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ABSTRACT

We propose a new L1-regularized simultaneous time-lapse linearized waveform
inversion method. We test the proposed method on models exhibiting production
induced reservoir compaction and overburden dialation. We demonstrate that
L1 regularization and steering filters significantly improve image quality in the
presence of acquisition nonrepeatability issues, such as those caused by different
acquisition parameters.

INTRODUCTION

Time-lapse seismic imaging and velocity analysis are challenging in complex subsur-
face structures because of various repeatability issues, such as different acquisition
geometries, noise in the data, and insufficient illumination under the salt (Ayeni and
Biondi, 2010, 2011). In a companion paper, we showed (Ma et al., 2015) that L1
regularization with steering filters can greatly improve the quality of inversion in ar-
eas of poor illumination. In this paper, we apply this technique to time-lapse seismic
imaging.

First, we implement the acoustic wave equation and Born modeling for constant
density, and set up four-dimensional (4D) seismic imaging as an optimization prob-
lem. It is known that the adjoint state method is an efficient way to compute the
gradient for partial-differential-equation (PDE) constrained optimization. This paper
is limited to the study of linearized waveform inversion, therefore the adjoint opera-
tors can be written explicitly. Both forward and adjoint operators are expressed in
matrix form, confirming the conclusion from the adjoint state method.

A simple synthetic model is used to test our codes. We take a shallow part from
Sigbee2A model away from the salt. The velocity is perturbed near the sea bottom
and used as monitor velocity model. Numerical results show that L1 regularization is
able to recover clean 4D signals. The algorithm is robust against different acquisition
geometries and noise.

Our method is also tested on a synthetic model with complex subsurface structure.
We construct our model from Sigbee2A model with salt body, and then, perturb the
velocity in the area with poor illumination under the salt. Least squares reverse
time migration (LSRTM) results suggest it is already difficult to obtain the reflectors
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under the salt as can be seen in Figure 7, not to mention 4D signals. L1 regularization
with steering filters is used to improve the quality of time lapse signals. We could not
completely solve the time-lapse imaging problem with our method, thereby indicating
the necessity to introduce geomechanical knowledge in the time-lapse study.

METHOD

In the first part of this section, the wave-equation operators used for seismic imaging
are derived. In the second part, we show the objective function and optimization
strategies incorporating L1 regularization with steering filters.

Acoustic wave equation and Born modeling for constant den-
sity media

We start with the wave equation from Tarantola (1984) as follows:

[
1

K(r)

∂2

∂t2
−∇

(
1

ρ
∇

)
]u(r, t) = f(r, t), (1)

where K(r) is the bulk modulus, ρ is the density and u(r, t) is the pressure field
and f(r, t) is the source function. In this paper, we assume constant density in our
numerical examples, and we have v2 = K/ρ. The wave equation can be simplified as:

[∂2
t − v2(r)∆]u(r, t) = s(r, t), (2)

where we define s(r, t) ≡ v(r)2f(r, t).

In a seismic imaging problem, we want to find the velocity perturbation, namely
the difference between the true velocity (stratigraphic velocity) and migration velocity
(smooth velocity). For constant density media, there is direct relationship between
velocity perturbation and acoustic reflectivity. Assuming the true velocity to be
v(r) and the smooth velocity used for migration/inversion to be v0(r), two different
solutions can be obtained for each velocity using equation (1):

[∂2
t − v2(r)∆]utrue(r, t) = s(r, t) (3)

[∂2
t − v2

0(r)∆]u0(r, t) = s(r, t). (4)

Substract equation (4) from equation (4), we can get:

[∂2
t − v2

0(r)∆]u(r, t) = m(r)∂2
t u0(r, t), (5)

where we define u ≡ utrue − u0, m(r) = −2δv(r)/v(r) and δv(r) = v(r)− v0(r).
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To set up an inverse problem, both the forward and adjoint of modeling operators
are needed. Based on the adjoint state method, the forward operator can be written
as: 

u(r, 0) = 0

∂tu(r, 0) = 0

(∂2
t − v0(r)

2∆)u(r, t) = s(r, t),

(6)

and the corresponding adjoint operator is:


u(r, T ) = 0

∂tu(r, T ) = 0

(∂2
t − v(r)2∆)†u(r, t) = s(r, t).

(7)

The forward and adjoint operators for nonlinear modeling with varying density
are computed in Appendix A, which allows us to extend our work to velocity esti-
mation in the near future. The Born modeling operator in matrix form is derived in
Appendix B, which serves as pseudocode for the numerical examples in this paper.

Joint inversion with steering filters and L1 regularization

Fixing the migration velocity v0(r), the data recorded at surface d is a linear function
of m(r), as can be seen from equation (5). We use L to represent the linear mapping,

Lm = d. (8)

In the following of the paper, we use subscripts b and m to denote baseline and
monitor, respectively. Data for baseline db and monitor dm are collected using true
velocity model. Reverse time migration (RTM) is used to obtain images mRTM

b and
mRTM

b as initial guess for inversion. We do an inversion for baseline and monitor
separately as a first step using the following objective function,

J1(mb,mm) =
1

2
||Lbmb − db||22 +

1

2
||Lmmm − dm||22 (9)

+
ε

2
||mb||22 +

ε

2
||mm||22, (10)

where ε → 0 in the numerical sense to fit the data. After a fixed number of iterations,
we obtain images mLSRTM

b and mLSRTM
b . This step is crucial, because it balances

the amplitude and attenuates the acquisition related artifacts in the RTM images.
LSRTM images are also used to extract a prior gradient field, which is part of the
joint-inversion objective function.

The final step is to resolve the time-lapse signal using the joint inversion, with
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following objective function:

J2(mb,mm) =
1

2
||Lbmb − db||22 +

1

2
||Lmmm − dm||22 (11)

+
α

2
||W(mm −mb)||1 (12)

+
β

2
||W(∇r(mm −mb))||1 (13)

+
ε

2
||mb||22 +

ε

2
||mm||22, (14)

where W is weight function and ∇r is the derivative perpendicular to r. In the
objective function, The terms (11) are data fitting and the terms (14) are used to
fill the null space. The terms (12) promotes sparse 4D signals and further reduces
acquisition related artifacts. Line (13) is the steering filter that promotes 4D signals
along particular directions r. In (Ma et al., 2015), we showed that steering filters are
able to compensate illumination changes under the salt, and we proposed a method
to construct a steering filter that can be used as prior information for inversion.

SYNTHETIC EXAMPLE 1

We select part of Sigbee 2A model as our true baseline velocity model. We perturb
the velocity at the boundary of subsurface layers and use it as true monitor velocity
model. Migration velocity is the same for both baseline and monitor. The velocity
differences between true velocity and migration velocity are shown in Figure 1.

(a) (b)

Figure 1: (a) baseline velocity perturbation. (b) monitor velocity perturbation. [ER]

Model size is 301×701 with 20 meters (m) between neighboring pixels. 48 sources
spaced every 200 meters with up to 701 receivers spaced every 20 meters, are used
to create the synthetic data. To simulate the acquisition nonreproducibility issues,
we turn off receivers randomly for baseline and monitor surveys. We also assume
there are 100 receivers missing in the monitor recording because of the presence of a
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platform right above the reservoir. Uniform random noise is added to the data. The
synthetic data can be seen in Figure 2. For one shot gather, we have 397 traces for
baseline, and 224 traces for monitor.

RTM image from baseline model is used as initial guess in LSRTM step for both
baseline and monitor. Figure 3 shows the LSRTM results after 500 conjugate gradi-
ent (CG) steps. The amplitude difference at the reservoir is observable at this stage.
Substracting the two images, as seen in Figure 4(a), we get very noisy results con-
taminated by footprints from the acquisition gap in the monitor survey. Nevertheless,
the time-lapse signal can be interpreted.

Simultaneous joint inversion is then solved using iteratively reweighted least squares
(IRLS) for 20 by 10 CG steps, and the results are shown in Figure 4(b). Weight func-
tion W has non-zero values in a rectangle around the area with production induced
velocity change. Because of the simplicity of the model, ∇r = ∇x would be sufficient.
In this example, 4D signals with L1 regularization can be recovered.

SYNTHETIC EXAMPLE 2

In this section, the target area is selected under the salt. Because of the complexity, we
add acquisition nonrepeatability issues gradually to identify the boundary of failure
and success. The first subsection shows results with different acquisition geometries.
The second subsection shows results with an additional acquisition gap in the monitor.

The true velocity models for baseline and monitor are constructed from part of
the Sigbee 2A model with salt. Model size is 301× 501 with 20 meters (m) between
neighboring pixels. 48 sources spaced every 180 meters with up to 501 receivers spaced
every 20 meters, are used to create the synthetic data. Migration velocity is the same
for both baseline and monitor. The velocity differences between true velocity and
migration velocity are shown in Figure 5. Two reservoirs are included in our model,
one in the relatively easy part and another one under the salt.

Subsalt 4D imaging with different acquisition geometry

Each shot gather contains 383 traces for the baseline and 330 traces for the monitor.
Two shot gathers are shown in Figure 6, from baseline and monitor survey seperately.
RTM images from baseline and monitor are created seperately and used as initial
guesses for LSRTM. Images from LSRTM in Figure 7 are computed after 200 CG
steps. The predicted 4D signals are shown in Figure 8(a).

From the LSRTM results, a smooth gradient field is constructed using the method
in Ma et al. (2015), and used as prior information for the joint inversion.

Finally, we solve the joint inversion problem using IRLS for 20 by 10 iterations,
and the result can be seen in Figure 8(b).
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(a)

(b)

Figure 2: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip)
[CR]
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(a)

(b)

Figure 3: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same
percentile clip) [CR]
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(a)

(b)

Figure 4: (a) difference bewteen baseline and monitor images from LSRTM. (b)
difference between baseline and monitor from Joint IRLS. The clean rectangle in the
middle is where W(r) 6= 0. [CR]
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(a) (b)

Figure 5: Left: baseline velocity perturbation; right: monitor velocity perturbation.
[ER]

Subsalt 4D imaging with different acquisition geometry and
acquisition gap

50 receivers are removed from the monitor survey to create an acquisition gap. Two
shot gathers are shown in Figure 9. RTM images from baseline and monitor are
created seperately and used as initial guesses for LSRTM. Images from LSRTM in
Figure 10 are computed after 200 CG steps. The predicted 4D signals are shown
in Figure 11(a). The acquisition gap leads to a incorrect prediction of 4D signals
under the salt. Around x = 5000m, LSRTM results suggest there are reflectivity
changes both above and below the true velocity perturbation, near z = 3000m and
z = 5000m.

We then solve the joint inversion problem using IRLS for 20 by 10 iterations,
and the result can be seen in Figure 11(b). The incorrect prediction of 4D signals is
not completely removed from the joint inversion with steering filters, maybe because
they are in the null space of steering filter and forward modeling operator L. The
limitation of steering filters indicates that more sophisticated regularization terms are
necessary in time-lapse study.

CONCLUSIONS AND FUTURE WORK

We applied L1 regularization and steering filters to the time-lapse imaging problem.
Our numerical results suggest great improvements can be achieved when the subsur-
face structure is relatively simple. We also demonstrated enhancement of 4D signals
under the salt can be achieved. The methods in this paper extract information purely
from the seismic data. Subsalt imaging is still challenging when reliable data is not
present. The bright side is that in 4D we have additional data from reservoir simu-
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(a)

(b)

Figure 6: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip)
[CR]
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(a)

(b)

Figure 7: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same
percentile clip) [CR]

SEP–158



Ma et al. 12 4D imaging

(a)

(b)

Figure 8: (a) difference bewteen baseline and monitor images from LSRTM. (b)
difference between baseline and monitor from Joint IRLS. [CR]
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(a)

(b)

Figure 9: (a) baseline shot gather. (b) monitor shot gather. (same percentile clip)
[CR]
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(a)

(b)

Figure 10: (a) baseline image from LSRTM. (b) monitor image from LSRTM. (same
percentile clip) [CR]
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(a)

(b)

Figure 11: (a) difference bewteen baseline and monitor images from LSRTM. (b)
difference between baseline and monitor from Joint IRLS. [CR]
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lation, well logs, rock physics and geomechanics etc. In our next work, we need to
bring in geomechanical information to build more robust algorithms.
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APPENDIX A: FULL WAVEFORM INVERSION
GRADIENT AND LINEARIZED VERSION

We aim at inverting velocity and density simultaneously. In this appendix, we derive
the Frechet derivative of objective function for a full-waveform inversion. We follow
the notations of (Liu and Tromp, 2006; Plessix, 2006; Bai and Yingst, 2014). We
compute the gradient for a single-shot gather. Our objective function is:

J(v, ρ) =
1

2

∑
r

∫ T

0

‖u(xr, t)− d(xr, t)‖2
2dt, (15)

where u(xr, t) is a computed wavefield and d(xr, t) is recorded data. Our objective
function is constrained by the following PDE:


[ 1
v2 ∂

2
t − ρ∇(1

ρ
∇)]u = f

u(x, 0) = 0

∂tu(x, 0) = 0.

(16)

The Lagrangian:

L(v, ρ, λ, µ1, µ2) =
1

2

∑
r

∫ T

0

‖u(xr, t)− d(xr, t)‖2
2dt (17)

−
∫ T

0

∫
〈λ,

1

v2
∂2

t u− ρ∇(
1

ρ
∇u)− f〉d3

Ωxdt (18)

−
∫

Ω

〈µ1, u(x, 0)〉d3x (19)

−
∫

Ω

〈µ2, ∂tu(x, 0)〉d3x. (20)

Perturb Lagrangian and we can get:

δL =
∑

r

∫ T

0

∫
〈u(xr, t)− d(xr, t), δu(x, t)〉δ3(x− xr)d

3xdt (21)

−
∫ T

0

∫
Ω

〈λ,− 2

v3
δv∂2

t u− δρ∇(
1

ρ
∇u) + ρ∇(

δρ

ρ2
∇u)− δf〉d3xdt (22)

−
∫ T

0

∫
Ω

〈λ,
1

v2
∂2

t δu− ρ∇(
1

ρ
∇δu)〉d3xdt (23)

−
∫

Ω

〈µ1, δu(x, 0)〉d3x (24)

−
∫

Ω

〈µ2, ∂tδu(x, 0)〉d3x. (25)
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Before we go further, we want to briefly mention the effects of each term in the
previous equation. Line (22) is used to derive the Frechet derivative. Line (21) and
(23) form another PDE by properly choosing the Lagrangian multipliers, which are
used in the computation of gradient. Line (24) and (25) vanish with proper µ1 and
µ2.

We will first derive the PDE constraints for λ. Define A to be the sum of line
(23), (24), and (25) of δL,

A = −
∫ T

0

∫
Ω

〈λ,
1

v2
∂2

t δu− ρ∇(
1

ρ
∇δu)〉d3xdt (26)

= −
∫

Ω

〈µ1, δu(x, 0)〉d3x−
∫

Ω

〈µ2, ∂tδu(x, 0)〉d3x

= −
∫ T

0

∫
Ω

〈 1

v2
∂tλ−∇†(

1

ρ
∇†(ρλ)), δu〉d3xdt

−
∫

Ω

〈µ2 −
1

v2
λ, ∂tδu(x, 0)〉d3x−

∫
Ω

〈µ1 +
1

v2
∂tλ, δu(x, 0)〉d3x

−
∫

Ω

〈λ,
1

v2
∂tδu(x, T )〉d3x

−
∫

Ω

〈−∂tλ,
1

v2
δu(x, T )〉d3x.

We can choose µ2 = 1
v2 λ, µ1 = − 1

v2 ∂tλ to simplify the previous equation. Define B
to be the sum of line 22 of δL, assuming δf = 0 and proper boundary condition, we
get:

B = −
∫ T

0

∫
Ω

〈λ,− 2

v3
δv∂2

t u− δρ∇(
1

ρ
∇u) + ρ∇(

δρ

ρ2
∇u)− δf〉d3xdt (27)

=

∫ T

0

∫
Ω

〈λ,
2

v3
∂2

t u〉δvd3xdt∫ T

0

∫
Ω

〈λ,
1

ρ
(∇ρ)(∇u)〉δρd3xdt.

Substitute A and B back into δL,
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δL =

∫ T

0

∫
Ω

〈λ,
2

v3
∂2

t u〉δvd3xdt (28)∫ T

0

∫
Ω

〈λ,
1

ρ
(∇ρ)(∇u)〉δρd3xdt

−
∫ T

0

∫
Ω

〈 1

v2
∂tλ−∇†(

1

ρ
∇†(ρλ))−

∑
r

(u(xr, t)− d(xr, t))δ3(x− xr), δu(x, t)〉d3xdt

−
∫

Ω

〈λ,
1

v2
∂tδu(x, T )〉d3x

−
∫

Ω

〈−∂tλ,
1

v2
δu(x, T )〉d3x.

Choose the λ such that the last three lines vanish, and we get the gradients,

{
∂J
∂v

=
∫ T

0

∫
Ω
〈λ, 2

v3 ∂
2
t u〉d3xdt

∂J
∂ρ

=
∫ T

0

∫
Ω
〈λ, 1

ρ
(∇ρ)(∇u)〉d3xdt,

(29)

subject to:


1
v2 ∂tλ−∇†(1

ρ
∇†(ρλ)) =

∑
r(u(xr, t)− d(xr, t))δ3(x− xr)

λ(x, T ) = 0

∂tλ(x, T ) = 0.

(30)

λ satisfies the adjoint of wave equation, and we emphasize that ∇† 6= ∇.

In this paper, we only need linearized waveform inversion with constant density,
and we can simplify the gradient expression:

∂J

∂v
=

∫ T

0

∫
Ω

〈λ,
2

v3
∂2

t u〉d3xdt (31)

1

v2
∂tλ− (∇†)2λ =

∑
r

(u(xr, t)− d(xr, t))δ3(x− xr) (32)

λ(x, T ) = 0 (33)

∂tλ(x, T ) = 0 (34)

ρ(x) = ρ0. (35)
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APPENDIX B: UNDERSTANDING
FORWARD/ADJOINT OF WAVE PROPAGATION IN

MATRIX FORM

In this section, Born modeling for constant density in matrix form is derived, following
the idea of (Ji, 2009; Almomin, 2013) . All the necessary modules are included and
they should be ready to translate into real code.

We discrete time into [0, ∆t, 2∆t, · · · , N∆t], with T = N∆t. Assume we have
obtained the wavefield ũ(x, t) for t = 0, ∆t, · · · , N∆t, we can then approximate
∂2

t u0(x, t) for t = 0, ∆t, · · · , (N − 1)∆t, using a second order finite difference.

Use ui to represent the wavefield at t = i × ∆t, and use U = [u0, u1, · · · , uN ]T ∈
RN×dom to represent wavefield at the domain in which we are interested. First, we
need to create the source term S = [s0, s1, · · · , sN−1, sN = 0]T , it can be described as:

S = BV m, (36)

where B = [D2
t u

0, D2
t u

1, · · · , D2
t u

N−1, 0]T , and V = v(r)2. D2
t is 2nd order finite

difference operator.

An implicit trick we want to impose is a shift operator T1 with the effect:

T1S = T1


s0

s1

...
sN−1

sN = 0

 =


0
s0

s1

...
sN−1

 . (37)

We need this operator to compute u1, · · · , uN ; and we need s0, · · · , sN−1, and the
shift operator to simplify the following expression. It is also important to obtain the
correct final state for the adjoint operator.

The explicit form for time marching is:

ut+1 = (2− ∆t2

∆x2
v2∆)ut − ut−1 + st. (38)

After the source wavefield is obtained, we claim the following operator is time
marching:

Mt ≡

 I(t−1)×(t−1) 0 0
0 A3×3 0
0 0 I(N−t−2)×(N−t−2)

 . (39)
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which maps [u0, · · · , ut, st, · · · , sN−1]T to [u0, · · · , ut, ut+1, st+1, · · · , sN−1]. The time
marching kernel:

A =

 I 0 0
0 I 0
−P PT P

 (40)

T = 2− ∆t2

∆x2
v2∆, (41)

with P as absorbing boundary operator. The effect of Mt can be checked by induction,
and the boundary term need some attention.

Now, we have:

MN−1MN−2 · · ·M0T1BV m = U =


u0 = 0

u1

...
uN−1

uN

 . (42)

Thus, it is obvious that MN−1MN−2 · · ·M0T1BV is the forward operator for Born
modeling.

It is interesting to see the exact adjoint of this method:

T T
1 MT

0 · · ·MT
N−1


u0

u1

...
uN−1

uN

 = T T
1


s0 = weird state

s1

...
sN−1

sN

 =


s̃0

s̃1

...
s̃N−1

s̃N = 0

 , (43)

which is exactly what the adjoint formula predicts, with the correct final condition.
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