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ABSTRACT

We present a powerful and easy-to-implement algorithm for solving constrained
optimization problems that involve L;/total-variation regularization terms, and
both equality and inequality constraints. We discuss the relationship of our
method to earlier works of Goldstein and Osher (2009) and Chartrand and
Wohlberg (2010), and demonstrate that our approach is a combination of the
augmented Lagrangian method with splitting and model projection. We test
the method on a geomechanical problem and invert highly compartmentalized
pressure change from noisy surface uplift observations. We conclude the paper
with a discussion of possible extension to a wide class of regularized optimization
problems with bound and equality constraints.

INTRODUCTION

The primary focus of this work is a class of least-squares fitting problems with a
total-variation (TV) regularization and bound model constraints:

«
[Vml[ly + 5 [F(m)—d[; — min,
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m < m < ms,.

In (1) we seek a model vector m such that forward-modeled data F(m) match ob-
served data d in the least squares sense, while imposing blockiness-promoting total-
variation (TV) regularization (Rudin et al., 1992) and lower (m;) and upper (msy)
model bounds. Rather than using a regularization parameter as a coefficient of the
regularization term, we use a data-fitting weight a. TV regularization (also know as
the Rudin-Osher-Fatemi, or ROF, model) acts as a form of model styling that helps to
preserve sharp contrasts and boundaries in the model, even when spectral content of
input data has limited resolution. Examples of successful geophysical application of
unconstrained TV-regularized optimization are included in this report (Maharramov
and Biondi, 2015; Maharramov et al., 2015; Ma et al., 2015a,b). The regularization
provided by bounded total-variation sometimes produces sufficient smoothing side-
effect on the inverted model that obviates explicit bound constraints. However, many
applications still require the imposition of additional constraints regardless of the
regularization. For example, reservoir pore-pressure inversion problems often come
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with a priort bounds on the estimated pore pressure change, such as the pore pres-
sure change being non-negative as a result of fluid injection (lower bound) or never
exceeding a hydraulic fracturing pressure (upper bound). TV regularization is a key
tool in imaging and de-noising applications (Rudin et al., 1992; Chambolle and Li-
ons, 1997; Goldstein and Osher, 2009; Chartrand and Wohlberg, 2010) and require
an efficient mechanism for including a priori model constraints that can significantly
reduce model space (Chartrand and Wohlberg, 2010). While barrier or penalty func-
tion methods, such as nonlinear interior-point methods (Nocedal and Wright, 2006),
can be used to tackle the general constrained formulation (1), the presence of a non-
differentiable Li-norm total-variation term and non-quadratic penalty terms pose
considerable challenges to practical implementation. A log-barrier function such as

n i i i i
— const X Zlog% + log %, (2)
i=1

where n is the model space dimension, can be added to the right-hand side of the
objective function to keep solution iterates away from the rectangular bounds. How-
ever, this adds a non-quadratic term to the objective function. For large-scale inver-
sion problems with n > 10° (such as typical in geophysical applications) often only
iterative gradient-based solution techniques like the nonlinear conjugate gradients
(Nocedal and Wright, 2006) are available, and adding non-quadratic terms may sig-
nificantly affect convergence properties. Note that this is in addition to the challenges
associated with handling the non-differentiable T'V-regularization term.

Chartrand and Wohlberg (2010) used a splitting approach to decouple the TV-
regularized problem from enforcing the constraints. In our approach, we perform
three-way splitting of problem (1) into a smooth optimization, gradient thresholding
and projection steps using the Alternating Direction Method of Multipliers (ADMM)
(Boyd et al., 2010). For unconstrained TV-regularized problems this approach is
equivalent to the split-Bregman method of Goldstein and Osher (2009). However,
we integrate the projection step associated with enforcing the bound constraints into
the TV-minimization loop and avoid unnecessary iterations in the minimization of a
proximal term (Parikh and Boyd, 2013) associated with the projection.

METHOD

First, we recast the TV-regularization part of (1) as a constrained optimization prob-
lem following the approach of Goldstein and Osher (2009). We introduce an auxiliary
variable x and operator ® : m — x such that for isotropic TV regularization we have
a vector of the model-space dimension

B(m) = \/(V.m) + (V,m)", (3)

and for anisotropic regularization a vector twice the model-space dimension

o - (3]

V,m|’

(4)
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Problem (1) can now be reformulated with an additional equality constraint:

a .
Ixlly + SIF(m) —df; — min,
x = ®(m), (5)

m < m < ms,.
Problem (5) is still a bound-constrained problem. Introducing the projection operator
II(m) = max{min{m, my}, m,}, (6)

where min and max are applied component-wise, we reduce (5) to a fully equality-
constrained formulation:

(0% .
Ixlly + FIF(m) —df5 — min,

X = <I>(m), (7)
m =1y,
y = II(m).

Following the augmented Lagrangian recipe for (7) while assuming the last equality

constraint still enforced explicitly, we obtain a sequence of problems (Nocedal and
Wright, 2006)

. «
(", m* ) = argmin x| + Z[F(m) —d[5 +
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M1 = My — A [XkH - (I’(mk+1)] ,

Vil = Vk—é[mkﬂ—y} , E=0,1,2,...
Coefficients A and  are any positive constants above certain problem-specific “thresh-
old” values (Nocedal and Wright, 2006), and can be selected experimentally. Vectors
pu, and vy are vectors of multipliers that converge to the set of Lagrange multipliers
for the first two equality constraints of problem (7). At each step, (8) solves an L;-

regularized problem with respect to the combined model vector (x, m). Introducing
new scaled multiplier vectors

bk:%,ck:%,k:m,z,... 9)

a little algebra shows that (8) is equivalent to
(1 m*) = argmin x| + Z|F(m) - dJj} +
2 x = ®(m) b3+ Lm — y - cH2 — min
9 2T 5 y 2 ) (10)

bk+1 — bk + (I)(karl) o XkJrl7

"l = cfF4y—mht k=0,1,2,...
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Here we used the fact that adding a constant term \/2||b*||2 + §/2||c¥||2 to the ob-
jective function obviously does not change the minimizing solution.

Problem (7) can be solved by iteratively projecting the current model vector m
onto y, then conducting the iterations (10) to convergence, then repeating the process.
However, presence of the proximal term §/2|m — y||3 in (8) due to the constraint
m = y means that a very accurate solution of (10) at early iterations is wasteful and
unnecessary. We instead carry out a single iteration of (10) followed by the model
projection:

(XkJrl

Y

. 0%
m") = argmin [x[ + Z[|F(m) —d|f; +

A o
Sl — @(m) — b3+ Sm — yF - cHJE — win

bk-i—l — bk + @(mk+1> . Xk-l-l (11>
Ck+l _ Ck + yk . mk:-i—l’
yk+1 = H(mk+1) = max{min{mkﬂ, mQ}, ml}; k= 07 17 27 ce

The iterative process (11) still requires soling an L;-regularized problem. However,
the Li-norm term now involves only the vector x. Therefore, we can apply Douglas-
Rachford splitting, minimizing

o A 0
Il + 5 |[F(m) —d|3 +5lx — ®(m) —bk||§+§||m -y =<3 (12)

alternately with respect to m and x in an inner loop of N; > 1 cycles. Because the
proximal constraint m = y renders good fitting accuracy at early stages unnecessary,
N; can be small. Further we note that the minimization of (12) with respect to x (in
a splitting step with m fixed) is given trivially by the “shrinkage” operator (Goldstein
and Osher, 2009):

1
x" = shrink {@(m) +b*, X} : (13)
where x
shrink {x,v} = — max(|x| —~,0), (14)

]
and is effectively thresholding the model gradient. Our algorithm can be described
by the following 5 steps:

1 Initialization o

m- = starting guess,

x' = 0,

y’ = max{min{m", m,}, m,}, (15)
b’ = 0,

& =0,

2 Outer loop. Repeat steps 3-5 for £k =0,1,2,...
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3 Inner loop. Iterate (16) Ny > 1 times.
k+1 1 i k_ k2 g N 2
m*! = argain et — @(m) b3 + % [F(m) — 3+
J
2y e (16)

1
x*1 = ghrink {‘I’(mk“) + b*, X} ,xF = xFL

4 Update the multipliers and project the model onto the bounding rectangle:
bk+1 — bk + (I’(mk+1) o Xk+1
ck+1 — Ck + yk _ mk+1’ (17)

y"™ = max{min{m"*™ m,}, m,}.

5 Terminate if the target accuracy is reached

Hmk—l-l

< target accuracy. (18)
or go back to step 2 otherwise.

Optimizing (16) with respect to m is in itself a large-scale optimization problem,
nonlinear for a nonlinear modeling operator F. Solving the optimization problem
(16) exactly is unnecessary because for small k (i.e., at early stages of the inversion)
vector y* is not the true model, vector x* is far from the true model gradient, and
the multipliers b¥, x* could be far from scaled Lagrange multipliers, s. Therefore, for
large-scale problems only a few steps of an iterative method like conjugate gradients
need be carried out. As the solution converges to the true solution and critical sharp
contrasts in the model are identified, an iterative solver can begin to take advantage
of the objective function curvature information collected at previous iterations of
the outer loop, potentially leading to a significantly faster convergence. Optimal
strategies for spanning iterations of nonlinear conjugate gradients across iterations of
the outer loop of our algorithm are the subject of an upcoming report.

RESULTS

We demonstrate our method with a test problem that simulates vertical surface uplift
in response to distributed dilatational sources, mathematically equivalent to surface

deformation due to pore pressure change (Segall, 2010). Our modeling operator is

defined as
D*m/(&)dg

Plm) = ula), u(a) = | Tt

where we assume that m = m(§),§ € [0, A] is a relative pore pressure change along
a linear segment [0, A] of a reservoir at a constant depth D, and u = u(z),z €

(19)
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[0, A], within a proportionality factor determined by poroelastic medium properties
(Maharramov and Zoback, 2015), is the induced vertical uplift on the surface. For
demonstration purposes we consider a one-dimensional model but the results trivially
extend to realistic reservoir and surface geometries. Operator (19) is a smoothing
operator, and recovering sharp pressure contrasts e.g. due to permeability barriers
requires model “styling” or regularization such as blockiness-promoting ROF model.
As a true model we used a highly compartmentalized pressure model of Figure 1(b).
In our experiments, we set D = 100m A = 2km, and discretized both the model and
data space using a 200-point uniform grid. Random Gaussian noise with ¢ = 15% of
the maximum clean data amplitude was added to the clean forward-modeled data to
produce the noisy observations shown in Figure 1(a).

True and noisy uplift observations
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Figure 1: (a) True and noisy uplift observations. Random Gaussian noise with o =
15% of maximum clean data amplitude was added to the clean data. (b) True model
exhibibits a highly compartmentalized “blocky” behavior. [CR]

The result of a TV-regularized unconstrained inversion is shown in Figure 2(a)
against the true model and a Tikhonov-regularized inversion. This result was obtained
using the above algorithm by setting § = 0 (no bound constraints) and using the val-
ues of @« = 1 and A = 2. The TV-regularized result captures the compartmentalized
picture of pressure distribution better than the highly smoothed Tikhonov regular-
ization result. However, due to absence of bound constraints, lower pressure bounds
are not honored, resulting in negative pressure areas that are not present in the true
model. The result of running our bound-constrained TV-regularization algorithm is
shown in Figure 2(b). The imposition of bound constraints not only removed the neg-
ative relative pressure areas, but also removed the pressure spike at about x ~ 1km
in the unconstrained inversion of Figure 2(a) that apparently had resulted from com-
pensating negative pressures. In both the constrained and the unconstrained runs we
conducted 1000 outer loop iterations with 2 inner loops cycles. However, the algo-
rithm converged quickly, with only a few initial iterates outside a tight neighborhood
of the final curve, as shown in Figure 3(b). Finally, we note that many practical
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implementations of bound constraints often resort to a simplistic way of enforcing
the constraints: the inverted model is projected onto the bounding rectangle either
once after applying a direct unconstrained solver, or at each iteration of an uncon-
strained solver. In this case variable y and the associated quadratic regularization
term are not introduced into the objective function. This may result in a violation
of the KKT optimality conditions where the bound constraints are active (Nocedal
and Wright, 2006), and is demonstrated by the blue plot in Figure 3(a). While the
bound constraints are honored, the solution is both qualitatively and quantitatively
far from optimal.

CONCLUSIONS AND PERSPECTIVES

Our algorithm combines the advantages of the blockiness-promoting and edge-preserving
ROF model with the ability to impose bound constraints. The splitting mechanism
used for enforcing the bound constraints is naturally integrated into the split-Bregman
iterations and results in no extra computational cost. The method was able to resolve
compartmentalized subsurface pressure changes from noisy surface uplift observa-
tions despite the highly diffusive nature of the underlying deformation process. The

Inversion results
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Figure 2: (a) Unconstrained TV-regularized inversion. The algorithm tries to fit
the data by allowing negative relative pressure changes. (b) Bound constrained TV-
regularized result. Note that enforcing lower bounds resulted in a more accurate
shape matching of the true model. [CR]

method can be implemented around any large-scale nonlinear solver such as conjugate

gradients or quasi-Newton methods. Additional equality and inequality constraints
can be incorporated into the algorithm using the general ADMM framework.
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Inversion results Convergence of TV-regulazed models
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Figure 3: (a) Direct imposition of the bound constraints at each iteration of the
unconstrained solver resulted in a qualitatively and quantitatively wrong inversion.
(b) Convergence of TV-regularized inverted models with bound constraints. The
method quickly resolves both sharp contrasts and active bounds as only a few initial
curves out of 1000 iterates lie outside a small neighborhood of the final curve. [CR|]
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