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ABSTRACT

We present some preliminary results on a specific nonlinear pseudo-acoustic wave
equation in anisotropic media, including forward modeling, linearization, and
adjoint method. Our objective is to find a robust and efficient method for
anisotropic full-waveform inversion (FWI). The wave equation is solved discretely
by the rotated staggered finite-difference scheme (RSFD) in time and space do-
mains. The solution is more accurate than the one obtained using the centered
finite-difference (CFD) scheme. The linearized equation is derived by taking only
the first-order dependence of the wavefield with respect to medium parameters.
The nonlinearity of the pseudo-acoustic wave equation introduces an additional
term in the linearized equation. The adjoint method provides a mean to com-
pute the gradients of the least-squares misfit objective function with respect to
medium parameters through the adjoint wavefield. As a result of solving the
forward equation by RSFD, the medium parameters are located on two different
grids. We show that the gradients computed by the derived adjoint equation
are in fact collocated consistently with the medium parameters. Applications on
simple models, in both vertically transverse isotropic (VTI) and orthorhombic
media, show that they also lead to the correct update directions. These results
show the potential of our method for anisotropic parameter estimation.

INTRODUCTION

Though anisotropy has been recognized by the industry to play an important role in
seismic imaging and inversion, its multiparameter nature remains a great challenge.
In an attempt to reduce the number of parameters, Alkhalifah (1998) introduced
a pseudo-acoustic approximation, under which shear-wave velocities along the sym-
metry axes are set to zero. This approximation reduces the number of anisotropic
parameters to three for VTI (vpz, ε, and δ) and to six for orthorhombic media (vpz,
εi, and δi). The pseudo-acoustic approximation results in an equation for P-wave in
frequency-wavenumber domain as follows:(

ω2 − v2
pzk

2S
)
u = 0, (1)

where u is the pressure wavefield, ω is the angular frequency, k is the wave vector,
and S = S (n, εi, δi); with n being the normalized wave vector. Mathematically, S
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is a pseudo-differential operator, whose expressions for VTI and orthorhombic media
can be found in the Appendix A (equations A-4 and A-5, respectively). Physically, it
controls the degree of anisotropy along different propagation directions. For isotropic
media, S = 1.

Equation 1 is a pseudo-differential equation, which can be computationally expen-
sive to solve (Song and Alkhalifah, 2013; Le and Levin, 2014) because S incorporates
all the anisotropic parameters. To overcome the computational intensity of solving
equation 1, Xu and Zhou (2014) introduced the following approximation:

n ≈ ∇u

|∇u|
. (2)

By regarding the wavefront normal, n, as the direction of greatest change in the
pressure wavefield, ∇u, this approximation ignores any amplitude variation with an-
gle, but is exactly correct for plane waves. For this reason, the approximation 2
might be called plane-wave approximation. Assuming local homogeneity, the linear
pseudo-differential equation 1 now becomes a nonlinear differential equation:

∂2
t u− v2

pz∇ · (S∇u) = 0. (3)

The nonlinearity comes from the dependence of the scalar term, S, on the wavefield,
u, as a result of the approximation 2.

Forward modeling

Efficient solution to the forward modeling problem is crucial to any imaging and
inversion process. Xu and Zhou (2014) solved equation 3 by a spectral method.
However, using a spectral method to solve equation 3 is as expensive as solving
equation 1. Taking advantage of the fact that equation 3 is no longer a pseudo-
differential equation, we propose to use finite differences to solve this equation instead
of spectral methods.

Equation 3 involves first derivatives, which can be inaccurately approximated
by CFD. Figure 1 compares two snapshots of the wavefield solutions for pseudo-
differential equation 1 by spectral method (panel a) and equation 3 by CFD (panel b).
Similar artifacts as shown in Figure 1b were recognized by Ozdenvar and McMechan
(1996) as a consequence of the nonlocality of the first-derivative CFD operator. To
obtain an efficient and accurate solution, we use the RSFD scheme to solve equation
3 (Saenger et al., 2000).

Figure 2 shows a representative cell of the RSFD scheme in 2D, in which the
pressure wavefield and its derivatives are located on two different grids that are stag-
gered from each other: the main grid, denoted by circular nodes, and the staggered
grid, denoted by square nodes. Consequently, the vertical P-wave velocity, which is
associated with the wavefield, and the Thomsen parameters, which are associated
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with its first derivatives, are also on different grids. Figure 3a shows a snapshot of
the wavefield using RSFD that is more accurate than the one using CFD (Figure
1b). However, when viewed at a harder clip, Figure 3b reveals high-frequency noise
generated around the source injection area. This noise can be mitigated by a smaller
time step or a larger source area.

Beside the high-frequency artifacts around the source area, the RSFD solution
to equation 3 (Figure 3a) shows some amplitude differences in comparison to the
solution to equation 1 by a spectral method (Figure 1a). These differences are ex-
pected because the plane-wave approximation 2 neglects amplitude variation along
wavefronts. Despite these differences, the RSFD solution matches the traveltimes of
the spectral solution.

(a) (b)

Figure 1: Wavefield snapshots of solutions to: (a) equation 1 by spectral method and
(b) equation 3 by CFD in a homogeneous VTI medium. [ER]

Figure 2: A representative cell of
the RSFD scheme in 2D, in which
the wavefield and velocity are lo-
cated on the main grid while the
anisotropic parameters and wave-
field derivatives are located on the
staggered grid. [NR]
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(a) (b)

Figure 3: Modeling pseudo-acoustic wave equation in a homogeneous VTI medium
using RSFD: (a) default clip and (b) hard clip revealing high-frequency noise around
the source area. [ER]

Linearization

Define m1 = 1
v2

pz
and mi with i > 1 being the anisotropic parameters, εi and δi, or

some combinations of them. In VTI for example, one possibility is m2 = 1 + 2ε and
m3 = ε − δ, whereas in orthorhombic media, mi with i = 2, ..., 6 can just be the
anisotropic parameters. With the source term, f , the wave equation 3 is re-written
on the domain Ω, together with initial and boundary conditions, as:

m1∂
2
t u−∇ · (S∇u) = f, (4a)

u(x, 0) = 0, ∂tu(x, 0) = 0, (4b)

u|∂Ω = 0. (4c)

These equations give a nonlinear relationship between the pressure wavefield and
the model parameters. For the purpose of least squares reverse time migration and
inversion, the first-order Born modeling operator is needed. The Born operator is the
derivative of the modeling function with respect to model parameters. It is obtained
by linearizing the forward modeling equations 4.

Perturb equations 4 to obtain (see Appendix A for a detailed derivation):

m1∂
2
t δu−∇ · (A∇δu) = δf, (5a)

δu(x, 0) = 0, ∂tδu(x, 0) = 0, (5b)

δu|∂Ω = 0, (5c)

where

A = SI +∇u

(
∂S

∂∇u

)T

, (6)
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and

δf = −∂2
t uδm1 +∇ ·

[(∑
i>1

∂S

∂mi

δmi

)
∇u

]
. (7)

Equation 5 is a linear partial differential equation for the perturbed wavefield, δu,
because the differential operator now does not depend on the perturbed wavefield
but on the background wavefield, u. As a result, they give a linear relationship
between the perturbed wavefield and the perturbed model pamareters. Compared
to the nonlinear forward modeling equation 4a, the linearized equation 5a has an

additional term, ∇u
(

∂S
∂∇u

)T
, incorporated in A (equation 6). This is a result of the

nonlinearity of equation 4a.

Based on the fact that when the pertubation is small enough, the perturbed
wavefield is a good approximation to the difference between the full and background
wavefields to the first order, we design a test for the linearized equations 5 with
a point perturbation. The amount of perturbation is 5% in velocity and 50% in
Thomsen parameters. Figure 4 and Figure 5 are the test results for a VTI and
an orthorhombic media respectively. Although these figures display high-frequency
artifacts and amplitude differences as seen earlier (Figure 3), they show a similarity
between the perturbed wavefield and the wavefield difference. This similarity validates
the linearized equations 5.

(a) (b)

Figure 4: Linearization test in a VTI medium: (a) difference between the full and
the background wavefields (b) the perturbed wavefield obtained by solving equation
5. [ER]

Adjoint method

Gradients of the FWI objective function were originally derived by using Green’s
functions (Tarantola, 1984). Because the acoustic isotropic wave equation is a linear
partial differential equation, it was possible to express its solution in terms of Green’s
functions. The equation at hand (equation 3) is, however, not linear; and therefore
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(a) (b)

Figure 5: Linearization test in an orthorhombic medium: (a) difference between the
full and the background wavefields (b) the perturbed wavefield obtained by solving
equation 5. [CR]

Green’s theorem is not applicable in this case. As a result, we have to employ the
adjoint method to derive the objective function’s gradients.

The adjoint method provides an efficient way to obtain gradients of the FWI
objective function through solution of an adjoint equation. Following Liu and Tromp
(2006), the least-squares misfit function is defined as:

χ =
1

2

∑
r

∫ T

0

‖u(xr, t)− d(xr, t)‖2dt, (8)

where xr are the receivers’ locations, T is the final time, and d(xr, t) is the observed
data.

The augmented Lagrangian is:

χ =
1

2

∑
r

∫ T

0

‖u(xr, t)−d(xr, t)‖2dt+

∫ T

0

∫
Ω

λ
[
m1∂

2
t u−∇ · (S∇u)− f

]
dV dt, (9)

where
∫
Ω

dV is the volumetric integration.

The perturbed augmented Lagrangian is:

δχ =

∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+

∫ T

0

∫
Ω

λ
[
δm1∂

2
t u−∇ · (δS∇u)− δf

]
dV dt

+

∫ T

0

∫
Ω

λ
[
m1∂

2
t δu−∇ · (S∇δu)

]
dV dt,

(10)
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which, after some integration by parts and algebra manipulations (Appendix B),
becomes:

δχ =

∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+

∫ T

0

∫
Ω

[
δm1λ∂2

t u +∇λ ·

(∑
i>1

∂S

∂mi

δmi

)
∇u− λδf

]
dV dt

+

∫ T

0

∫
Ω

[
m1∂

2
t λ−∇ ·

(
AT∇λ

)]
δudV dt

+

∫
Ω

m1 (λ∂tδu− ∂tλδu) |T dV

−
∫ T

0

∮
∂Ω

n̂ · λ

[(∑
i>1

∂S

∂mi

δmi

)
∇u + A∇δu

]
dsdt,

(11)

where δ(x − xr) is the delta function centered at the receivers’ locations and
∮

∂Ω
ds

is the surface integration.

Define the adjoint equations, with final and boundary conditions, as:

m1∂
2
t λ−∇ ·

(
AT∇λ

)
= −

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr), (12a)

λ(x, T ) = 0, ∂tλ(x, T ) = 0, (12b)

λ|∂Ω = 0. (12c)

Notice that, as with the linearized equation (equation 5), the above equation is
also linear with respect to the adjoint wavefield because the differential operator of
equation 12 does not depend on λ but on the background wavefield, u. Now equation
11 becomes:

δχ =

∫ T

0

∫
Ω

[
δm1λ∂2

t u +∇λ ·

(∑
i>1

∂S

∂mi

δmi

)
∇u− λδf

]
dV dt. (13)

Partial derivatives of the misfit function with respect to the model parameters can
now be read from equation 13 as:

∂χ

∂m1

=

∫ T

0

λ∂2
t udt, (14)

and for i > 1:
∂χ

∂mi

=

∫ T

0

∇λ · ∂S

∂mi

∇udt. (15)

These derivatives can be easily casted in terms of Thomsen paramaters, for example
in VTI, as:

∂χ

∂ε
= 2

∂χ

∂m2

+
∂χ

∂m3

, (16)
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and
∂χ

∂δ
= − ∂χ

∂m3

. (17)

Equation 14 shows that the gradient of the objective function with respect to the
squared vertical P-wave slowness is calculated from the adjoint wavefield and the
second-order time derivative of the forward wavefield, both of which are located on
the main grid. Equation 15 shows that the gradients with respect to mi with i > 1
or the Thomsen parameters are computed from first derivatives of the forward and
adjoint wavefields, which are located on the staggered grid. These computations are
consistent with the locations where these parameters are defined (Figure 2).

We have solved the forward modeling and adjoint equations for simple cases. The
first one is a model with a small perturbation point at the center of a homogeneous
VTI medium. There are 800 receivers at 5 meters apart placed everywhere on the
surface. Figures 6a through 6d show, respectively, the model, full data, and back-
ground data; as well as the residual for one shot. The full and background data are
displayed at clip of 95% to reveal the reflection from the perturbation. These data
and the residual are contaminated by the high-frequency artifacts mentioned earlier.
Figures 7a through 7f show snapshots of the source wavefield and adjoint wavefield.
Although the adjoint wavefield is degraded by noise, it is still able to focus at the
perturbation point at 0.4 second. Cross-corelation and stacking over multiple shots
help to reduce the effect of this noise. Figures 8a through 8c show, respectively, gra-
dients of slowness squares, ε, and δ, using 40 shots at 100 meters spacing everywhere
on the surface. These gradients focus clearly at the perturbation point.

In another model, the background consists of two homogeneous VTI layers and
the perturbation is a rectangular box embedded in the top layer (Figure 9). We use
positive perturbations in velocity and Thomsen parameters. There are 800 receivers
and 40 shots placed everywhere on the surface with similar spacing as in the previous
example. Figures 10a through 10c show to the full data, background data, and the
residual for one shot. Figure 11 shows the gradients of the objective function with
respect to: squared vertical P-wave slowness (panel a), ε (panel b), and δ (panel c).
These figures show that the gradients accurately identify the perturbation, and in-
deed, lead to the correct update directions. Similarities between the slowness squares
and ε gradients can be observed. These similarities might indicate cross-talks between
these two parameters. The δ gradient is the most accurate in identifying the pertur-
bation’s shape but is the weakeast in terms of magnitude relative to the other two
gradients. The small magnitude of the δ gradient is an indication of limited ability to
invert for δ from surface reflection data. Additionally, notice the V-shaped sensitivity
regions of the shots that are located on the edges of the model.

We carried out 100 inversion iterations in the time domain using a Ricker wavelet
of 40-Hertz (Hz) fundamental frequency. We employ the steepest decent algorithm
and calculate the step length from a parabolic interpolation in the search direction
(Vigh and Starr, 2008). Figure 12 shows the model updates after the first iteration
(left column) and after 100 iterations (right column) in velocity (top row), ε (middle
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row), and δ (bottom row). Improvements in resolving the magnitudes and shape of
the perturbations are noticeable after 100 inversion iterations compared to the first-
iteration results. Figure 13 shows the objective function decreasing with iterations.

For orthorhombic media, we only computed the sensitivity kernels for one shot and
one receiver in different directions in a homogeneous subsurface. These kernels are
shown in Figures 14, 15, and 16 for sources and receivers separated in the x-, y-, and z-
directions, respectively. It can be noted from these figures that the sensitivity kernels
of slowness squares are always nonzero, regardless of the source-receiver’s direction.
On the other hands, εi and δi are insensitive in certain planes when the source and
receiver are apart in certain directions. This difference between the sensitivity kernels
of slowness squares and Thomsen paramaters might be because slowness or velocity
has first-order influence on seismic signature in anisotropic media in comparison to
Thomsen parameters. The insensitivity of Thomsen parameters in certain planes,
however, will not affect the ability to invert for these parameters when there are more
sources and receivers covering wider apertures and azimuths. It can also be observed
that the planes of insensitivity interchange between εi and between δi when the source
and receiver are separated in different directions. For example, ε1 is insensitive in the
xz-plane when the source and receiver are apart in the x-direction; whereas, ε2 is
insensitive in the yz-plane when the source and receiver are apart in the y-direction.
This interchangeability is consistent with how these parameters are defined: ε1 is the
Thomsen parameter in the yz-plane; whereas, ε2 is the equivalent parameter in the
xz-plane. By these definitions, the two parameters’ roles are interchangeable.

CONCLUSIONS

With numerical examples for VTI and orthorhombic media, I have shown that the
nonlinear pseudo-acoustic wave equation in anisotropic media can be modeled, lin-
earized, and adjointed. The forward modeling equation can be solved accurately using
RSFD. Its nonlinearity introduces an additional term in the linearized and adjoint
equations. Together, these three equations can be used in an inversion framework to
estimate medium parameters.

APPENDIX A

In this appendix, I derive the linearized equation 5. The perturbed wave equation is:

(m1 + δm1)∂
2
t (u + δu)−∇ · [(S + δS)∇(u + δu)] = f. (A-1)

Neglect the second-order terms:

m1∂
2
t δu−∇ · (S∇δu) = −∂2

t uδm1 +∇ · (δS∇u). (A-2)

After the plane-wave approximation (equation 2), S = S(∇u, mi) with i > 1.
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(a) (b)

(c) (d)

Figure 6: (a) Model with a small perturbation point in a homogeneous VTI medium,
(b) full data, (c) background data, and (d) residual. The data, displayed at clip of
95%, and the residual are contaminated by high-frequency noise. [ER]
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Snapshots of the source wavefield (left column) and adjoint wavefield (right
column) at different times: (a) and (b) 0.2 second, (c) and (d) 0.4 second, and (e) and
(f) 0.6 second. Although the adjoint wavefield is severely degraded by high-frequency
noise, it is still able to focus at the perturbation point at 0.4 second (panel d). [CR]
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(a) (b)

(c)

Figure 8: Gradients of the objective function with respect to: (a) squared vertical
P-wave slowness, (b) ε, and (c) δ, for a simple model with a point perturbation in a
homogeneous VTI medium. These gradients focus at the perturbation points. [CR]

(a) (b)

Figure 9: Model for testing gradient calculation: (a) background and (b) perturbed
vertical P-wave velocity. Models for Thomsen parameters are similar. [ER]
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(a) (b)

(c)

Figure 10: (a) Full data, (b) background data, and (c) residual for a model with two
VTI layers and a rectangular perturbation. [ER]
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(a) (b)

(c)

Figure 11: Gradients of the objective function with respect to: (a) squared vertical
P-wave slowness, (b) ε, and (c) δ, for a model with two VTI layers and a rectangular
perturbation. These gradients accurately locate the perturbation and have correct
update directions. [CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Model updates after the first iteration (left column) and after 100 iterations
(right column) in: velocity (m/s) (top row), ε (middle row), and δ (bottom row).
The updates show improvements after 100 iterations compared to the first-iteration
updates. [CR]
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Figure 13: Plot of the objective function with iteration. [CR]

Consequently, to the first order:

δS =

(
∂S

∂∇u

)T

∇δu +
∑
i>1

∂S

∂mi

δmi, (A-3)

which is subtituted into equation A-2 to obtain:

m1∂
2
t δu−∇ · (S∇δu) = −∂2

t uδm1 +∇ ·

{[(
∂S

∂∇u

)T

∇δu +
∑
i>1

∂S

∂mi

δmi

]
∇u

}
.

Collecting the terms that involve δu to obtain the linearized equation 5:

m1∂
2
t δu−∇·

{[
SI +∇u

(
∂S

∂∇u

)T
]
∇δu

}
= −∂2

t uδm1 +∇·

[(∑
i>1

∂S

∂mi

δmi

)
∇u

]
.

In VTI (Xu and Zhou, 2014):

S =
1

2

[
n2

a +
√

n4
a − 8 (ε− δ) n2

xn
2
z

]
, (A-4)

where nx and nz are components of the normalized wave vector, n, and n2
a = (1 + 2ε) n2

x+
n2

z.

In orthorhombic media (Song and Alkhalifah, 2013):

S =
1

3

[
a− d

3
√

2
−

3
√

2 (a2 + 3b)

d

]
, (A-5)

SEP–158



Le et al. 17 Anisotropic inversion

(a) (b)

(c) (d)

(e) (f)

Figure 14: Sensitivity kernels for one shot and one receiver, separated in the x-
direction, in a homogeneous orthorhombic subsurface of: (a) squared vertical P-wave
slowness, (b) ε1, (c) ε2, (d) δ1, (e) δ2, and (f) δ3. [CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Sensitivity kernels for one shot and one receiver, separated in the y-
direction, in a homogeneous orthorhombic subsurface of: (a) squared vertical P-wave
slowness, (b) ε1, (c) ε2, (d) δ1, (e) δ2, and (f) δ3. [CR]
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Sensitivity kernels for one shot and one receiver, separated in the z-
direction, in a homogeneous orthorhombic subsurface of: (a) squared vertical P-wave
slowness, (b) ε1, (c) ε2, (d) δ1, (e) δ2, and (f) δ3. [CR]
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where:

a = (2ε2 + 1) n2
x + (2ε1 + 1) n2

y + n2
z,

b =
[
(2ε2 + 1)2 (2δ3 + 1)− (2ε2 + 1) (2ε1 + 1)

]
n2

xn
2
y − 2 (ε1 − δ1) n2

yn
2
z − 2 (ε2 − δ2) n2

xn
2
z,

d = 3
√
−2a3 + 3(e− 9c)− 9ab,

c =
[
2(2ε2 + 1)

√
(2δ1 + 1)(2δ2 + 1)(2δ3 + 1)− (2ε2 + 1)2 (2δ3 + 1) + ε1ε2 − ε1δ2 − ε2δ1

]
n2

xn
2
yn

2
z,

e =
√

3b2(a2 + 4b)− 6ac(2a2 + 9b)− 81c2.

APPENDIX B

In this appendix, I present a step-by-step derivation of equation 11. Substitute per-
turbation in S (equation A-3) into equation 10 to obtain:

δχ =

∫ T

0

∫
Ω

∑
r

[u(xr, t)− d(xr, t)] δ(x− xr)δudV dt

+

∫ T

0

∫
Ω

λ

{
δm1∂

2
t u−∇ ·

[(∑
i>1

∂S

∂mi

δmi

)
∇u

]
− δf

}
dV dt

+

∫ T

0

∫
Ω

λ
[
m1∂

2
t δu−∇ · (A∇δu)

]
dV dt.

(B-1)

Integration by parts gives, for i > 1:∫ T

0

∫
Ω

λ∇ ·
(

∂S

∂mi

δmi∇u

)
dV dt =

∫ T

0

∮
∂Ω

n̂ ·
(

λ
∂S

∂mi

δmi∇u

)
dsdt

−
∫ T

0

∫
Ω

∇λ ·
(

∂S

∂mi

δmi∇u

)
dV dt,

∫ T

0

∫
Ω

λm1∂
2
t δudV dt =

∫
Ω

λm1∂tδu|T0 dV −
∫ T

0

∫
Ω

m1∂tλ∂tδudV dt

=

∫
Ω

m1 (λ∂tδu− ∂tλδu) |T0 dV +

∫ T

0

∫
Ω

m1∂
2
t λδudV dt

=

∫
Ω

m1 (λ∂tδu− ∂tλδu) |T dV +

∫ T

0

∫
Ω

m1∂
2
t λδudV dt,
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and:∫ T

0

∫
Ω

λ∇ · (A∇δu)dV dt =

∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt−
∫ T

0

∫
Ω

∇λ · (A∇δu)dV dt

=

∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt−
∫ T

0

∫
Ω

(AT∇λ) · ∇δudV dt

=

∫ T

0

∮
∂Ω

n̂ ·
(
λA∇δu−AT∇λδu

)
dsdt

+

∫ T

0

∫
Ω

∇ ·
(
AT∇λ

)
δudV dt

=

∫ T

0

∮
∂Ω

n̂ · λA∇δudsdt +

∫ T

0

∫
Ω

∇ ·
(
AT∇λ

)
δudV dt.

where I have exploited the perturbed initial and boundary conditions (equations
5b and 5c). Substituting the above three integrations into equation B-1 results in
equation 11.
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