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ABSTRACT

“Time-lapse inverse scattering theory” that we introduce in this paper focuses
on recovering changes in physical models without accurate knowledge of model
backgrounds. More specifically, we study the feasibility of recovering low and
high-wavenumber components of model perturbation using the traditional Born
and Rytov scattering approximations, and establish a connection between the
Rytov approximation and phase-only full-waveform inversion (FWI). We provide
a theoretical justification for applying regularized simultaneous time-lapse FWI
to problems of applied seismology. We demonstrate the method’s sensitivity
to realistic production effects in seismic data, and its stability with respect to
inaccurate starting models.

INTRODUCTION

This work is dedicated to developing a systematic theory for solving time-lapse inver-
sion problems that we subsequently refer to as time-lapse inverse theory . The term
“time-lapse” relates to separate observations of physical phenomena taken at discrete
time intervals. Inverse time-lapse theory concerns itself with estimating or inverting
changes in the underlying physical models from such discrete observations.

Problems of time-lapse or “4D” seismic imaging and reservoir geomechanics that
arise in Petroleum Industry(Johnston, 2013; Biondi et al., 1996) provide important
applications for the developed theory, and are the primary target of our work as an
exploration geophysicists. However, many fundamental concepts, constructs and ideas
presented in this work, as well some mathematical, algorithmic and computational
byproducts of this research, are applicable beyond the limits of exploration seismology
and reservoir geomechanics. We envisage ubiquitous applications of these results to
diverse problems of acoustic and electromagnetic inverse scattering, imaging sciences
and large-scale numerical optimization. Exploration geophysicists are the primary
and key audience of this work, however, we have attempted to make our narrative
accessible to specialists in applied mathematics and mathematical physics. Although
a considerable part of this work is dedicated to providing a robust and systematic
theoretical background for the proposed inversion techniques, we have structured the
material in such a way that a motivated practitioner can go straight to examples
and case studies, as well as the nuts and bolts of specific algorithms as required for
immediate practical application.
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If we think of seismic time-lapse analysis as an estimation of changes in subsur-
face model parameters1 that occurred between two separate seismic experiments, the
“inverse time-lapse theory” can be simply regarded as a subset of the inverse acoustic
scattering theory. Indeed, classical scattering theory addresses the problem of esti-
mating properties of a “scatterer”—a perturbation in the background model—from
incident and scattered wave fields. If production-induced subsurface changes are re-
garded as a penetrable scatterer, then the 4D analysis simply becomes a problem of
inverse scattering theory. If so, why develop a new “time-lapse” inverse theory?

The answer is quite simple. In practical time-lapse applications of exploration
geophysics and beyond, the background model is not known accurately. Moreover,
errors in our best estimates of the background model can be of the same magnitude
as, or even exceed, the time-lapse effects that we seek to estimate. Is it even possible
to estimate time-lapse changes when their magnitudes can be easily masked by the
effects of measurement noise or errors in the background model? The main product
of this research is a systematic theory of inverting small (and spatially bounded)
time-lapse changes from noisy and insufficient observations. The proposed “time-
lapse inverse theory” differs from inverse theory by placing emphasis on accurate
estimation of relative model changes while ignoring errors in the background and
perturbed models. We provide a toolkit of robust inversion techniques for accurate
inversion of time-lapse changes, and demonstrate them on a synthetic example.

Effective methodologies exist for detecting production-induced reflectivity changes
and translating them into impedance changes due to fluid substitution or reservoir
compaction (Johnston, 2013; Biondi et al., 1996). However, resolving strains in the
overburden from seismic data currently requires extraction of time shifts from cross-
equalized surveys and mapping the estimated time-strains into the overburden (Rick-
ett et al., 2007). Therefore, we make the primary emphasis of this paper achieving
automated recovery of long-wavelength small-magnitude changes of the subsurface
acoustic velocities caused by overburden dilation. Maharramov and Biondi (2014d,
2015a) proposed a method for a simultaneous multi-scale inversion of both low and
high-wavenumber production anomalies. We demonstrate a hierarchical approach
to multi-scale inversion for the recovery of both long-wavelength blocky overburden
anomalies and short-wavelength reservoir effects.

EARLIER WORK

Prevalent practice in time-lapse seismic processing relies on picking time displace-
ments and changes in reflectivity amplitudes between migrated baseline and monitor
images, and converting them into impedance changes and subsurface deformation
(Johnston, 2013). This approach requires a significant amount of manual interpre-
tation and quality control. One alternative approach uses the high-resolution power
of full-waveform inversion (Sirgue et al., 2010) to reconstruct production-induced

1as a result of petroleum production, fluid injection or environmental phenomena
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Figure 1: The true baseline model.
We chose a flat reflector model
to study the sensitivity of FWI
of short-offset reflection data to
small velocity perturbation in the
overburden. [ER]

changes from wide-offset seismic acquisitions (Routh et al., 2012; Zheng et al., 2011;
Asnaashari et al., 2012; Raknes et al., 2013; Maharramov and Biondi, 2014b; Yang
et al., 2014; Maharramov et al., 2015a). However, while potentially reducing the
amount of manual interpretation, time-lapse FWI is sensitive to repeatability issues
(Asnaashari et al., 2012), with both coherent and incoherent noise potentially mask-
ing important production-induced changes. The joint time-lapse FWI proposed by
Maharramov and Biondi (2013, 2014b) addressed repeatability issues by joint inver-
sion of multiple vintages with model-difference regularization based on the L2-norm
and produced improved results when compared to the conventional time-lapse FWI
techniques. Maharramov et al. (2015b) extended this joint inversion approach to in-
clude edge-preserving total-variation (TV) model-difference regularization. The new
method was shown to achieve a dramatic improvement over alternative techniques
by significantly reducing oscillatory artifacts in the recovered model difference for
synthetic data with repeatability issues. Originally, the method was envisaged for
applications to large-offset datasets where FWI is traditionally strong. However, Ma-
harramov and Biondi (2015b); Maharramov et al. (2015a) applied this method in a
Gulf of Mexico case study to resolving small (1 − 2%) production-induced velocity
changes associated with overburden dilation. The approach used phase-only FWI of
reflection-only data with 5 km maximum offset and target reflectors at about 4 km
depth.

While both synthetic and field data experiments involving joint time-lapse FWI
with a model-difference regularization indicate robustness and broad applicability of
the proposed technique, a detailed theoretical analysis of the joint inversion method
is highly desirable for understanding its strengths and limitations.

THEORY

Assuming known background slowness s(x),x ∈ R3 and a slowness perturbation
δs(x), the total wavefield component u(x) for frequency ω satisfies the Helmholtz
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Figure 2: The true model differ-
ence is a combination of a positive
+300 m/s velocity change in a tar-
get reflector at a depth of 3900 m,
and a negative velocity change in
the overburden above the reflec-
tor, peaking at −50 m/s. In this
work we investigate the sensitivity
of simultaneous time-lapse FWI to
small and blocky velocity changes
in the overburden. [ER]

equation [
∆ + ω2(s(x) + δs(x))

]
u(x) = −f(x), x ∈ D ⊂ R3, (1)

where f(x) is the seismic source component for frequency ω. The total wavefield is
the sum of incident and scattered wavefields

u(x) = uI(x) + uS(x), (2)

where the incident wavefield uI satisfies the Helmoholtz equation with the unper-
turbed slowness: [

∆ + ω2s(x)
]
uI(x) = −f(x). (3)

Note for well-posedness of (1) and (3) we need to impose an additional condition on
the solution, such as the Sommerfeld radiation condition for a homogeneous medium
(Colton and Kress, 1998). Physically, such a condition requires that the total field
be outgoing at infinity. We will assume that equations (1) and (3) are solved in a
domain D ⊂ R3, and absorbing boundary conditions (Engquist and Majda, 1977) are
applied along the domain boundary, ensuring outgoing propagation of the wavefields.

For time-lapse problems we consider slowness perturbations δs(x) with support
wholly contained in the interior of D. If G(x,y) is Green’s function for the un-
perturbed Helmholtz equation (3) in D and absorbing boundary conditions, then
equation (1) is equivalent to the Lippmann-Schwinger integral equation

uS(x,y) = − ω2

∫
D

G(x,y)δs(y) [uI(y) + uS(y)] dy, (4)

or, equivalently,

uS(x,y) = − ω2

∫
supp δs

G(x,y)δs(y) [uI(y) + uS(y)] dy. (5)

The incident wavefield uI(x) in (4),(5) is assumed known.

Our method does not rely on solving (5). However, we will briefly discuss potential
advantages of solving Lippmann-Schwinger instead of the Helmholtz equation. Three
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Figure 3: Time shifts observed
in common-midpoint gathers cen-
tered above the target reservoir
(blue is baseline, red is moni-
tor). Travel times of the mon-
itor near-offset reflections travel-
ing through the negative velocity
anomaly of Figure 2 are slightly
delayed. [CR]
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advantages of solving (5) for time-lapse problems instead of solving (1) with absorbing
boundary conditions are immediately evident. First, it suffices to solve the Lippmann-
Schwinger equation in the domain supp δs that in practical applications is much
smaller that D (e.g., compaction effects are limited to overburden above producing
reservoirs). After discretization, (5) becomes a system of linear equations with a
dense modeling operator, and dimension of the model space is determined by the size
of supp δs over the computational grid. Second, solution to (5) automatically satisfies
absorbing boundary conditions along ∂D because the unperturbed Green’s function
G(x,y) already satisfies those conditions. Third, once the scattered field is computed
inside the support of δs, equation (5) can be used to compute its values outside the
perturbation—e.g., at surface receivers.

However, discretization of (5)2 is a dense linear system, and its numerical prop-
erties are highly dependent on the spectral content (smoothness) of δs (Duan and
Rokhlin, 2009). “Sparsifying” preconditioners for (5) are an area of active research
(see Ying (2015) for homogeneous backgrounds) and merit an investigation as a po-
tentially useful technique for forward modeling of scattered wavefields for spatially
bounded perturbations. Another challenge of using (5) is that it explicitly contains
Green’s function for problem (3). However, spatial boundedness of one of the argu-
ments allows practical application of precomputed Green’s functions (Etgen, 2012).
In (5) both source and receiver arguments belong to the support of perturbation δs,
making use of precomputed Green’s functions feasible for compact targets. Com-
putation of the scattered wavefield uS(x) outside of supp δs can be computationally
equally efficient as the wavefield is required only at surface receiver locations.

Figure 4: The parallel differ-
ence method (Maharramov and
Biondi, 2014c) fails to resolve the
long-wavelength velocity changes
of Figure 2 changes in the overbur-
den, and produces negative short-
wavelength artifacts around the
target reflector. [CR]

Assuming that δs = O(ε) where ε is a characteristic magnitude of model pertur-
bation, and formally representing the scattered wavefield as a series

uS(x) = u
(1)
S (x) + u

(2)
S (x) + . . . , (6)

where
u

(i)
S (x) = O(εi), (7)

2using quadratures similar to Duan and Rokhlin (2009) for handling singularities at x = y
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we obtain

u
(1)
S (x) = − ω2

∫
supp δs

G(x,y)δs(y)uI(y)dy,

u
(i+1)
S (x) = − ω2

∫
supp δs

G(x,y)δs(y)u
(i)
S (y)dy, i = 0, 1, . . .

(8)

From (8) we immediately see limitations of the Born series (6) in relating the
diffracted wavefield uS(x) to δs(x) for long-wavelength small-magnitude model per-
turbations. Indeed, assuming without a loss of generality, homogeneous background
s(x) = s0 and constant and finite δs, we have

G(x,y) =
exp(iωs0|x− y|)

4π|x− y|
. (9)

Incident plane wave propagating along axis x1 is given by

uI(x) = exp(iωs0x
1). (10)

For a sufficiently small diam (supp δs) � x1 the denominator of (9) is asymptotically
a constant factor if y ∈ supp δs, and from (8) we obtain

u
(1)
S (x1, 0, 0) ≈ − δs · ω2

4πx1

∫
suppδs∩R1

exp(iωs0(x
1 − y1)) exp(iωs0y

1)dy1

= − L · δs · ω2

4πx1
exp(iωs0x

1),

(11)

where
L = |suppδs ∩ R1(x1)|, (12)

is the length of model perturbation along axis R1(x1). Equation (11) means that
the first-order Born scattering under our assumptions only affects the amplitude but
not the phase of the scattered wavefield. Indeed, phase changes accumulate in (6)
through the effect of the denominator in (9), requiring exponentially many terms
to account for a phase delay or advance in the scattered (transmitted) wavefield.
However, transmission through a constant perturbation δs of length L would cause a
phase change proportional to Lδs, therefore any technique based on truncated Born
scattering would be suboptimal for relating large-wavelength, or “blocky”, velocity
perturbations to measured scattered wavefields. This is a well-known limitation of
the diffraction tomography (Wu and Toksoz, 1987) that is inherited by full-waveform
inversion using L2 misfit (Fichtner, 2011). On the other hand, Born series is a very
good scattering approximation for small-wavelength, large-amplitude perturbations
as, again, demonstrated by equation (11) (compare with Slaney et al. (1984)).

Rytov scattering series (Ishimaru, 1999) based on asymptotic phase expansion of
the scattered wavefield linearly relates phase changes and magnitudes of the slowness
change in first approximation, as does the initial approximation of full-waveform
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Figure 5: The cross-updated FWI
method (Maharramov and Biondi,
2014c) cross-equalizes the baseline
and monitor model but still fails
to resolve the long-wavelength
overburden changes of Figure 2.
[CR]

inversion of phase differences (Fichtner, 2011). Moreover, in time-lapse problems
of inverting long-wavelength small-magnitude model perturbations, Rytov inverse
scattering (and phase-only FWI) are less sensitive to errors in the background model.

Indeed, assuming for simplicity, but without a loss of generality, a constant back-
ground s0 and constant finite perturbation δs, the phase change for transmitted
a plane wave traveling through a perturbation δs of characteristic dimension L is
approximately proportional to Lδs/s0. For significant phase changes phase wraps
around 2π, and this happens when the phase delay is a multiple of the incident wave-
length. Fitting peaks and trough of the modeled and observed scattered wavefields
(ignoring the amplitude information) then results in ambiguity of the total phase
change: phase change can be resolved only within an integer multiple of incident
wavelengths. This results in a well known phenomenon of cycle skipping in FWI:
unless the FWI starting slowness model is known within a full wavelength of the
incident wave, the model cannot be resolved from signal phase information alone.

However, for time-lapse problems phase change due to a compact velocity anomaly
is only a fraction of the wavelength. Indeed, translating to the time domain, time
shifts due to dilation in overburden peak at about 10 ms (Rickett et al., 2006; Mahar-
ramov and Biondi, 2015b; Maharramov et al., 2015a)—i.e., about a third of the period
for a 30 Hz signal (see Figure 3). Therefore, phase changes (equivalently, time delays)
of scattered wavefields for small-magnitude long-wavelength perturbations that are
of interest for us can still be translated into slowness changes, albeit errors in the
background will result in errors in the estimated slowness perturbation:

δsW =
sW

s0

δs, (13)

where sW is the inaccurate background slowness and δsW is the corresponding es-
timated slowness perturbation. Equation (13) means that even with a wrong back-
ground a qualitative perturbation magnitude information can still be extracted from
the scattered wavefield. Note that location of the perturbation is determined by the
illumination pattern of incident wavefields. Poor target illumination results in the
ambiguity of anomaly characteristic dimension L versus the perturbation magnitude
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δs as the two enter in (13) in a product. For example, lack of reflectors above the
velocity anomaly results in an ambiguous vertical extent of the anomaly.

Figure 6: Simultaneous FWI with
a total-variation model-difference
regularization (Maharramov and
Biondi, 2014e) resolves the long-
wavelength overburden changes of
Figure 2, but underestimates the
maximum change, depending on
the regularization strength. [CR]

To implement a practical time-lapse inversion method using phase-only FWI, we
can invert two models (unperturbed baseline and perturbed monitor) simultaneously,
imposing a model-difference regularization. The latter is required to create a common
“background” model for both inversions making the application of (13) possible. Note
that baseline and monitor inversions may still cycle-skip, but the purpose of imposing
a model-difference regularization is to ensure that they are either equally accurate or
equally inaccurate for wavelengths greater than the characteristic wavelength of the
inverted perturbation.

For blocky, long-wavelength anomalies we impose blockiness-promoting total vari-
ation regularization (Maharramov and Biondi, 2014e), while for the recovery of short-
wavelength features we use L2 Tikhonov model-difference regularization (Maharramov
and Biondi, 2013).

Figure 7: Simultaneous FWI
using Tikhonov model-difference
regularization, with the long-
wavelength inversion of Figure 6
supplied as a prior. Note
that such multiscale approach can
now resolve the short-wavelength
positive-velocity changes of Fig-
ure 2. Strong Tikhonov reg-
ularization results in underesti-
mated velocity changes within the
reservoir but correctly locates the
anomalies. [CR]
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METHOD

Full-waveform inversion is defined as solving the following optimization problem
(Tarantola, 1984; Virieux and Operto, 2009)

‖Mu− d‖2 → min, (14)

where M,d are the measurement operator and data, u is the solution of a forward-
modeling problem

D(m)u = φ, (15)

where D is the forward-modeling operator that depends on a model vector m as a
parameter, and φ is a source. The minimization problem (14) is solved with respect
to either both the model m and source φ or just the model. In the frequency-domain
formulation of the acoustic waveform inversion, the forward-modeling equation (15)
becomes

−ω2u− v2(x1, . . . , xn)∆u = φ(ω, x1, . . . , xn), (16)

where ω is a temporal frequency, n is the problem dimension, and v is the acoustic
wave propagation velocity. Values of the slowness s = 1/v at all the points of the
modeling domain constitute the model parameter vector m. The direct problem (16)
can be solved in the frequency domain (Virieux and Operto, 2009). The inverse prob-
lem (14) is typically solved using a multiscale approach, from low to high frequencies,
supplying the output of each frequency inversion to the next step (Fichtner, 2011).

FWI applications in time-lapse problems seek to recover induced changes in the
subsurface model using multiple datasets from different acquisition vintages. For
two surveys sufficiently separated in time, we call such datasets (and the associated
models) baseline and monitor.

Time-lapse FWI can be carried out by separately inverting the baseline and mon-
itor models (parallel difference), or by inverting them sequentially with, e.g., the
baseline supplied as a starting model for the monitor inversion (sequential differ-
ence). Another alternative is to apply the double-difference method, with a baseline
model inversion followed by a monitor inversion that solves the following optimization
problem,

‖ (Ms
mum −Ms

bub)− (Mmdm −Mbdb) ‖2 → min, (17)

by changing the monitor model (Watanabe et al., 2004; Denli and Huang, 2009;
Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The subscripts in
equation (17) denote the baseline and monitor surveys, d denotes the observed data,
and the M’s are measurement operators that project the synthetic and field data
onto a common grid. The superscript s indicates the measurement operators applied
to the modeled data. For phase-only inversion, in all of the subsequent equations,
the modeled and observed data differences should be replaced with the corresponding
“phase differences”

u − d =⇒ sin arg u − sin arg d, (18)
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where arg is the complex argument function of frequency domain wavefields. Note
that unlike the traditional phase-only inversion (Fichtner, 2011), we evaluate sine of
the phase to avoid phase discontinuities.

In all of these techniques, optimization is carried out with respect to one model at
a time, albeit of different vintages at different stages of the inversion. In our method
we invert for the baseline and monitor models simultaneously by solving either one
of the following two optimization problems:

α‖Mbub − db‖2
2 + β‖Mmum − dm‖2

2 + (19)

γ‖ (Ms
mum −Ms

bub)− (Mmdm −Mbdb) ‖2
2 + (20)

α1‖WbRb(mb −mPRIOR
b )‖2

2 + (21)

β1‖WmRm(mm −mPRIOR
m )‖2

2 + (22)

δ‖WR(mm −mb −∆mPRIOR)‖2
2 → min, (23)

or

α‖Mbub − db‖2
2 + β‖Mmum − dm‖2

2 + (24)

γ‖ (Ms
mum −Ms

bub)− (Mmdm −Mbdb) ‖2
2 + (25)

α1‖WbRb(mb −mPRIOR
b )‖1 + (26)

β1‖WmRm(mm −mPRIOR
m )‖1 + (27)

δ‖WR(mm −mb −∆mPRIOR)‖1 → min, (28)

with respect to both the baseline and monitor models mb and mm. Problem (19-
23) describes time-lapse FWI with L2 regularization of the individual models (21,22)
and model difference (23) (Maharramov and Biondi, 2014c). The second formulation
(24-28) involves an L1-regularization of the individual models and their difference
(Maharramov and Biondi, 2014e; Maharramov et al., 2015b). The terms (24) corre-
spond to separate baseline and monitor inversions, the term (25) is the optional double
difference term, the terms (26) and (27) are optional separate baseline and monitor
inversion regularization terms (Aster et al., 2012), and the term (28) represents reg-
ularization of the model difference. In (26)-(28), R and W denote regularization
and weighting operators respectively, with the subscript denoting the survey vintage
where applicable. If R is the gradient magnitude operator

Rf(x, y, z) =
√

f 2
x + f 2

y + f 2
z , (29)

then (26-28) become total-variation (TV) seminorms. The latter case is of particular
interest in this work as the minimization of the L1 norm of gradient may promote
“blockiness” of the model-difference, potentially reducing oscillatory artifacts (Rudin
et al., 1992; Aster et al., 2012).

A joint inversion approach has been applied earlier to the linearized waveform
inversion (Ayeni and Biondi, 2012). In Maharramov and Biondi (2013, 2014c,a), a
simultaneous full-waveform inversion problem (19,23) was studied with a single model
difference L2 regularization term (23).
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An implementation of the proposed simultaneous inversion algorithm requires
solving a nonlinear optimization problem with twice the data and model dimen-
sions of problems (14) and (17). The model difference regularization weights W
and, optionally, the prior ∆mPRIOR may be obtained from prior geomechanical infor-
mation. For example, a rough estimate of production-induced velocity changes can
be obtained from time shifts (Hatchell and Bourne, 2005; Barkved and Kristiansen,
2005) and used to map subsurface regions of expected production-induced pertur-
bation, and optionally provide a difference prior. However, successfully solving the
L1-regularized problem (24-25) is less sensitive to choice of the weighting operator
W. For example, we show below that the TV-regularization using (29) with W = 1
recovers non-oscillatory components of the model difference, while the L2 approach
would result in either smoothing or uniform reduction of the model difference.

In addition to the fully simultaneous inversion, Maharramov and Biondi (2013,
2014c) proposed and tested a cross-updating technique that offers a simple but re-
markably effective approximation to minimizing the objective function (19),(23),
while obviating the difference regularization and weighting operators R and W for
problem (19,23). This technique consists of one standard run of the sequential differ-
ence algorithm, followed by a second run with the inverted monitor model supplied
as the starting model for the second baseline inversion

mINIT →baseline inversion → monitor inversion →
baseline inversion → monitor inversion,

(30)

and computing the difference of the latest inverted monitor and baseline models.
Process (30) can be considered as an approximation to minimizing (19) and (23) be-
cause non-repeatable footprints of both inversions are propagated to both models,
canceling out in the difference. Both the simultaneous inversion and cross-updating
minimize the model difference by tackling model artifacts that are in the null space
of the Fréchet derivative of the forward modeling operatorss. The joint inversion
minimizes the effect of such artifacts on the model difference by either minimizing
the model difference term (23) in the simultaneous inversion, or by propagating these
artifacts to both models in cross-updating (30). Note that this process is not guar-
anteed to improve the results of the baseline and monitor model inversions but was
only proposed for improving the model difference. Maharramov and Biondi (2014c,a)
demonstrated a significant improvement of model difference recovery by both the L2-
regularized target-oriented simultaneous inversion and cross-updating compared to
the parallel, sequential and double difference techniques. The simultaneous inversion
and cross-updating yielded qualitatively similar results within the inversion target.
Maharramov et al. (2015c) studied the regularized double-difference inversion (25,28).

NUMERICAL EXPERIMENTS AND DISCUSSION

Our previous work (Maharramov and Biondi, 2014e,b) has demonstrated effective
recovery of blocky velocity anomalies from long-offset acquisitions in the presence of
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noise and repeatability issues. In this work we demonstrate the recovery of blocky
anomalies in the more challenging case of phase-only inversion of narrow-offset reflec-
tion data. Conceptually our synthetic example is similar to the earlier field data case
study of Maharramov and Biondi (2015b); Maharramov et al. (2015a).

Figure 8: True model difference for demonstrating the inversion of multiple overbur-
den anomalies. [ER]

As a baseline model we use the flat reflector model of Figure 1. The target re-
flector (reservoir) is located at a depth of 3900 m, the monitor (perturbed) model
has two velocity anomalies–a positive +300 m/s change due to compaction and fluid
substitution within the reservoir, and a blocky negative velocity change in the over-
burden above the reservoir, peaking at −50 m/s (see Figure 2). No physical reflector
movement is prescribed.

Figure 9: Inversion of the two long-wavelength overburden anomalies of Figure 8 us-
ing simultaneous time-lapse FWI with total-variation model-difference regularization.
[CR]

For generating synthetic data we used a towed streamer acquisition geometry with
the maximum offset of 5 km. The results of parallel difference and cross-updating are
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shown in Figures 4 and 5. Note that neither result succeeds in recovering the blocky
anomaly. The FWI starting model used in these experiments was a smoothed true
model, using a 720 m smoothing window.

Figure 10: Inversion of the two long-wavelength overburden anomalies of Figure 8
starting from a bad initial model and using weak regularization (a small regularization
parameter). FWI cycle skipped, and the baseline and monitor inversion diverged,
contaminating the difference with cycle-skipping artifacts. [CR]

The result of simultaneous inversion with a total-variation model-difference reg-
ularization is shown in Figure 6. The result is qualitatively accurate although peak
magnitudes are underestimated due to regularization. To assess the effectiveness of
our inversion, in Figures 12(a) and 13(b) we show monitor images migrated using
the true monitor and true baseline models, respectively. Note that the overestimated
velocities in the overburden result in a downward reflector shift in Figure 13(b). How-
ever, migrating the monitor data using the sum of the baseline model and the inverted
blocky anomaly of Figure 6 results in the image of Figure 13(a): the downward shift
of reflectors in the overburden is now significantly reduced.

To recover the short-wavelength changes within the reservoir, we supplied the
result of Figure 6 as a model-difference prior to inversion (19,23). Note that the
resulting model features both long and short-wavelength velocity perturbations. The
reservoir perturbation is underestimated due to strong regularization. Maharramov
and Biondi (2015a) discuss a regularization scheme for multi-scale inversion that
honors true model magnitudes.

And finally, Figures 8 and 9 demonstrate recovery of two separate overburden
anomalies. In both cases FWI start from a smoothed true velocity. The result of
starting FWI with a wrong velocity resulting in cycle-skipping is shown in Figure 10.
We deliberately used a weak regularization parameter at model-difference regular-
ization to demonstrate the effect of diverging baseline and monitor models on the
inverted model difference. Figure 11 contains the result of using a stronger TV regu-
larization. As described in the Theory section above, we ensure that the two models
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Figure 11: Inversion of the two long-wavelength overburden anomalies of Figure 8
starting from a bad initial model but using stronger regularization (a larger regu-
larization parameter). FWI still cycle skipped, however, the strong model-difference
regularization kept baseline and monitor within the characteristic wavelength of the
overburden anomalies. The resulting model difference inversion is qualitatively accu-
rate (compare with Figure 9), albeit stronger regularization has resulted in underes-
timated velocity magnitudes. [CR]

cycle-skip “in synchrony” and are still able to qualitatively recover the anomalies,
although with strongly underestimated velocities—compare with equation (13).

In this work we provided a theoretical justification for the time-lapse inversion
methods of Maharramov and Biondi (2013, 2014e, 2015b) and demonstrated a stable
recovery of both short and long-wavelength velocity anomalies form narrow-offset re-
flection seismic data. We envisage wide-spread application of the simultaneous FWI
with model-difference regularization and hierarchical multi-scale inversion in applica-
tions ranging from applied geophysics to electromagnetic and optical scattering.
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(a) (b)

Figure 12: (a) True monitor image. (b) Monitor migrated using the baseline velocity
model. Note that overestimated velocity in the overburden results in a downward
reflector shift in the right image. [CR]
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model. Note that reflector shift in the overburden has been significantly reduced in
the left image. [CR]
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