Inverse demigration for simultaneous source
separation

Chris Leader and Biondo Biondi

ABSTRACT

Separating simultaneously acquired seismic data is the link between more efficient
acquisition and conventional imaging techniques. Existing methods for separation
rely on coherency measurements and work only for randomly delayed sources.
By using the extended image space, data blended with a variety of time delay
sequences can be well separated. Demigration will then output the separated,
conventionally equivalent, dataset. A single pass of demigration can adequately
recreate kinematic information. For amplitude balancing, however, an inverse
process is required. By introducing a blending operator into a linearised inverse
system posed in the extended image space, accurate data separation is observed
for a variety of blending schemes, without the need for an accurate velocity
model. Furthermore, such a system can be easily adapted to include velocity
model updates, since extended imaging has already been applied.

INTRODUCTION

Contemporary seismic targets are increasingly associated with steeply dipping struc-
tures and strong velocity contrasts. In order to illuminate these difficult features,
data are acquired with large offsets and multiple source boats (Verwest and Lin,
2007). Intuitively, this leads to both more expensive acquisition and an increase in
field waiting time. This latter adverse consequence is due to the fact that it is nec-
essary to allow the energy from the previous source to sufficiently dissipate before
recording the next source point. If waiting time was not a restriction then denser
sampling could be recorded per unit time and acquisition would be significantly more
efficient (Beasley (2008); Hampson et al. (2008); Berkhout and Blacquiere (2008)).
Practically, it is possible to disregard this waiting time and fire the next shot when
in position; this is often called continuous recording. Recording overlapping data in
this manner requires more processing time than conventionally acquired data, since
separation is necessary to mitigate imaging artifacts. However, the economic gains
from reduced acquisition time far outweigh this extra processing cost.

These simultaneously acquired data can be used to directly invert for model prop-
erties (Dai and Schuster (2009); Tang and Biondi (2009)). However, such methods
require exact knowledge of the velocity model. Separation and subsequent imaging is
a viable option, since this could be integrated into production data flows. Successful
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existing methods rely on random sampling in the source timings and locations (Abma
and Yan (2009); Moore et al. (2008)). For example, constant receiver gathers can be
transformed into the f-k or tau-p domain and iteratively thresholded (Doulgeris et al.,
2011), removed in the parabolic random domain (Ayeni et al., 2011), removed by us-
ing a convex projection approach (Abma et al., 2010), or through compressive sensing
methods (Herrmann et al., 2009).

Image domain processing has been used effectively for coherent energy removal /
attenutation by posing the problem in the extended image space (Zhang and Duan
(2013); Sava and Guitton (2005)). It is possible to untangle certain events in this
domain and recreate cleaner shot gathers by virtue of higher signal-to-noise ratio and
reduced dimensionality. Additionally, when using the extended image space (Sava
and Vasconcelos, 2011), event kinematics are preserved. Consequently, if the velocity
model is inaccurate then demigration is still possible (Chauris and Benjemaa, 2010).

In the previous SEP report (Leader and Biondi, 2014), methods of distinguishing
events in the angle domain were analysed, with the goal of using curvature-based
penalties during demigration. Whilst this method worked very well for simple scat-
tering models, for highly heterogeneous structures the ranges of curvature necessary
for demigration were too high. Additionally, describing the curvature using a single
parameter became less possible. In this study a mass inverse demigration scheme will
be postulated. By introducing a blending operator and posing the problem as a lin-
earised inversion, accurate separation (in terms of both amplitudes and kinematics)
is observed after a small number of iterations.

A range of model complexities and velocity inaccuracies will be analysed to test
the strength of this methodology. Additionally, three blending strategies will also be
tested - constant time delays, pseudo-constant time delays and purely random time
delays.

DEMIGRATION

To accurately recreate all wavefield complexities, Reverse Time Migration (RTM)
(Baysal et al., 1983) is the choice of imaging operator. RTM uses solutions to the full
two-way wave equation (within physical assumptions), making it a valuable option
for highly heterogeneous Earth models. Furthermore, RTM is the adjoint of Born
modeling, and it is possible to move between the data and image spaces by combining
these operators. For zero-offset imaging, these are summarised in equation 1 and
equation 2. Examples of a Born modelled shot gather and an RTM image are shown
in Figure 1 and Figure 2 respectively.

m(x) =Y f(w)Go(x,Xs,w) Y Go(x, X, w)d" (%, Xy, w), (1)

Xg,w
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d(x,, X5, w) = w Zf )Go(x, X, w )m(x)ZGo(x, Xy, W). (2)
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Figure 1: An example of a 3D shot gather produced from Born modeling. [NR]

here x represents the spatial coordinates, m(x) the scattering field, x, the current
source coordinates, x, the current receiver coordinates, w the temporal frequency,
d*(x,,Xs,w) the complex conjugate of the data and Gy the relevant Green’s func-
tion. The aforementioned zero-offset image (Claerbout, 1971) is calculated here. For
an accurate velocity model this will contain all necessary amplitude and kinematic
information for demigration and hence data recovery.

However, for the problem of separating continuously acquired data a stringent
requirement on the velocity model is undesirable. Direct application of equation 1
with an incorrect velocity model will result in the loss of certain events, and subse-
quent demigration will not represent the original dataset well. To preserve all event
kinematics, extended imaging must be used. If zero-offset imaging can be described
by equation 3, then extended imaging can be described by equation 4.

nshots

I(z,y, 2 Z ZP T, Y, 2, t8) P2, y, 2, 15 80), (3)

nshots

I(z,y,z,2n, yn) ZZP (@ + T, y + Yn, 2, 5 87) * (4)

Pr(x — Th,Y — yh7zata Si)-
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Figure 2: An example image produced from RTM over the SEAM velocity model, in

3D. [NR]
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An extended image produced using an accurate velocity model. [CR]
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Figure 4: An extended image produced using an inaccurate velocity model. [CR|]

Here, I(x,y,z) is the image in space, Ps is the source wavefield and P, is the
receiver wavefield; s; represents the current shot of interest. If lag coordinates (known
as subsurface offsets) in z and y are introduced (zj, and yp,), a 5D image can be created.
It is possible to have lags in both ¢ and 2z to create a 7D image, or any combination
thereof. From hereon this discussion will be limited to subsurface offsets in the x
direction only.

If the correct velocity model were used for imaging then the energy will be focused
to a point in subsurface offset, as seen in Figure 3. If an incorrect model were used
then the energy will be spread out over a range of offsets (Figure 4). Analysing this
moveout as a function of the velocity model is the core concept of Wave Equation
Migration Velocity Analysis (WEMVA) (Sava et al., 2003).

To create Figure 2, equation 3 was used, and for Figure 3, equation 4 was used.
By taking the adjoint of these processes and creating an extended Born modeling
operator, demigration can be performed. The result from demigrating Figure 3 from
the extended image domain to the data space is shown in Figure 5. Similarly, the
result from demigrating Figure 4 is shown in Figure 6.

It is apparent that both passes of demigration have successfully recreated many
of the data nuances - event kinematics are correctly positioned and all identifiable
events in the input data are present in the demigrated data. However, frequency
content has not been well preserved and event amplitudes at early times and short
offsets are under represented. These imperfections are more pronounced when using
the incorrect velocity model. Additionally, this result is more artifact laden. This is
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Figure 5: Adjoint demigration using the correct velocity model, in both directions.
[CR]
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Figure 6: Adjoint demigration using an incorrect velocity model, in both directions.
[CR]
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a consequence of performing extended Born modeling, where the image convolution
is shifted over a range of offsets.

INVERSE DEMIGRATION

To recover the correct amplitudes, adapting demigration to become an inverse process
is necessary. In conventional Least-Squares RTM (LSRTM), RTM is used as the
adjoint procedure, and Born modeling as the forward operator. A solver, such as
conjugate directions, can then be used for model and residual updates. For inverse
demigration almost exactly the same procedure can be used, but with the forward
and adjoint operators swapped. The input will now be the extended image and the
procedure will aim to recover the dataset that best represents the given image.
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Figure 7: Inverse demigration, after ten iterations, using the correct velocity model.
[CR]

Figure 7 and Figure 8 show the same recovered data as Figure 5 and Figure 6
respectively, after ten iterations of inverse demigration. Amplitudes are now con-
sistently balanced and match the input data Furthermore, the vast majority of the
artifacts from the incorrect velocity result are mitigated. The data-space residual, as
a function of iteration number, can be seen in Figure 9.

SEP-158



Leader and Biondi 8

0008

() T9ATRO0Y
00002

T

(s) aury
€ 2

0 2000 4000 6000
Inline (m)

Data separation

Figure 8: Inverse demigration, after ten iterations, using an incorrect velocity model.
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Figure 9: Data-space residual as a function of iteration number, for both correct and
incorrect velocity model inverse demigration. [NR]
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SIMULTANEOUS SHOT SEPARATION

Now that inverse demigration has been demonstrated to accurately recover input
reflection data, the system can be adapted to provide shot separation. The input data
will be the overlapping, simultaneously recorded dataset, so an additional operator
must be included to account for the blending. This operator, I', will be referred to
as the ‘blending’ operator, for obvious reasons. The forward process of I' will take a
conventional dataset, then delay and sum the shots together to produce a continuous
record. The adjoint process will take a continuous record and window the shots
(according to an input recording length and sequence of shot delays) and output a
discrete dataset. Thus the forward blending operator requires three inputs - the data,
the desired recording length, and a record of shot delays. If the blended data is dp,
and the conventional / separated data is ds, then the system can be described in
equation 5.

dy = T'd, (5)
J(d,) = [[L'd; —ml| (6)
J(ds) = ||L'd, — L'T'dy (7)

The objective functions for conventional and blended demigration are shown in
equation 6. This operator I' is necessary to calculate the data-space residual (actually
the model-space residual, in this case), since a recomputed blended dataset must be
used for comparison. For shot separation, the output data will be the recovered data
produced after demigration, before it is reblended for comparison.

Three styles of data blending are studied, all with an Ocean Bottom Node (OBN)
style geometry. These are: purely random time delays, constant (or linear) time
delays, and pseudo-linear delays. These delays are linear in both time and space.
For the last style, delays are roughly constant, with a 5% jitter added to the source
timings. Example datasets for these three encoding functions are shown in Figure 11,
Figure 12 and Figure 13, with the conventional data shown in Figure 10. For these
upcoming examples 2D data were used with a fixed receiver geometry. This means
the right-hand panel in these figures represents a constant receiver gather, whereas
the left panel represents a constant source gather.

For the randomly delayed sequence, all secondary/overlapping energy is incoherent
in the receiver domain. This is exploited by all of the aforementioned data-space
inversion methods. For the pseudo-linear case, some coherency is induced in these
receiver gathers, but the randomness is sufficient such that this may stack out. For
the linear case there is no difference in coherency between these domains, so these
data-space methods will all fail.

SEP-158



Leader and Biondi 10 Data separation

Figure 11:
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Figure 10: Data acquired over the Marmousi model. [CR]
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Data acquired over the Marmousi model using a random delay function.
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Figure 12:
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Data acquired over the Marmousi model using a linear delay function.
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Figure 13: Data acquired over the Marmousi model using a pseudo-linear delay func-

tion. [CR|]
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Figure 14: The extended image from migrating Figure 11 (data acquired using a
random blending function) [CR]

Figure 14, Figure 15 and Figure 16 show the extended images produced from these
three datasets using the correct velocity. The differences in blending are manifested
in the image space, although the coherency differences are not as pronounced as
intuition may suggest. Even the linearly blended data becomes well dispersed in the
image space. The artifacts are more coherent, but the focusing characteristics of
the primary events, and the differences in contrast, suggest that separation could be
possible.

The recovered datasets after adjoint separation can be seen in Figure 17, Figure 18
and Figure 19. Each of the blending schemes have been well separated and the
resultant datasets could be used for conventional velocity estimation and imaging.
Again, amplitudes at early times and shot offsets are weaker than in reality. This can
be improved upon by using the inverse scheme.

It should be noted that there are some fractionally more coherent artifacts in the
recovered data from the linear encoding. Nonetheless this methodology separated
these linearly delayed data surprisingly easily.
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Figure 15:
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The extended image from migrating Figure 12 (data acquired using con-

stant time delays). [CR|]
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Figure 16: The extended image from migrating Figure 13 (data acquired using pseudo-
linear delays). [CR]
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Figure 17: The output dataset after applying adjoint demigration to Figure 14, which
was the image created from a randomly delayed dataset. [CR]
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Figure 18: The output dataset after applying adjoint demigration to Figure 15, which
was the image created from a linearly delayed dataset. [CR]
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Figure 19: The output dataset after applying adjoint demigration to Figure 16, which
was the image created from a pseudo-linearly delayed dataset. [CR|]

Incorrect velocity model

Separation with an accurate velocity model is a relatively trivial problem. If simul-
taneous surveys are to be used for exploration then a processing scheme that does
not assume strong velocity control is essential. This section will look at these same
data, but imaged using a very inaccurate velocity model. The most informative and
realistic scenario is pseudo-linear blending, so this will be the acquisition focus from
hereon.

Figure 21 shows the result from migrating these data, but using a very rough
velocity model. The primary events are now not well focused at zero-subsurface offset,
and the focusing contrasts between primary and secondary events is far less. Energy of
interest now spans many of the acquired subsurface offsets and distinguishing events
from primary and secondary energy is less obvious.

Using data acquired over the Marmousi model gives informative results about the
suggested procedure, but to further confidence over this methodology a more difficult
example must be used. A section of the SEAM model was windowed, featuring
rugose reflectors, continuous reflectors and a steep salt body with carbonate top
and sedimentary inclusions. These attributes comprise many of the difficulties of
contemporary imaging targets. If this separation method can perform well over these
data then much stronger conclusions can be made.
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Figure 20: The velocity models used for inverse demigration, correct and incorrect
respectively. [ER]
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Figure 21: The extended image from migrating Figure 13 (data with constant delays)
using a rough velocity model. [CR]
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Figure 22: The velocity model windowed from the SEAM model, used for a more
realistic separation test. [ER]

Data were simulated over the velocity model shown in Figure 22. For this section
only a pseudo-linear scheme will be studied, as this is the most realistic encoding that
is recorded in the field. One hundred shots were simulated and then combined using
a scheme with a blending power of three (similar to three source boats) with constant
delays and a 5% timing randomness induced. These data are shown in Figure 24,
while the output data after 10 iterations are shown in Figure 25.

These results demonstrate that for a complex model with a variety of impedance
contrasts, the separation procedure performs very well. The convergence curve in
Figure 26 demonstrates how accurately these data are simulated as a function of
iteration number.

AUGMENTATION WITH WEMVA

Extended LSRTM is a very expensive process, and for many geometries and encoding
functions this will be more expensive than many of the existing data-space meth-
ods. However, there are three circumstances where the suggested inverse demigration
process can outperform these algorithms.

The most successful of the data-space methods requires hundreds of 5D FFTs
to be performed, so for geometries with sparse, large offsets, this will be a tough
undertaking. Furthermore, this method entirely fails with constant time delays, and
can induce large artifacts if there is any underlying predictability in the encoding
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Figure 23: A conventional dataset acquired using the section of the SEAM model.
[CR]

sequence. So, under these two situations it is likely that extended inverse demigration
will outperform a Projection Onto Convez Sets (POCS) type approach.

Thirdly, since extended imaging and modeling are applied, other approaches
can take advantage of these spaces. Wave-Equation Migration Velocity Analysis
(WEMVA) (Sava et al., 2003) relies on measuring these primary moveouts and using
this back-projected information to update the velocity model. With this in mind,
image-space shot separation could be easily augmented with WEMVA, where sepa-
ration is the outer-loop and WEMVA the inner-loop process. This will also provide a
positive feedback loop - the more accurate the velocity model has become, the better
the separation results are, and fewer subsurface offsets must be collected.

The fact that this separation can be combined with WEMVA makes a powerful
argument for the use of such an expensive scheme.

CONCLUSIONS

It is possible to accurately recover input seismic data from the image domain by
adapting LSRTM. By using the extended image space, even if imaging was applied
using an incorrect velocity model, these data are still recoverable to a high degree of
accuracy.

By including a blending operator into this suggested inverse demigration the sys-
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Figure 24: A pseudo-linearly blended dataset acquired using the section of the SEAM
model. [CR]

SEP-158



Leader and Biond;i 21 Data separation

0O 000€ 0002

(W) J9A1393Y

1

oIl
o

0 2000 4000 6000 8000
Inline (m)

Figure 25: The output separated data after 10 iterations of inverse deimgration using
a rough velocity model. [CR|]
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Figure 26: How the separation algorithm performs, for SEAM, as a function of iter-
ation number. [NR]

tem can be used to recover an equivalently separated dataset from a continuous,
overlapping recording. These separated data are both kinematically accurate and
amplitude real, and after re-blending match the input data to within a fraction of
a percent. This is true of a synthetic example which features a variety of dips and
impedance contrasts.

The fact that extended images have been constructed allows WEMVA to also be
applied. Before separation a moveout estimation can be made, and the velocity model
updated. This allows both separation and model updating to be applied for almost
the same cost.

FUTURE WORK

Tests using field data are currently underway. These are in full 3D for an OBN dataset
and the results will be available soon.
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