recording time t = T
to t = 0.
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Frechet derivative

For arbitrary model perturbation, we have〈
∆m,

∂J

∂m

〉
M

=

〈
∂u

∂m
∆m,

∂J

∂u

〉
U

, (28)

where the subscript M indicates the inner product is done in the model space, and
and subscript U indicates the wavefield space.

Perturb the wave equation, we have(
∂L

∂m
∆m

)
u + L

∂u

∂m
∆, m = 0 (29)

Substitute equation (29) into equation (28), we get〈
∆m,

∂J

∂m

〉
M

= −
〈

L−1(
∂L

∂m
∆m)u,

∂J

∂u

〉
U

(30)

= −
〈

(
∂L

∂m
∆m)u, L−∗∂J

∂u

〉
U

. (31)

(32)

Introducing the receiver wavefield,

L∗λ =
∂J

∂u
, (33)

with the explicit formula shown in equation (27). We have,〈
∆m,

∂J

∂m

〉
M

= −
〈

(
∂L

∂m
∆m)u, λ

〉
U

. (34)

For acoustic wave equation,〈
∆m,

∂J

∂m

〉
M

= −
〈
[δmK∂2

t − ∇̃ · (δmρ∇)]u, λ
〉

U
(35)

= −
〈

δmK ,

∫ T

0

λ∂t
2udt

〉
M

+

〈
∆mρ,

∫ T

0

(∇̃∗λ) · (∇u)dt

〉
M

.(36)

Thus,

∂J

∂m
=

 ∂J
∂mK

∂J
∂mρ

 =

 −
∫ T

0
λ∂2

t udt∫ T

0
(∇̃∗λ) · (∇u)dt

 . (37)

The Frechet derivative with respect to (K, ρ) is,

∂J

∂(K, ρ)
=

 ∂J
∂K

∂J
∂ρ

 =

 1
K2

∫ T

0
λ∂2

t udt

− 1
ρ2

∫ T

0
(∇̃∗λ) · (∇u)dt

 (38)
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Full Hessian and Gauss-Newton Hessian

We are interested in the action of Hessian:

H(∆m1, ∆m2) = 〈∆m2, H∆m1〉M , (39)

where ∆m1 and ∆m2 are two model perturbation. We use shorthand notation for
the bilinear form in this subsection:

F (x1, x2) ≡ 〈x1, Fx2〉 . (40)

Our goal is to find an expression,

〈∆m2, H∆m1〉M = 〈δm2, A(∆m)〉M , (41)

for arbitrary ∆m2, where A(∆m1) does not depend on ∆m2 and can be computed
efficiently. Then we claim A(∆m1) is equivalent to the action of Hessian applied to
∆m1.

Expand the bilinear form in equation (39),

〈∆m2, H∆m1〉M =

〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

(42)

+

〈
∂J

∂u
,

∂2u

∂m2
(∆m1, ∆m2)

〉
U

. (43)

The bilinear form for Gauss-Newton Hessian can be obtained by neglecting line (43),

〈∆m2, HGN∆m1〉M =

〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

. (44)

where HGN represent the Gauss-Newton Hessian.

In order to eliminate ∂2u
∂m2 (∆m1, ∆m2) in equation (42 and 43) which depends on

∆m2, we need the first order and second order perturbation of the wave equation:

(
∂L

∂m
∆m1)u + L

∂u

∂m
∆m1 = 0, (45)

(
∂L

∂m
∆m2)u + L

∂u

∂m
∆m2 = 0, (46)

and,

(
∂2L

∂m2
(∆m1, ∆m2))u+(

∂L

∂m
∆m1)(

∂u

∂m
∆m2)+(

∂L

∂m
∆m2)

∂u

∂m
∆m1+L

∂2u

∂m2
(∆m1, ∆m2) = 0.

(47)

Substitute equation (47) into equation (42), we get,
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〈∆m2, H∆m1〉M =

〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

(48)

+

〈
∂J

∂u
,

∂2u

∂m2
(∆m1, ∆m2)

〉
U

. (49)

Define δu1 ≡ ∂u
∂m

∆m1 which can be computed from Born approximation, as follows:

L(m)∆u1 = −(
∂L

∂m
δm1)u, (50)

Use equation (33 and 50), and after some algebra,

〈∆m2, H∆m1〉M =

〈
∂u

∂m
∆m2,−(

∂L

∂m
∆m1)

∗λ +
∂2J

∂u2
δu1

〉
U

−
〈

λ, (
∂2L

∂m2
(∆m1, ∆m2))u

〉
U

−
〈

λ, (
∂L

∂m
∆m2)∆u1

〉
U

.

We then eliminate ∂u
∂m

∆m2 term using equation (46), and get,

〈∆m2, H∆m1〉M = −
〈

(
∂L

∂m
∆m2)u, L−∗{−(

∂L

∂m
∆m1)

∗λ +
∂2J

∂u2
∆u1}

〉
U

(51)

−
〈

λ, (
∂2L

∂m2
(∆m1, ∆m2))u

〉
U

(52)

−
〈

λ, (
∂L

∂m
∆m2)∆u1

〉
U

(53)

= −
〈

µa + µb, (
∂L

∂m
∆m2)u

〉
U

(54)

−
〈

λ, (
∂2L

∂m2
(∆m1, ∆m2))u

〉
U

(55)

−
〈

λ, (
∂L

∂m
∆m2)∆u1

〉
U

, (56)

where we define,

L(m)∗µa = −(
∂L

∂m
∆m1)

∗λ, (57)

L(m)∗µb =
∂2J

∂u2
∆u1. (58)
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Thus, our solution for Hessian in the general case:

〈∆m2, H∆m1〉M =

〈
µ, (

∂L

∂m
∆m2)u

〉
U

(59)

+

〈
λ, (

∂2L

∂m2
(∆m1, ∆m2))u

〉
U

(60)

+

〈
λ, (

∂L

∂m
∆m2)δu1

〉
U

, (61)

with each wavefield computed as follows:

L(m)u = f, (62)

L(m)∗λ =
∂J

∂u
, (63)

L(m)δu1 = −(
∂L

∂m
δm1)u, (64)

L(m)∗µa =
∂2J

∂u2
δu1, (65)

L(m)∗µb = −(
∂L

∂m
δm1)

∗λ, (66)

For acoustic wave equation, we get,

H∆m =

 −
∫ T

0
(µa(x, t) + µb(x, t))∂2

t u(x, t)dt−
∫ T

0
λ(x, t)∂2

t ∆u1(x, t)dt∫ T

0
∇̃∗(µa(x, t) + µb(x, t) · ∇u(x, t)dt +

∫ T

0
∇̃∗λ(x, t)∇∆u1(x, t)dt,

 .

(67)

with the 2 forward wave propagation and 2 backward wave propagation,

[mK∂2
t − ∇̃ · (mρ∇)]u = f, (68)

[
1

K
∂2

t − ∇̃ · (1
ρ
∇)]∗λ =

∑
r

S∗
r (Sru− dr), (69)

[mK∂2
t − ∇̃ · (mρ∇)]δu1 = −[∆mK∂2

t − ∇̃ · (∆mρ∇)]u, (70)

[mK∂2
t − ∇̃ · (mρ∇)]∗µa = S∗

rSrδu1, (71)

[mK∂2
t − ∇̃ · (mρ∇)]∗µb = −[∆mK∂2

t − ∇̃ · (∆mρ∇)]∗λ. (72)

The Hessian with respect to (K, ρ) therefore can be written as:

H

 ∆K

∆ρ

 =

 ∆K
K2

∫ T

0
(µa(x, t) + µb(x, t))∂2

t u(x, t)dt + ∆K
K2

∫ T

0
λ(x, t)∂2

t ∆u1(x, t)dt

−∆ρ
ρ2

∫ T

0
∇̃∗(µa(x, t) + µb(x, t) · ∇u(x, t)dt− ∆ρ

ρ2

∫ T

0
∇̃∗λ(x, t)∇∆u1(x, t)dt

 .

(73)
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For Gauss-Newton Hessian, we can follow similar derivation, and write:

HGN∆m =

 −
∫ T

0
µa(x, t)∂2

t u(x, t)dt∫ T

0
∇̃∗µa(x, t) · ∇u(x, t)dt

 . (74)

The difference between the full Hessian and the Gauss-Newton Hessian can be
expressed as follows:

(H −HGN)∆m =

 −
∫ T

0
µb(x, t)∂2

t u(x, t)dt−
∫ T

0
λ(x, t)∂2

t ∆u1(x, t)dt∫ T

0
∇̃∗µa(x, t)dt +

∫ T

0
∇̃∗λ(x, t)∇∆u1(x, t)dt

 . (75)
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