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ABSTRACT

Traces from the nodal receivers used in the Forties platform undershoot require
rotation to provide consistent multicomponent orientation. A quick quality con-
trol check on input data that were within just a few degrees of the desired North-
East-Vertical orientation found vector magnitude changes approaching 25%. In-
specting the code in the existing module that applied nodal reorientation, the
presence of an IF test against an arbitrary choice of epsilon, explicit unit vector
renormalization, and angle transformations that their author questioned spurred
us to derive and apply a stable and robust alternative that avoided those issues.

INTRODUCTION

The seafloor nodes used in the Forties platform undershoot deliver four output traces:
one hydrophone and three geophone records. In addition to an X heading, three tilt
angles, one each for X, Y and Z, are provided in the SEG Y trace headers. These angles
provide sufficient information for reorienting the geophone outputs to Vertical, North
and East. The challenge is to ensure that the transformation(s) derived from those
angles preserves amplitude fidelity and component orthogonality. We emphasize that,
while rotation matrices appear throughout the development, we are not “rotating”
data but understanding out how to reexpress it in various useful choices of coordinate
systems.

THEORY

The vertical components of the X, Y and Z unit direction vectors are given by the
sines of their respective tilt angles θx, θy, θz. With these nodes, positive is upward and
X-Y-Z, like the original Galperin G1-G2-G3 directions1, are a right handed coordinate
system. We need to determine how the tilted geophone axes relate to the global E-N-V
coordinate system.

To help understand and translate it into a conventional matrix notation, we dredge
up our basic linear algebra. Let (p1, p2, p3) be the orthonormal vector basis in which
a vector v of interest (a, b, c) is expressed, i.e. v = ap1 + bp2 + cp3, and let (q1, q2,

1See, for example, Grazier (2009) for a detailed discussion of the Galperin sensor configuration.
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q3) be the orthonormal vector basis in which we want to reexpress v. The coefficients
(â, b̂, ĉ) are obtained via the dot product of the new basis with v:

â = aq1 · p1 + bq1 · p2 + cq1 · p3

b̂ = aq2 · p1 + bq2 · p2 + cq2 · p3

ĉ = aq3 · p1 + bq3 · p2 + cq3 · p3

which, in matrix form, says â

b̂
ĉ

 =

 q1 · p1 q1 · p2 q1 · p3

q2 · p1 q2 · p2 q2 · p3

q3 · p1 q3 · p2 q3 · p3

  a
b
c

 . (1)

To go the other way, the matrix inverse is its transpose, and therefore, a
b
c

 =

 q1 · p1 q2 · p1 q3 · p1

q1 · p2 q2 · p2 q3 · p2

q1 · p3 q2 · p3 q3 · p3

  â

b̂
ĉ

 . (2)

Given a rotation R that transforms the pi to qi, we initially express the vectors pi

and qi in terms of the pi basis itself, and place them as matrix columns in P = I and
Q respectively. With this representation, we have simply Q = R, and the transfor-

mation matrix in equation (1) becomes RT and, correspondingly, the transformation
matrix in equation (2) is simply R, which tells us that when we construct a rotation,
we should apply its inverse to get the proper coordinate transformation.

The key step for nodal reorientation is to determine the orientation of a horizontal
axis of rotation that is consistent with both the X and Y tilts. Working backward from
the local E-N-V right handed orientation, let (cos α, sin α, 0) be the to-be-determined
unit vector perpendicular to this initial axis of rotation. Changing coordinates for
this vector to become (1, 0, 0) is accomplished by rotation 1

0
0

 =

 cos α sin α 0
− sin α cos α 0

0 0 1

  cos α
sin α

0

 . (3)

Applying this rotation to the original (1, 0, 0) and (0, 1, 0) unit vectors converts them
to (cos α,− sin α, 0) and (sin α, cos α, 0) respectively.

Rotating downward by the angle φz = π/2− θz is accomplished by multiplication
with the matrix  cos φz 0 sin φz

0 1 0
− sin φz 0 cos φz

 =

 sin θz 0 cos θz

0 1 0
− cos θz 0 sin θz


and produces the matrix cos α sin θz sin α sin θz cos θz

− sin α cos α 0
− cos α cos θz − sin α cos θz sin θz

 .
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From the last row of this matrix we see that the E and N vertical components of the
are − cos α cos θz and − sin α cos θz. As the nominal vertical axis is tilted, the actual
vertical measurements in the E and N directions are v sin θx and v sin θy respectively,
where v is the measurement on the nominal vertical axis. Therefore α is given by
atan2 (− sin θy,− sin θx), where atan2 is the C or Fortran library routine. (If both θx

and θy are zero, any value returned is fine and should the library raise a domain error
[EDOM], we can set α = 0.)

We now rotate back to global coordinates using the transpose of the matrix in
equation (3), which results in the transformation matrix sin2 α + cos2 α sin θz sin α cos α sin θz − sin α cos α cos α cos θz

sin α cos α sin θz − sin α cos α sin2 α sin θz + cos2 α sin α cos θz

− cos α cos θz − sin α cos θz sin θz

 .

(4)
Because we are concerned that rotating by α and then by −α may result in precision
cancellation, we applied trigonometric identities

sin2 γ

2
=

1− cos γ

2
,

cos2 γ

2
=

1 + cos γ

2
,

sin 2γ = 2 sin γ cos γ ,

and

cos 2γ = 2 cos2 γ − 1 = 1− 2 sin2 γ

to recast this matrix into the equivalent form cos2 φz

2
− cos 2α sin2 φz

2
− sin 2α sin2 φz

2
cos α sin φz

− sin 2α sin2 φz

2
cos2 φz

2
+ cos 2α sin2 φz

2
sin α sin φz

− cos α sin φz − sin α sin φz cos φz

 , (5)

where φz = π/2− θz as before.

After this transformation, the original E direction unit vector is generally no longer
at a 90◦ azimuth. Call the counterclockwise rotation of that direction from due east
β. From the first column of matrix (5), we immediately find that

β = atan2 (− sin 2α sin2 φz

2
, cos2 φz

2
− cos 2α sin2 φz

2
) ,

which says that we have calculated the E-N-V components of what the original X-Y-Z
unit vector configuration would be if its heading was π/2 − β instead of the actual
heading h of the X component. The two differ by an angle of (π/2− h)− β radians
measured counterclockwise from E.

This final correction is handled just the same as in (3) with α replaced by π/2−
(h + β) and leads to the transformation matrix sin(h + β) cos(h + β) 0

− cos(h + β) sin(h + β) 0
0 0 1

 . (6)
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By transposing the sequence of transformations, we have the following stable
conversion of the X-Y-Z sensor orientation to E-N-V global coordinates: E

N
V

 =

 cos2 φz

2
− cos 2α sin2 φz

2
− sin 2α sin2 φz

2
− cos α sin φz

− sin 2α sin2 φz

2
cos2 φz

2
+ cos 2α sin2 φz

2
− sin α sin φz

cos α sin φz sin α sin φz cos φz

×

sin(h + β) − cos(h + β) 0
cos(h + β) sin(h + β) 0

0 0 1

  X
Y
Z

 .

To apply the calculated rotation matrix to our data, we must remember that
each data sample constitutes the time derivative of a 3-vector displacement from an
origin. In terms of the displacements, the progressive columns of the rotation matrix
are the original X, Y and Z unit vectors expressed in E-N-V coordinates. Writing the
displacement as the linear combination pX + qY + rZ of coordinate displacements
says we should multiply (p, q, r) by the rotation matrix. Because the time derivative
commutes with multiplication by a time-independent matrix, multiplying velocities
(or accelerations) by the rotation matrix is also the correct operation.

Should we want, as is typical, the first component of our output to be northward
motion and the second eastward motion, we need only flip the order of the E and N
components to complete the transformation.

EXAMPLE

To confirm the theory, we applied it to nodes in the Forties platform undershoot
survey. The first check was to see if, indeed, the transformations did preserve vector
magnitudes, so we grabbed an arbitrary G1-G2-G3 sample with tilts of θx = 0.27◦,
θy = 1.79◦, θz = 89.99◦, a heading of 353◦ and converted it to X-Y-Z and N-E-V. The
results in Table 1 confirm the norm preservation. Applying the transformation to a

Galperin symmetric Local axis rotated Global axis rotated

G1 -13805 X 11672 N 10674
G2 -4078 Y 7478 E -8846
G3 6498 Z -6159 V -6156

Norm 15168 Norm 15168 Norm 15168

Table 1: Vector norm QC check for node geophone reorientation.

node that had 10 to 15 degrees of vertical tilt and a heading 12 degrees away from
the North, yielded the correction from Figure 1 to Figure 2 where we have displayed
the relative RMS amplitudes for each shot location around that node.

SEP-160



Levin & Chang 5 Node orientation

ACKNOWLEDGMENTS

We thank Apache North Sea Limited for providing the data used in this report.

Figure 1: RMS of X component for node with heading 348◦. [ER]

Figure 2: RMS of N component after reorientation. [ER]
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