Anatomy of a header sort

Stewart A. Levin & Yinbin Ma

ABSTRACT

Routine trace sorting at SEP is basically a grid sort. When faced with spi-
ral shooting around sea-bottom nodes, defining an offset grid was nonintuitive.
Leveraging the venerable Unix disk-based sort program, we were able to comple-
ment our Sort3d with a gridless header SortByHdrs program capable of handling
a couple billion traces if needed. Here we highlight some important subtleties in
this approach.

INTRODUCTION

For some nodal data QC we applied hyperbolic moveout (LMO-like, not NMO-like)
in order to assess orientation, drift and water velocity corrections as a function of
offset. In this case a spiral shooting geometry made applying our usual grid-based
Sort3d problematic. As years ago Dr. Levin had written a sort program for the
massive first-generation SEAM dataset (www.seg.org/resources/research/sean),
he confidently proposed, and we developed, a derivative module that simply sorted
on trace header values so that we didn’t need an offset-defined grid. Like the SEAM
sort, the engine for this new sort is also the venerable Unix sort program.

SUBTLETIES

Unix sort operates on text files, not binary files. Therefore, to use it to sort SEP
binary files, we create a textual index file with printed values for header keys and a
sequential trace number. After sorting on the key values, we read back the reordered
trace numbers to select and process the actual headers and traces.

Unix sort is capable of handling more than 23! —1 records, but since current seplib
query and disk block access routines use four byte integers, that is the maximum
number of traces we can sort.

The only (well) supported SEP trace header key formats are 32 bit integers and
floats, the printed values of which are understood by GNU sort’s numeric comparison
routines. To avoid tangling with floating point format precision selection, we use the
observation that nonnegative IEEE floating point bit patterns increase monotonically
when viewed as integers and hence sort order is preserved when that bit pattern is
printed as an integer. For negative floating point numbers, we use the negative of the

SEP-160



Levin & Ma 2 Header sort

bit pattern of its absolute value. One issue with the numeric sort in general is that it
is locale dependent. We handle this by overriding the default locale with LC_ALL=C
for the sort process.

With network mounted filesystems it is notoriously difficult to ensure that a file
written by one process can be immediately and fully seen by another process. This is
not specific to the processes being on different computers, though that is where it is
most often seen (or not seen). To bypass this potential problem, we communicate all
data between SortByHdrs and sort via pipes instead of shared disk files. The SEP
datapath query is used to set a suitably large directory for sort’s scratch files.

There are times when someone might want to interrupt a sort, but does not want
to corrupt what has already been sorted due to partially completed 1/O. We use a
signal handler to set a graceful termination flag in the event of an interrupt.

The more recent versions starting with 8.6 (2010-10-15) of GNU sort automat-
ically use multiprocessor parallelism for speed. Checking around at SEP, revealed
that all the machines we’ve used have versions prior to that. A good reason to do
some long delayed upgrading.

Finally, we explicitly wait on the sort process to terminate. This avoids possible
“zombie” processes and undeleted temporary disk files. In the SortByHdrs code, this
wait is directly for the sort process. When a more traditional system() or popen()
mechanism is used to start a process, it is the shell that spawns the command and
not the command itself that is the target of the wait.

SEP-160



