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ABSTRACT

We propose a multi-model formulation of full-waveform inversion that is similar
to image decomposition into a “cartoon” and “texture” used in image processing.
Inversion problem is formulated as unconstrained multi-norm optimization that
can be solved using conventional iterative solvers. We demonstrate the proposed
model decomposition approach by recovering a blocky subsurface seismic model
from noisy data in time-lapse and single-model full-waveform inversion problems.

INTRODUCTION

Maharramov and Biondi (2014b) proposed a total-variation (TV) regularization tech-
nique for robust recovery of production-induced changes in the subsurface velocity
model. Maharramov and Biondi (2014a) proposed a TV-regularized constrained full-
waveform inversion (CFWI) technique that achieves better constraining of the sub-
surface model in zones of poor illumination. In both cases the recovered model was
assumed to be “blocky”—i.e., contain areas of small (and predominantly monotone)
velocity variation, as well as a few sharp contrasts along geologic interfaces. While
sensible in many applications, “blocky” models represent an oversimplification of true
physical properties. Even when the assumption of blocky behavior is justified, fitting
noisy data may still result in an oscillatory model.

In this work we investigate splitting of a subsurface model into the sum of a
“blocky” and “wiggly” components, and formulate a full-waveform inversion problem
for recovering both components. Conceptually, our approach is similar to image
decomposition into a “cartoon” and “texture” (Meyer, 2001), where “texture” is
defined as a highly oscillatory pattern. We describe an implementation of multi-model
full-waveform inversion of time-lapse and single-acquisition datasets, and demonstrate
the method on two synthetic examples.

METHOD

A multi-model full-waveform inversion can be posed as an unconstrained regularized
multiple-norm optimization problem:

min
m,mb

‖F(m)− d‖2
2 + α‖|∇mb|‖1 + β‖∆mw‖2

2,

m = mb + mw,
(1)
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where mb,w are two uncorrelated “blocky” and “wiggly” components of the model m,
with ‖m2‖2 � ‖m1‖2. The `1 norm of the gradient, or the total variation seminorm
(Triebel, 2006), favors sharp contrasts over oscillations in mb, while the `2 norm favors
small oscillations over large contrasts. Solving (1) produces a model split into two
components, with one component exhibiting mostly blocky, and the other—oscillatory
behavior. However, clean separation cannot be realistically achieved. Even in the
simplest case of image TV denoising with the trivial modeling operator F(m) ≡ m,
the two recovered components remain correlated (Meyer, 2001; Osher et al., 2005).

A problem analogous to (1) can be formulated for time-lapse FWI,

min
m1,m2,mb

‖F(m1)− d1‖2
2 + ‖F(m2)− d2‖2

2 +

α‖|∇mb|‖1 + β‖∆mw‖2
2,

m2 −m1 = mb + mw,

(2)

where m1,2 and d1,2 are the baseline and monitor subsurface models and recorded
data.

We solve problems (1) and (2) by applying the nonlinear conjugate gradients
algorithm (Nocedal and Wright, 2006) after smoothing the TV term,

‖|∇m|‖1 ≈ ‖
√
|∇xm|2 + ε‖1, (3)

where ε ≈ 10−5 is chosen as a threshold for realistic values of the slowness. Regular-
ization parameters α and β are chosen as follows. The value of α is chosen as in the
standard TV-regularization problem with m = mb (m2 − m1 = mb for time-lapse
FWI) used in (Maharramov and Biondi, 2014b). Then β is chosen sufficiently large
to make oscillatory component close to zero, and gradually reduced until the models
become correlated.

Alternative constrained optimization problems can be formulated instead of (1)
and (2), and solved using the approach described by Maharramov and Biondi (2014a).
Alternatively, split-Bregman of Goldstein and Osher (2009) can be applied directly
to (1) and (2).

NUMERICAL EXAMPLES

We demonstrate multi-model inversion on the 7dB SNR Marmousi synthetic that
we used in (Maharramov and Biondi, 2014b,a). See these papers for the details of
numerical implementation.

For the time lapse example, a true model was generated consisting of “blocky”
anomalies of -150 m/s and 100 m/s and a smooth velocity variation peaking at -50
m/s above the right anomaly (see Fig 1).

Note that the position of the smooth gradient and the small magnitude of velocity
perturbations (< 5% of baseline), in combination with noisy data, make resolution of
the model difference very challenging in this case.
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Figure 1: True model difference showing two blocky anomalies (-150 m/s and 100
m/s) and a smooth velocity change peaking at -50 m/s in the overburden above the
right anomaly. [CR]

Figure 2: Model difference reconstructed using parallel difference algorithm (As-
naashari et al., 2012) for the 7dB SNR synthetic. Both amplitudes and locations
of the anomalies are poorly resolved. [CR]
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Figure 3: Blocky component of the model difference recovered by solving (2). The
anomalies are resolved better, with amplitudes close to true values. The decompo-
sition reveals partial recovery of the negative smooth velocity change over the right
anomaly, however, most of the smooth velocity change ended up in the oscillatory
component in Figure 4. [CR]

Figure 4: Oscillatory component of the model difference recovered by solving (2).
Note that the two components appear to be mostly uncorrelated. [CR]
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This is confirmed by the result of parallel difference algorithm (Asnaashari et al.,
2012) in Figure 2. The anomalies are hard to identify, and their amplitudes are
overestimated.

Figure 5: Blocky component of the baseline model recovered by solving (2) for the
7dB SNR synthetic. [CR]

The blocky component in Figure 3 was recovered by solving (2) with α = 10−6 and
β = 10−4. It appears to be a better approximation of the true model difference, both
qualitatively and quantitatively. Note the partial recovery of the smooth velocity
change in the overburden.

Figure 6: Oscillatory component of the baseline model recovered by solving (2) for
the 7dB SNR synthetic. The model is largely uncorrelated with the blocky model
of Figure 3, however, some of the sharp contrasts lave leaked into the wiggly model.
[CR]

The oscillatory component shown in Figure 4 is weakly correlated with the blocky
model, and mostly represents noise removed from the model difference by he multi-
scale inversion (2). Note, however, that the oscillatory component may contain some
of the smooth overburden velocity change—see the negative velocity zone above the
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location of right anomaly in Figure 4. A hierarchical multiscale decomposition ap-
proach similar to (Tadmor et al., 2004) may be applied to further decompose the
model into blocky, smoothly varying and oscillatory components.

Figures 5 and 6 show the result of solving (1) with the 7dB SNR synthetic. The
two components demonstrate the typical pattern with multiscale multinorm decom-
positions: while the two blocky and oscillatory models are largely uncorrelated, some
of the sharp contrasts have leaked into the wiggly model in Figure 6.

CONCLUSIONS

Multi-model regularization of full-waveform inversion can be used for automated mul-
tiscale model decomposition. This can be exploited for isolating the effects of different
physical processes acting on different scales, or separating useful information from the
effects of fitting noisy data. The multi-model FWI can be implemented using the ex-
isting nonlinear unconstrained iterative solver frameworks with modest computational
overhead, however, comparison with alternative methods (Goldstein and Osher, 2009;
Osher et al., 2005; Cai et al., 2010; Boyd et al., 2011) is necessary. Hierarchical model
decompositions (Tadmor et al., 2004) and application to field data will be the subject
of future work.
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