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ABSTRACT

Level set methods can provide a sharp interpretation of the salt body by defining
the boundary as an isocontour of a higher dimensional implicit representation,
and then evolving that surface to minimize the Full Waveform Inversion (FWI)
objective function. Because the implicit surface update gradient is based on the
tomographic update gradient, there is potential to utilize it to update the back-
ground velocity concurrently with the salt boundary. Using a shape optimization
approach on synthetic examples, we can achieve reasonable convergence both in
terms of the residual L2 norm, as well as the evolution of the salt boundary and
background velocity towards the true model, demonstrating the feasibility of this
approach. Various factors in processing the gradients and calculating step size in-
fluence this convergence, which we analyze and address. Ultimately, this method
can be integrated into the processing work flow as a tool that provides improved
building and refining of the velocity models used for imaging.

INTRODUCTION

Tomographic approaches to interpreting salt bodies can be less than effective, be-
cause the results tend to be too smooth to provide significantly accurate placement
of salt boundaries. Manual and semi-automatic picking of salt boundaries is a com-
mon approach to interpreting the desired sharp delineations, but these methods can
be time-consuming and tedious since expert input is necessary for either the actual
picking, or the oversight and correction. Furthermore, once a model has been pro-
duced, it must be used to generate an image, and then be refined as necessary. A
robust method for further automating the salt interpretation procedure would greatly
alleviate this bottleneck.

Some previous approaches to interpreting salt boundaries use a shape optimiza-
tion approach (Guo and de Hoop (2013), Lewis et al. (2012)). The boundaries of
a salt body can be represented as the zero-isocontour of a higher dimensional sur-
face (for example, a 2D boundary as a contour of a 3D surface). A gradient can be
derived to evolve this shape / isosurface according to the FWI objective function.
Unlike the smooth boundaries produced by tomographic approaches, the isocontour
resulting from the shape optimization provides a sharp boundary, which is a more
appropriate way to classify most salt-sediment interfaces. Guo and de Hoop (2013)
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utilize this approach using a frequency domain forward wave operator to evolve a salt
boundary and velocity model. However, their approach alternates between updating
the background velocity and salt body boundary, which effectively requires twice as
many iterations as performing both updates concurrently.

The approach we take utilizes shape optimization with the use of time domain
forward wave-propagation, which allows us to take advantage of using a continuous
range of frequencies (rather than discrete frequencies) in each iteration, allowing for
sharper delineation of the boundary. Further, we take advantage of the fact that
our boundary update gradient is based on the tomographic update gradient, and
make updates to both concurrently after applying optimal scaling parameters. In
theory, this method has the potential to be more efficient than an alternating update
approach. In this paper we will discuss the fundamentals of the level set method
and its key properties, followed by a demonstration of the concurrent boundary-
tomography update method on a test model, as well as discussion on how we address
the challenges inherent with concurrent updating.

THEORY

We begin with a brief overview of the level set method and how we apply the evolution
scheme it utilizes. The full derivation for the shape optimization implementation can

be found in Dahlke (2014).

Level set fundamentals

In our problem, we are trying to determine the boundary of a two dimensional body.
Instead of using an algorithm that operates in this 2D plane directly, we use the level
set algorithm which evolves a 3D implicit surface, . While our algorithm acts directly
on this surface instead of the boundary, our solution for the 2D boundary is simply
represented by a contour “slice” of this implicit surface where ¢ = 0, as described in
Osher and Sethian (1988) and Burger (2003). While it may seem counterintuitive to
add extra dimensionality to our problem, by doing so we gain some advantages. These
include the ability to merge and separate bodies as the level set evolution proceeds,
as well as the ability to handle sharp corners and cusps in the lower-dimensional (2D)
plane that the boundary exists on.

Based on this concept, we define a spatial domain © C R?, a (salt) body Q2 C ©,
and the salt body boundary I' such that

Q= {z|¢(z,7) > 0}, I'={z|¢(z,7) =0},

where 7 indicates the axis along which the evolution steps progress (7 = 0 is the
initial iteration). As such, for a single step along 7, our salt body € evolves to Q' .
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Figure 1: Diagram of domain partitioning. The full inclusive domain is ©. € is
the salt body. 02 is the difference between the salt body domain in iteration 7 and
iteration 7 4+ 1. T is the boundary of the salt body, with the subscript 7 indicating
the iteration. [NR]
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We define a point along the boundary curve to be

xr ={x eI}

With this definition of the boundary points, the level set of ¢ that represents the salt
body boundary can be described as

¢(xr,7) = 0.

By taking the derivative of this equation, the chain rule gives us

0p  0¢ Oxr
AT et S 1
or "o or " M)
This equation can be readily rewritten as
0 =
a—f +Vo¢-v(xr,7) =0. (2)

We can use V¢ defined over all the full domain of z (rather than just xr) since
§¢ - U(xp, 7) is a dot product, and only the terms where x € T" will contribute to
the overall dot product result. This “velocity” term in equation 2 can be defined as
having both a “speed” and a normal vector component, (xp,7) = V(zp, 7)fi(xr, 7).
In complete form there is also a tangential component, but we ignore this part since
it doesn’t contribute to a change in the surface ¢.

We know the normal vector is defined as

—

_ Vé(r,7)
AT, T) = G

which allows us to restate equation 2 in a more familiar representation

dp

i AN (3)

The scalar speed term V (zr, 7) describes the magnitude of the variation of ¢ that
is normal to the boundary I'. It determines the evolution of the implicit surface, and
ultimately the boundary implied by it. This term can be found to be

9 r OPu,(z,t
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as described in the derivation provided in Dahlke (2014), which demonstrates how
this formulation of the scalar speed term directs the evolution of the implicit surface
such that it minimizes the FWI objective function. An important insight from this
referenced derivation is that the scalar speed term contains the tomographic update
gradient within it

—Z / / a ug(f D goat, (5)

We can take advantage of it already being calculated and use it to make updates to
the background velocity. In the following section we demonstrate this implementation
approach.

APPLICATION ON SYNTHETIC EXAMPLES

We demonstrate the shape optimization algorithm on a 2D model, with the implicit
surface evolved being a 3D surface. In this section we describe the algorithm used
and the results that have come from its implementation.

Evolution algorithm

We begin with an initial background velocity, and a binary function as the initial
implicit surface ¢. Since we assume a constant salt velocity, we use both of these
inputs to create a full initial-guess velocity model (m,). Using this m,, we forward
model to get our dgy, which we use to get a residual. The residual is used to calculate
both a tomographic and a boundary update gradient, as described in the derivation
provided in Dahlke (2014). We then perform forward linearized operations on these
gradients so that we can do a linear plane search (in residual space) for the scaling
parameters o and (3. Following this, we do a non-linear line search for a v parameter
that rescales a and 3 in a manner that minimizes the FWI objective function. We
then apply an explict forward Euler scheme that updates the implicit surface (¢) and
the background velocity Vj.q.. This workflow is outlined in algorithm 1.

d¢

¢j+1 = ¢j + ’V(ﬁa + NGreg)a (6)
aViaack
‘/b]air:i Vioack 6] ) (7)

where § and « are the step sizes (for tomography and salt boundary respectively)
and j is the current iteration point.
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Algorithm 1 Shape optimization and tomographic update algorithm
Load observed data dgps
Load initial implicit surface ¢
Load background velocity Viger
for + = 0 to numiter do
Build full velocity model Vi, from ¢ and Viger
Forward model — dyy,
Calculate data space residuals (r = dgy, — dops)
Perform direct arrival mute on residuals
Back-propagate residuals (RTM imaging) r — OV /00
Calculate V¢
Calculate d¢/0i
Mute and smooth OV, /0i
Forward model 0¢/0i — dpouna
Forward model 0Vy;/0i — diomeo
Peform linear plane search for a and (3
Perform non-linear plane search for ~
Update boundary: ¢! = ¢ + Vﬁ%
Update background velocity: Viibl = Vi 4+ ~va
end for
Output final velocity model

OViun
i

Scaling parameter optimization

As shown previously, the salt boundary update gradient is based on the adjoint of
the linearized-Born operator, which is the tomographic update gradient. Since the
gradient for both a tomographic and boundary update are calculated in each step
regardless, we attempt to take advantage of this by finding scaling parameters to
apply to these gradient updates such that we minimize the residual space objective
function

tomo

miﬁn ||FGT o+ FGZ;B - (dcalc - dobs) H ) (8)

where F is the forward wave propagator, and GI __ and GdT) are the update gradients

for the background velocity and implicit surface ¢ respectively.

Minimizing this objective function gives us parameters that are scaled to the
residual space, not the gradient space where they are actually applied. Since the
adjoint operator that we use creates a scaling difference between the residual and
gradient (data and model) spaces, we must rescale o and /3 once they are found so
that they can be effectively applied to the gradients.

The approach we use is to rescale a and 3 according to a v parameter which
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is found using a non-linear line search (which is constrained by the conditions for
stability). This technique is much cheaper than performing a full non-linear plane
search for o and 3, but still allows for a choice of parameters based on the FWI
objective function. We choose this approach, utilizing equation 9 for a line search for

7

min | (m(7) = dawe)|. )

Tomographic gradient masking and smoothing

The separation of the tomographic information from the reflectivity information is
desired so that the tomogaphic updates more quickly lead to convergence of the
true solution. This seperation can be better achieved prior to this search for the
scaling parameters by masking out the tomographic update gradient in areas where
the update has no influence on changing the next iteration of the velocity model.
For example, in this work we assume a constant velocity throughout the salt bodies
we model. Because of this, we dont apply the tomographic gradient update in the
regions where salt exists. If we calculate GL without first masking out Giome in

areas overlapped by salt regions, then we introduce bias into the objective function
(equation 8), since it will optimize for an update that will not be entirely applied.

We further assume that the salt boundary change will not undergo significant
shifts. With this in mind, we apply the masking based on the salt body delineation
that was created from the most recent (previous) iteration. Another approach would
be to dynamically update the salt boundary based on the scaling parameter (3, as (3 is
being solved for. While theoretically producing a more accurate update, this method
is also far more expensive, since numerous applications of the forward linearized-Born
operator are necessary. For this reason we make the approximation of masking based
on the previous iteration of the salt boundary.

When the masking is performed and the salt boundary shrinks, an area of the
background velocity is exposed which contains a sharp boundary between the newly
“exposed” region and the region that was previously exposed and updated. This can
create false (albeit weak) reflectors around the edge of the salt, causing errors as the
evolution of the salt boundary continues. For this reason, immediately after masking
is performed on the tomographic gradient, a smoothing operator is applied to remove
sharp discontinuities in the velocity update along this boundary. Because the tomo-
graphic update information tends to be lower frequency than reflection information,
this step also helps separate reflection and tomographic information by acting as a
low-pass filter.
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Stability

As the implicit surface is evolved, it is important to maintain stability of the evolution.
One relevant aspect of maintaining stability is keeping the implicit surface update
step size () small enough to satisfy the Courant-Friedrich’s-Levy (CFL) condition,
which is stated by Chaudhury and Ramakrishnan (2007) (when applied to level set
evolution) as being

Gmax : Vﬂ S min<hza hy)a (10>

where h, and h, are the grid spacing in the x and y directions, and Gyax is the
maximum value of the update gradient. While later we describe how a plane search
is used to determine the scaling parameters a and [, our algorithm adjusts these
scaling parameters (while maintaining their ratio) in such a manner that satisfies the
constraint in equation 10.

An additional measure taken to ensure the stablity of evolution is the use of a
regularization term that is scaled and added to the boundary gradient before each
update is applied. In this case, a distance regularization term was used. This term
drives the spatial gradient of the implicit surface towards either one or zero (V¢ =

{1,0}).

When irregularities begin to occur in the implicit surface during level set evolution,
numerical errors start to occur which can lead to instability. By regularizing the
gradient of the implicit surface as it evolves, we minimize irregularities and are able
to continue evolution without having to reinitialize a signed-distance function to the
salt boundary contour. An excellent reference on this type of regularization is Li et al.
(2010).

Results

We apply our algorithm on a simple velocity model, using an acquisition geometry of
32 shots spaced 110 [m] apart, and 63 receivers spaced 50 [m] apart. In the example
shown in Fig. 2, the initial and true background velocity models differed by up to
100 [m/s]| (see Fig. 5). A bottom reflector and positive velocity gradient provides
better illumination along the bottom and flanks of the circular salt body, which has
a velocity of 4500 [m/s]. A stencil radius of five was used for smoothing of the
tomographic update gradient prior to its application.

DISCUSSION

One thing to note when observing the trend in Fig. 4 is that the objective function
does not decrease monotonically, and in some cases increases slightly. The non-linear

SEP-155



Dahlke et al. 9 Advances in simultaneous updating

x [m] x [m]

—400 -300-200-100 0 100 200 300 400 —400 —300 —200 -100 0 100 200 300 400

Q O-

00v
[0} 4

[w] z

[w] z
008

0021
0021

Full vel model, iteration — 0 True model

Figure 2: Initial velocity model (left) and true velocity model (right). True model
boundary indicated (solid line); Initial boundary guess (dashed line). [ER]
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Figure 3: Final velocity model (left) and raw RTM image (right) after 149 iterations.
[ER]
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Figure 4: Objective function for evolution shown in Fig. 2 [ER|]
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Figure 5: Change in the velocity difference for the model shown in Fig. 2 [ER]
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line search for ~ finds a minimum to the objective function by doing a quadratic
interpolation between the three points surrounding the working minimum. This ap-
proximation is done for efficiency since the non-linear calculation for each point is
relatively expensive, so a relatively low density of sampling along the ~ axis is done.
Because of the error inherent in this approximation, the algorithm may find a step
size that increases the objective function slightly rather than choose a step size equal
to zero.

Another observation is that the objective function plateaus at a solution that has
a very low residual error, but is not the correct answer, indicating the algorithm has
converged on a local minima (Fig. 4). A number of characteristics of the algorithm
play into this. One is the masking operation that is performed on the tomographic
update gradient. The RTM imaging places energy for the updates based on both
reflection and tomographic discrepancies in the model. This mixing of reflection
and tomography information is inherent to the concurrent updating approach. Even
when the salt boundaries come quite close to the true position, the imaging may
place energy inside the salt body region (See Fig. 3), which is never translated into a
model update due to the assumption of constant velocity salt. In a model such as the
one demonstrated on, the paucity of non-salt reflectors exasperates this problem and
leads to convergence at a local minima solution, since some of the strongest updating
energy is masked over during updating.

A further challenge demonstrated in this model is the lack of updating directly
along the bottom reflector (See Fig. 3). One explanation for this is the band-limited
nature of the experiment. Because the reflector acts as a step function in velocity
space, in order to perfectly resolve it all frequencies must be available. Of course, our
experiment uses a source wavelet centered at 15 Hz, which means our imaging will
not be able to resolve this boundary to satisfaction unless more high frequencies are
included.

The density of acquisition and geometry of the array also influence the number
and strength of RTM imaging artifacts, which also influences the rate and quality of
convergence. While a higher density of acquisition will typically lead to fewer arti-
facts and smoother tomographic updates, the smoothing of the tomographic update
gradient also simulates that effect and is more computationally efficient. Figures 6
and 7 show that using a longer stencil length allows for quicker convergence, and also
a better match to the true model. However, this approach has its limitations, and
can reduce the ability of the algorithm to resolve sharper tomographic anomalies,
exasperating the problems created by the band limited nature of our experiment.

CONCLUSION

In this work we described the derivation of the level set method as applied to the min-
imization of the FWI objective function. We demonstrated the application of this
evolution algorithm and its incorporation with a background velocity tomographic
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Figure 6: Different rates of convergence using the same model from Fig. 2 [ER]
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Figure 7: The absolute value of the difference between the true model and the final

solution [|Viue — Viinal|| for varying smoothing stencil lengths and array densities.
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update on a simple model. We consider the limitations of this approach in regards to
numerical stability, as well as the assumptions of linearity that we use to find our scal-
ing parameters, and the challenges regarding the separation of reflection information
from the tomographic updating.
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