Inadequacy of inverse theory for images

Jon Claerbout and Antoine Guitton

ABSTRACT

Prior information generally enters inverse theory as regularization. In large scale
problems such as image estimation where iteration does not continue to comple-
tion, an additional way to introduce a prior model is as the starting model. This
lesson, hard won at Galilee, is widely applicable.

INTRODUCTION

Reflection seismology is a powerful tool in petroleum prospecting. It works so well
it is often pushed beyond reasonable limits. That’s when we mortals (mere data
processors) get pushed into huge null spaces.

Inverse theory along with least-squares solving technology seduces us into thinking
a good solution is at hand as soon we have a data fitting regression along with suitable
model and data covariances. A drawn-out, humiliating experience taught us more is
needed. The very size of our problems leads to a pitfall that is surely widespread.

Our most valuable datasets bring us into spaces of such high dimensionality we
cannot know whether we have iterated long enough. A simple data-fitting problem
where we know which answers are plausible and which impossible eventually taught
us that what we generally ignore is what we very often need. The years we spent
with this simple problem gives us fear that many colleagues, with their more difficult
problems, produce solutions that are often wrong!

The convexity of least squares methods along with clever precondioning schemes
trick us into feeling our final solution hardly depends on the starting guess. Actually,
truth may often be the opposite.

THE CHALLENGING SETTING

An example of the simplest null space is one data value d to be divided into two
models, m; and ms. Should 10 be divided into 5+ 5 or into 9+ 17 This arbitrariness
becomes obscure when m; and my are families of complicated models competing to
grab what’s left (if anything) in multivariate data d.

Less comprehensible scenarios in seismology arise when: (1) We gave them a great
map of reflectivity, now they want density. (2) We gave them a fine map of velocity,
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now they want anisotropy. And a grand challenge, (3) There is a giant the null space
between anisotropy and inhomogeneity. How should we characterize it?

The clear academic example examined here points to analogous, but much deeper,
industrial examples. We take up a lake survey with a depth sounder. Data is the travel
time from the water surface to the water bottom measured at many locations, possibly
along survey lines that are somewhat organized. Starting from the presumption the
lake surface is perfectly flat, unchanging during the survey, we find apparent survey
tracks in our derived image (model) of the water bottom. This astonishes us and
forces us to imagine a supplemental model looking like water surface level fluctuating
during the surveying.

For 20 years we did not adequately solve the lake problem. The heart of it is
that we cannot learn a better model without fully stating our prior model. Model
covariances (even if we knew them!) are not enough.

2

The lake here is known as the “Sea of Galilee.” A survey there gave data with
complexities in many forms. Here we limit details to those central to the story.
Looking back, why did it take us so long? When two different things look the same,
they tend to have the same name, even though they differ. That and because theory
and practice are worlds apart.

Prior model

There is a boat with a depth sounder, thirty year old navigation gear, and a recorder.
Over the course of a season or several, the boat crosses the lake hundreds of times,
along somewhat regular tracks, obtaining 131,514 triples (z;,¥;, 2;), instances of ob-
served depth d = (z;) at surface (x;,y;) locations. The lake level fluctuates for many
reasons (rain and drain?). We have been told (but cannot be certain) the given values
of d = (z;) have been properly corrected for lake level.

At boat locations (x;,y;) we have measured data depth z;. A model is values
of z on a uniform grid in (x,y) space. Linear interpolation (or nearest neighbor
extraction) finds modeled depth z anywhere, hopefully a good approximation to z; at
each (z;,y;). We express data as doedeled = Gm where m is water depths on a regular
2-D mesh. The operator (matrix) G contains mainly information about navigation
and interpolation. The navigation values (z;,y;) are not treated as data having noise
(although we later suspect they should have been).

A number of data fitting issues need not concern us here, issues such as frequent
spikes in the depth, zeros in the depth, gaps in the areal coverage, erratic spikes and
a few surges in the navigation (z;,y;). What you do need to know is that brightness
and darkness in Figure 1 do not directly represent depth itself; they represent a
roughening of it, like its gradient (actually, after a 2-D operator like a gradient, the
helix derivative). This roughening is needed because water bottom features are such
small features on the overall trend of water depth.
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Figure 1: Left, roughened water depth p given a flat water surface. Right, roughened
water depth p after compensating for apparent surface elevation variation.

Correction for apparent water level

Our first idea of water level fluctuation with time (including date) was simply “rain
and drain.” Since surveying is inactive at night and on holidays we first imagined
surface elevation function an assemblage of step functions. We didn’t have a ready way
of modeling those, so we tried a slowly-variable continuous function of measurement
time.

Usually an erroneous low frequency in data is easy to handle by minimizing low-
cut filtered residuals. Attempts to do this failed because of the erratic presence of
spikes, zeros, and surges throughout the data. So, low-frequency measurement drift
had to be modeled instead. Then spikes were easily managed by using an ¢; styled
data fitting procedure (hyperbolic penalty).

Modeling the water surface as a function of time led to beautiful track-free images
resembling the right side of Figure 1. These images are delightful, but there was
an underlying problem to be taken seriously. The water surface elevation e crossing
the lake looked as sketched in Figure 2. At low frequencies the surface elevation e
mimicked the water bottom b. The data (travel time) was distributing itself between
the water bottom b and the surface top e. The water bulge in the middle of the lake
came out unreasonably large. To get the tracks out of the water bottom image, a
couple meters of water bulge was required!
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Algebraic foundation

To “debug” the analysis we need to examine the regressions. Physical functions are
smooth, both the water bottom map b(x,y) = b and the water surface elevation
e(t) = e. For regularization, b is roughened with the 2-D operator A, typically a
helix derivative (square-root of the FT of a Laplacian) and e is roughened with a
low-cut filter, typically L™!, where L is leaky integration. The data fitting and two
regularizing regressions are:

0 ~, Gb + e —d (
0 9 Ab (
0 D) Lile (3)

[N
~— —

The subscript 2 on ~, means least squares, while the subscript A on &, means
hyperbolic penalty (to soften noise bursts in the data).

A basic notion of statistics is that the regularizations should lead to residuals that
tend to be roughly 2-D white (flat spectrum) in the (z,y) plane. Thus, A should be
chosen so that Ab is roughly white. In practice a new variable Ab = p called the
preconditioner is introduced. Besides fulfilling theoretical desiderata, the variable p
has interpretive use. It is the variable shown in Figure 1. The second regularization
is that the elevation e be smooth along measurement time. Smoothed white noise
Ln should give us a signal that looks like our preconceived water surface e, so the
associated regularization is 0 ~ n = L~ 'e.

Changing the formulation from the physical variables (b,e) to the computa-
tional /statistical variables (p,n), is called “preconditioning.” Preconditioning speeds
iterative solutions, and it handles matters as statistical theory instructs us. The
preconditioned regressions are:

0 ~, GA”'p + ALn — d (4)
0 2 p (5)
0 N9 €. I (6)
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From a purely mathematical point of view, ¢, and €, are infinitesimals. Iteration
would then resolve the data fitting before starting on the regularizations. Model space
size is roughly 4002 = 160,000 while the iteration count is likely under 50. With so
few iterations the regularizations seem hardly to come into play, except that they
were earlier embedded by the preconditioning.

It might seem the ratio of the two unknown epsilons determines how much of the
null space will end out on the water bottom and how much on the top. And, it might
seem the parameter lambda )\ is merely a scaling factor in the lowpass filter L. But,
A strongly affects the balance of p and n in the gradient. The limited iteration count
leads to the epsilon ratio being far less significant than the size of A\. Although we can
easily include regularizations (5) and (6), at SEP they are generally ignored. What
really matters is the data fitting (4). Here Antoine tried keeping the regularizations
and found it made no difference.

Originally, we felt leaky integration L contained the only parameter needed to
adjust the spectrum of the elevation, but we soon realized it always had too much
short wavelength energy because of the sharp onset of the damped exponential in L.
So we switched to its autocorrelation L™TL in the low pass relation e = LT™Ln. Thus,
in practice, our code is iteratively working this lone regression:

0 ~, GA'p + \L'Ln — d (7)

Finding the worst source of null space

We have a convex regression in data space. We have two regularizations in model
space that we have taken into account. This should not fail, but it does. How does it
fail? We can play with A, and we did. We could find values of A that were big enough
to suppress the tracks in the image, but those values of A still created giant bulges
on the water surface. In other words, the water surface elevation e visually correlates
with the data, both the observed data and the modeled data Gb. In the middle of the
lake the estimated elevation is a couple meters above that at the shoreline. Obviously
wrong.

Why should we care that it is wrong, and why is it coming out wrong? We are
seeing correlation between data made from b and data made from e, If we cannot
prevent apparent correlation within an estimated model m = (b, ) where in real life
there is none, how can we hope to know when such correlation is real? Imagine a
map of seismic velocity correlating with a map of anisotropy. Are the two correlated
in geology, or is the correlation a data processing artifact?

Regularization is not the only way to manage a null space. Choosing your starting
solution carefully can make a difference—a huge difference. Textbook theory tells us
with convex optimization (such as least squares) final solutions are independent of
the starting model, but we learn otherwise from nonlinear problems, and we learn
otherwise from linear problems that are too large for us to iterate to completion.
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Any null space produces no perturbation in the modeled data so it cannot improve
the fit to the observed data. Consequently, whatever null space may exist in the
starting model will remain there throughout the iterative fitting process. When we
included e in the data fitting, we introduced as many unknown model parameters as
we have data values in d, so we certainly know we now have a giant null space.

The starting model is not the Bayes’ prior model. The starting model is simply
one of many places to start the iterative solver. But, putting our prior model into
our starting model assures us whatever null space it may contain will remain in our
final solution. Bingo! The ultimately found elevation is shown in Figure 3, hardly an
assemblage of step functions suggested by our original rain and drain ideas!

FEstirmated lake surface level

([11) dog

o 20000 40000 60000 80000 1et+O051.2e+05
Measuurerment muumber

Figure 3: Apparent water surface elevation during the entire Galilee survey (an un-
known number of months). Elevation ranges over almost a meter, but is no longer
correlated with water depth. The 10cm fuzz corresponds to 10cm measurement z;
discretization. I'm left feeling (x;,y;) require a time-variable model, such as system-
atic navigation errors. We are astonished to see the apparent elevation containing big
spikes. This might be explained by surges of navigation error.

Problem solved

So, after 20 years, how did we finally fix the Galilee fitting? We solved two problems,
one after the other. Setting A = 0 in regression (7)

0 ~, GA'p + \L'Ln — d

amounts to freezing a flat surface elevation e = Ln = 0. So, starting from (p,n) =
(0,0) with A = 0, we ran it getting our first solution for p. This bottom image shows
the ship tracks. We use that p to define py for the second pass. Iterating (p,n)
starting from (pg, (ng = 0)) gives the final bottom and top (b, e) estimates. We are
free now to experiment with A without developing the unholy correlation between b
and e.
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The various choices of A represent subjective guesses how to divide the data be-
tween bottom b and top e. There’s an opportunity here. Perhaps upon investigating
the various A choices, we might some day find a favorite, then find a reason for the
favorite, then understand that reason is suggesting something lacking in the present
analytic framework. Maybe we can sniff out an opportunity for building a model that
better describes this data. That’s real science. Inverse theory is merely a guide to
parameterizing known models.

CONCLUSION

Books tell us we should specify prior information in the regularizations. Here we
learned that we should specify it in the starting model too, particularly if we cannot
iterate to completion. Finding a suitable prior model may, in many cases, be an easier
and better way of regularizing. That’s what Galilee teaches me. This experience also
suggests that high resolution models should generally be derived from lower resolution
models (the assumption of scale invariance).

The process that led us to select regularizations (A and L™') is highly subjective,
sloppy even. We can do better simply by looking at the spectrum of n and p. If they
are not white, then adjusting the preconditioners to achieve it. This should have been
done, but was not. If it had, would the overall story change? We don’t know.

Our personal opinion is that our fellow image estimators get wrong answers much
of the time, and they don’t know it because they are not working on easy problems
like Galilee, where “wrong answers” are easier to recognize.

What about velocity anisotropy?

Have we learned something from Galilee that we can carry over to estimating anisotropy?
We think so, but have neither audacity nor time to explore details. You would be
right to guess that we would start by solving for isotropic inhomogeneous material
getting my. We would use that mg as the starting model in iterative fitting simulta-
neously for inhomogeneity and anisotropy. The regularization in the second problem
would be minimizing filtered m — my.
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