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ABSTRACT

We provide a general framework for deriving fast finite-difference algorithms for
the numerical modeling of acoustic wave propagation in anisotropic media. We
specialize this framework to the case of tilted transversely isotropic media to im-
plement a kinematically accurate fast finite-difference modeling method. This
results in a significant reduction of the shear artifacts compared to similar kine-
matically accurate finite-difference methods.

INTRODUCTION

Transverse isotropy and orthorhombic media are of significant interest for indus-
trial applications such as seismic imaging and inversion in complex, fractured rocks
(Grechka, 2009). While full elastic data and models are needed to fully understand
and invert for parameters in such media, the lesser task of imaging in the presence of
such anisotropy can often be accomplished under a pseudo-acoustic assumption. In
particular, the pseudo-acoustic method of Alkhalifah (1998) is the anisotropic coun-
terpart of isotropic acoustic modeling. However, this and similar anisotropic finite-
difference methods suffer from shear artifacts or rely on approximations that break
down for strong anisotropy (Fowler et al., 2010; Zhan et al., 2012). We note that both
references discuss transverse isotropy but similar challenges exist for finite-difference
modeling in orthorhombic media.

In this work we develop a computationally efficient finite-difference wave propa-
gation modeling method for tilted transversely isotropic (TTI) media that is largely
free of shear artifacts. The concept extends the approach that Maharramov (2014,
2015) formulated for vertically transversal isotropic (VTI) media, but is not limited
to polar anisotropy.

Our derivation of pseudo-acoustic (systems of) equations for a specific medium
symmetry can be described as a three-step process:

1) Derive a phase velocity surface (Musgrave, 1970) as a function of the angle of
propagation.

2) Derive a dispersion relation from 1) (Alkhalifah, 1998).
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3) Interpret the dispersion relation as an evolutionary pseudo-differential equation,
and transform it into a form suitable for numerical solution.

The cause of numerical artifacts is that the pressure and shear wave velocity surfaces
remain coupled after deriving computationally feasible equations in step 3 (more
specifically, the pressure mode and one of the shear modes remain coupled).

Our method can be summarized as follows:

2′) After step 1) above, extract the branch of the phase velocity surface correspond-
ing to the pressure wave velocity.

3′) Approximate the resulting V 2 = F (m, θ), where V is the pressure wave velocity,
m stands for medium parameters, and θ is the propagation direction, with a
computationally efficient numerical Fourier operator. This can be a trigonomet-
ric polynomial in θ (Iserles, 2008) with coefficients depending on m, as practiced
in some of the existing spectral pseudo-acoustic modeling methods (Etgen and
Brandsberg-Dahl, 2009). We opt to use a pseudo-differential operator spatially
constrained to a narrow depth range of sources and receivers.

4) Derive a coupled pseudo-pressure, pseudo-shear differential equation system
analogous to Alkhalifah (2000).

5) At each time step apply the spatial component of the pseudo-differential op-
erator derived in step 3′) to the injected source1 using a spectral method with
spatial interpolation. This results in a “pseudo-source”.

6) Inject appropriate linear combinations of the pseudo-source and the source into
the primary and secondary component of the system derived in 4).

When we assume a VTI anisotropy, and that the system described in step 4) is that of
(Alkhalifah, 2000), step 6) reduces to injecting the pseudo-source into the secondary
component and the true source into the primary component of the system derived in
step 4).

THE PSEUDO-DIFFERENTIAL MODELING OPERATOR

In step 1) we start with the equation for V (θ) in a VTI medium (Tsvankin, 1996)

V 2(θ)

V 2
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(1)

1This includes back-propagating receiver data in applications such as reverse time migration.
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Figure 1: Test model with smooth and sharp VP gradients and constant ε = 0.3,
δ = 0.1, and tilt φ = 45◦. [CR]
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Figure 2: Test model with two anisotropic inclusions. The tilt angle is equal to 35◦

and 25◦ within the upper and lower inclusions, and is 30◦ in the background [CR]
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where VP and VS are vertical pressure and shear wave velocities, θ is the propaga-
tion angle measured from the transverse isotropy symmetry axis, and ε and δ are
the Thomsen parameters (Thomsen, 1986). We assume that VS = 0, as we are not
interested in propagating shear modes, thus f = 1. Note that here and in the sub-
sequent analysis we consider two-dimensional TTI, however, the results naturally
extend to three dimensions by identifying kx with the radial wavenumber—see, e.g.,
Maharramov and Nolte (2011). We use the equivalence ku = −i ∂

∂u
in (1), where u

is an arbitrary variable, to stress that the phase velocity equation can be interpreted
as both a dispersion relation and a pseudo-differential operator. In step 2′), we ex-
tract the branch of the square root with the positive sign in (1), corresponding to
the (higher) compressional wave velocity. The resulting dispersion relation can be
interpreted as an evolutionary pseudo-differential operator
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governing kinematically accurate propagation of the pressure wave, where x′, z′ are
locally rotated coordinates with z′ pointing along the tilted symmetry axis and x′

pointing in the radial direction,

∆ =
∂2

∂x′2 +
∂2

∂z′2
=

∂2

∂x2
+

∂2

∂z2

is the Laplace operator (which is unaffected under rotation), and the “2” over x and z
means that the multiplication by functions of spatial variables follows the application
of differential operators in the pseudo-differential operator sense (Maslov, 1979). This
is equivalent to “freezing” the operator coefficients, or assuming local homogeneity.
Note that TTI in two dimensions requires one more parameter defined for each point
of the subsurface: tilt angle φ from the vertical. This parameter implicitly enters (2)
in the rotated coordinates x′ and z′. Solving (2) for arbitrary heterogeneous media
may be numerically challenging, because the Thomsen parameters ε(z, x) and δ(z, x)
appear inside the square root of a pseudo-differential operator. However, operator (2)
may simplify numerically if it is applied to a function with spatially bounded support
– e.g., a source wavelet or receiver data. As noted earlier, an alternative to solving
the full pseudo-differential operator equation (2) is to approximate, in step 3′), the
extracted pressure velocity branch with a trigonometric polynomial:

V 2(θ) ≈ V 2
P

N∑
n=0

an sin2n(θ), (3)

where the coefficients an, n = 0, . . . , N depend on medium parameters. From the last
line of (1) we can see that velocity surface (3) translates into the following pseudo-
differential operator equation

∂2

∂t2
= V 2

P

N∑
n=0

an
∂2n

∂x′2n
∆1−n. (4)
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Equation (4) can be solved by applying the operators

∂2n

∂x′2n
∆1−n

to the wave field in the spatial Fourier domain, then summing up the results with
spatially-dependent coefficients an in the spatial domain. Important particular cases
of approximation (3) are the weak anisotropy approximation (Grechka, 2009)

V 2(θ) ≈ V 2
P

(
1 + δ sin2 θ +

ε− δ

1 + 2δ
sin4 θ

)
, (5)

and the VTI approximation due to Harlan and Lazear (Harlan, 1998) used by Etgen
and Brandsberg-Dahl (2009)

V 2(θ) = V 2
P cos2 θ +

(
V 2

PNMO − V 2
PHor

)
cos2 θ sin2 θ + V 2

PHor sin2 θ, (6)

where the subscripts PHor and PNMO denote the horizontal and NMO compressional
wave velocities, respectively. Note that both (5) and (6) correspond to N = 2 in (3)
and are suitable for weakly anisotropic VTI but break down in strong anisotropy. The
case of N = 3 requires one additional inverse FFT for VTI but is accurate for a wide
range of Thomsen parameters within (and beyond) practical requirements. Adapting
(3) for TTI media would require the application at each time step of 5 additional
inverse FFTs for N = 2 and extra 16 inverse FFTs for N = 3.

Solving (4) for N = 2, 3 using the described spectral method is an efficient model-
ing method in its own right, especially for VTI media where the number of FFTs at
each time step is very low. However, in the next section we describe a finite-difference
method that can outperform the spectral method for complex media and conceptually
generalizes for other kinds of anisotropy.

THE FINITE-DIFFERENCE METHOD

In step 4) we square the pseudo-differential operator equation (2) so as to get rid
of the square root, and obtain the following system of coupled second-order partial
differential equations (Alkhalifah, 2000):

∂2q

∂t2
= V 2

PHor

∂2q

∂x′2 + V 2
P

∂2q

∂z′2
− V 2

P

(
V 2
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) ∂4r

∂x′2∂z′2
,

∂2r

∂t2
= q,

(7)

where r(z, x, t) and q(z, x, t) are the pressure field and its second temporal derivative,
and

VPHor(z, x) = VP (z, x)
√

1 + 2ε(z, x), VPNMO(z, x) = VP (z, x)
√

1 + 2δ(z, x).
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Figure 3: Shear artifact (marked with the “S”) in the solution of (7) for the model of
Figure 1 with sources injected in component r. Note that the shear artifact is causing
numerical instability. [CR]
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Figure 4: Shear artifact (marked with the “S”) in the solution of (7) with sources
injected in component q. Although significantly reduced, the shear artifact is still
sufficiently strong to cause imaging cross-talk. [CR]
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Since the resulting system now includes the branch with the negative square root in
(1), solution of this system may suffer from shear artifacts as shown in Figure 3. The
artifacts can be reduced by injecting sources into the second component q (Fowler
et al., 2010); however, they are still present—see Figure 4. However, the pseudo-
differential operator equation (2) can be used to reduce the unwanted artifacts (ap-
pearing as the “diamond”-shaped inverted wavefront in the figure). Equation (1)
and the corresponding pseudo-differential equation do not describe any pressure to
shear conversion but rather govern the independent propagation of the pressure and
shear waves. The same is true of the “coupled” system of differential equations.
Consequently, any shear artifacts that appear in a solution to the coupled system
of differential equations we attribute to the pseudo-shear modes present in the wave
field. We can use the fact that the system of two coupled equations requires in-
jecting two sources, to manufacture a pseudo-source to be injected into one of the
components so as to suppress the shear modes. More specifically, if φ(z, x, t) is a
time-dependent source function, then at each time step component r is injected with
φ, and component q is injected with the result of applying the spatial part of the
pseudo-differential operator (2) to φ(z, x, t):

r(z, x, tn) = r(z, x, tn) + φ(z, x, tn),

q(z, x, tn) = q(z, x, tn) + V 2
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(8)

followed by a finite-difference time propagation step of system (7). This procedure
ensures that the two-component source in the right-hand side of (8) satisfies equation
(2). Since solutions of (2) are shear-free, the injected sources will not give rise to
shear modes because the solution of (7) is effectively projected on to the space of
solutions of (2).

NUMERICAL EXAMPLES

Figure 6 shows the result of applying the pseudo-source finite-difference method to
the propagation in a heterogeneous VTI medium described by the model of Figure 1,
with a Ricker source. The corresponding result obtained by solving the full pseudo-
differential operator equation (2) is shown in Figure 5. Note the significant reduction
of the shear artifacts and that although we use the full pseudo-differential operator
for generating the pseudo-source in (8), the fact that the source is localized makes
this computationally efficient, obviating the need for approximations like (4).

The model of Figure 1, while featuring both sharp and smooth vertical velocity
variation, assumes constant ε = 0.3, δ = 0.1, and tilt of 45◦. While adding the
pseudo-source (8) ensures that the solution of the coupled system (7) stays within
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Figure 5: Solution of the full pseudo-differential operator equation (2) for the model
of Figure 1. Note the good agreement with the result of finite-difference modelling
using shear-reducing pseudo-sources shown in Figure 6. [CR]
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Figure 6: Solution of (7) for the model of Figure 1 with shear-reducing pseudo-sources
is in kinematic agreement with Figure 5. A high-wavenumber computational artifact
(marked with the “A”) is caused by sharp model contrasts. [CR]
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the space of solutions of (2) in the continuous limit ∆t → 0, sharp contrasts in
medium parameters may introduce numerical approximation errors that may contain
a non-negligible shear component. Indeed, applying the method to the model of
Figure 2, featuring two inclusions with significantly different Thomsen parameters,
we can see weak artifacts (single lines) within the inclusion detail in Figure 10 for
the finite-difference method that are absent from the result in Figure 9 obtained by
solving the full pseudo-differential operator (2). Figure 11 shows the result of using
the finite-difference method with pseudo-sources after smoothing the vertical velocity
but keeping ε, δ and tilt contrasts unchanged. The result shows that the artifacts
within the inclusions were almost completely removed.

CONCLUSIONS AND PERSPECTIVES

The proposed pseudo-source finite-difference method allows us to take advantage of
computationally efficient finite-difference solvers for the traditional pseudo-acoustic
(fourth-order) systems while achieving a significant reduction in shear artifacts. The
method is kinematically accurate for VTI media, and can be extended in principle
to other kinds of anisotropy. While this implementation is based on using the cou-
pled system (7) of Alkhalifah (2000), the method can be adapted to use equivalent
systems such as that of Fowler et al. (2010). In that case the two-component source
becomes a linear combination of the true source and the pseudo-source terms, with
the coefficients of the linear combination determined by the relationship between the
solution of the equivalent system and that of system (7).
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Figure 7: Solution of the full pseudo-differential operator equation (2) for the model
of Figure 2. [CR]
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Figure 8: Solution of (7) for the model of Figure 2 with shear-reducing pseudo-sources.
Note the good agreement with Figure 7. [CR]

SEP–158



Maharramov and Levin 16 Artifact-free TTI modeling

Figure 9: Artifact-free solution of the full pseudo-differential operator equation (2)
showing multiple reflections within the lower inclusion of the model in Figure 2. [CR]
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Figure 10: Solution of (7) for the model of Figure 2 with shear-reducing pseudo-
sources. A sharp velocity contrast causes weak artifacts (“A”). [CR]
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Figure 11: Moderate smoothing of the velocity contrasts remove the high-wavenumber
artifacts. [CR]
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