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ABSTRACT

This paper is a tutorial on linearized two-way wave equation modeling and inver-
sion operators. We provide a detailed derivation for the special case of an acous-
tic, isotropic, constant-density medium. We analyze the Born, tomographic, and
WEMVA forward modeling operators, their adjoints, and we extend the analysis
to the subsurface offset domain.

INTRODUCTION

We present a detailed derivation for the main two-way wave equation linearized op-
erators used in seismic imaging: Born, tomography, and Wave Equation Migration
Velocity Analysis (WEMVA). This work adapts that of Almomin (2013) and is in-
tended to serve as an educational tool for new students coming to SEP. We will
consider the specific case of an acoustic, isotropic, constant-density medium.

Our goal is to obtain the best possible estimate of the seismic velocity model of
the Earth’s subsurface. The three operators that we derive are convenient to achieve
this goal. The Born operator and its adjoint capture the dynamic effects responsible
for seismic reflections (the high wavenumber content of the velocity model). The
tomographic and WEMVA operators and their adjoints capture the kinematic effects
(e.g., transmitted and diving waves), which are controlled by the low wavenumber
content of the velocity model.

The first section is intended to remind the reader of some general background on
wave theory. We then derive the Born modeling operator and its adjoint, referred
to as the Reverse Time Migration (RTM) operator. In the last two sections, we will
treat the tomographic and WEMVA operators and their respective adjoints.

Throughout this paper, we use roman fonts to refer to functions, italic fonts
to refer to functions evaluated at a given point, and bold fonts to refer to vectors
(e.g., f, f(x), and f). Moreover, we use lowercase to refer to functions in the time
domain, and uppercase for their Discrete Fourier Transform (DFT).
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Barnier and Almomin 2 Two-way wave equation operators

WAVE THEORY

Definitions

• m is a function representing the seismic velocity model of the subsurface. For
each point in the subsurface, it associates a velocity value:

m : Ω 7→ R (1)

x 7→ m(x),

where m(x) is expressed in m/s. Ω ⊂ R3 is the area of study, and is an open,
bounded and regular set. It is assumed that m does not vary with time.

• p is the pressure field function. For a given location in the subsurface x, at
a given time t, and for a given velocity function m, it represents the pressure
value

p : Ω× R×F(Ω, R) 7→ R (2)

(x, t; m) 7→ p(x, t; m),

where p(x, t; m) is expressed in Pa, and F(Ω, R) is the set of functions mapping
Ω to R (assumed to be infinitely differentiable on Ω).

• s is a function representing a seismic source:

s : Ω× R 7→ R (3)

(x, t) 7→ s(x, t),

where s(x, t) is expressed in Pa/m2.

• ρ is a function representing the medium volume mass density and is defined by

ρ : Ω 7→ R (4)

x 7→ ρ(x),

where ρ(x) is expressed in kg/m3. In the following, we assume ρ to be constant
over the study area.

• ∀x ∈ Ω,∀t ∈ R, the acoustic, isotropic constant-density wave equation satisfied
by the causal function p is given by

1

m2(x)

∂2p(x, t; m)

∂t2
−∇2p(x, t; m) = s(x, t) (5)

p(x, t; m) ≡ 0, ∀t ≤ 0.
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Continuous solution of the wave equation

Green’s function

Given a source located at x′ and initiated at time t′, the causal Green’s function, g, for
an acoustic, isotropic constant-density medium is the solution to equation 5, where s
is a point source function, and an impulse in time. That is, ∀x ∈ Ω, ∀t ∈ R,∀t′ ∈ R,
g satisfies

1

m2(x)

∂2g(x, t,x′, t ′; m)

∂t2
−∇2g(x, t,x′, t′; m) = δ(x− x′)δ(t− t′) (6)

g(x, t,x′, t′; m) ≡ 0, ∀t ≤ t ′,

where

• δ(x− x′) is in m−3 (for 3D),

• δ(t− t′) is in s−1, and

• g(x, t,x′, t′; m) is in m−1 s−1 (and not Pa).

Spatial reciprocity implies that

g(x, t,x′, t ′; m) = g(x′, t,x, t ′; m). (7)

Assuming the properties of the medium are invariant with time, we can write

g(x, t,x′, t ′; m) = g(x, t− t ′,x′, 0; m). (8)

∀x ∈ Ω,∀t ∈ R, the solution of equation 5 can be written as

p(x, t; m) =

∫
x′∈Ω

+∞∫
t′=−∞

g(x, t,x′, t ′; m) s(x′, t′) dt′ dx′. (9)

Using equation 8, we may write

+∞∫
t′=−∞

g(x, t,x′, t ′; m) s(x′, t ′) dt ′ = g(x, t,x′, 0; m) ∗ s(x′, t), (10)
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where * denotes convolution in time. Equation 9 thereby simplifies to

p(x, t; m) =

∫
x′∈Ω

g(x, t,x′, 0; m) ∗ s(x′, t) dx ′. (11)

If the seismic source function s is concentrated at one point in space xs, and has a
time signature f(t), then s(x, t) = f(t) δ(x− xs), where f(t) is expressed in Pa m,
and δ(x− xs) is expressed in m−3. In that case, equation 11 simplifies further to

p(x, t; m) = g(x, t,xs; m) ∗ f(t), ∀x ∈ Ω,∀t ∈ R. (12)

Numerical solution of the wave equation

Discretization in time and frequency

We discretize all functions/signals in time. Hence ∀n ∈ {1; N},

p(x, n; m) = p(x, tn; m), (13)

where dt is the time sampling rate in s/samples, and tn = (n − 1)dt. Here, it is
assumed that ∃N ∈ N such that n 6∈ {1; N} ⇒ p(x, n; m) = 0.

By taking the Discrete Fourier Transform (DFT) of each side of equation 11, we
obtain that ∀k ∈ {1; N},

P(x, ωk; m) =

∫
x′∈Ω

G(x, ωk,x
′; m) S(x′, ωk) dx ′, (14)

where ωk = (k − 1)dω = (k − 1)
2π

N
. Note that P(x, ωk; m) ∈ C. Moreover,

• P(x, ωk; m) is expressed in Pa s,

• F(ωk) is expressed in Pa m s, and

• G(x, ωk,xs; m) is expressed in m−1.
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Discretization in space

We discretize the area of study into a regularly sampled grid. ∀n ∈ {1; N}, ∀j ∈
{1; M}, equation 11 becomes

p(x, n;m) ≈
M∑

j=1

g(x, n,xj; m) ∗ s(xj, n) ∆x, (15)

where ∆x is the constant finite difference grid cell volume, expressed in m3. Since
∆x acts as a constant scaling factor, we will not write it explicitly in the remaining
of our derivation. However, this coefficient is important to ensure consistency in
the units. The bold font used for the model function m indicates that we have
spatially discretized the study area. M is the number of grid points in the study area
(discretized model size). Therefore, we can define a model vector m ∈ RM , whose
components are the values of function m (defined in mapping 1), evaluated at each
grid point xi

m =

m(x1)
...

m(xM)

 =

 m1
...

mM

 . (16)

We can also express equation 15 in the frequency domain. ∀i ∈ {1; M}, ∀k ∈ {1; N},

P (xi, ωk;m) ≈
M∑

j=1

G(xi, ωk,xj;m) S(xj, ωk). (17)

If the seismic acquisition source is concentrated at a point xs in space, its DFT is
expressed by S(xi, ωk) = F (ωk) δ(xi − xs), where F is the DFT of the source’s time
signature. In that case, equation 17 simplifies further to

P (xi, ωk;m) = G(xi, ωk,xs;m) F (ωk). (18)

Seismic data

Seismic data are a set of discrete measurements in time and space received at some
locations xi (e.g., near the surface of the Earth). For one seismic source located at
xs, we defined a data vector D ∈ CNd×N (Nd is the number of receiver locations)
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D =

 D11
...

DNdN

 . (19)

Each component Dik of D can be expressed by

Dik = P(x = xi,xs, ωk;m), (20)

where i ∈ {1; Nd}, k ∈ {1; N}.

Wave equation and Green’s function in the frequency domain

By discretizing in space and taking the DFT of equation 6, the Green’s function G
satisfies the Helmholtz equation. ∀i ∈ {1; M},∀k ∈ {1; N},

[
ω2

k

m(xi)2
+∇2

]
G(xi, ωk,xs;m) = −δ(xi − xs). (21)

The units of equation 21 are consistent, as each side is expressed in m−3.

LINEARIZATION WITH RESPECT TO REFLECTIVITY

Nonlinear mapping

One way to think about the wave equation is as a function f that maps the set of
model parameters (velocity value at each grid point) to the recorded seismic data

f : RM 7→ RNd (22)

m 7→ f(m),

where d = f(m) is the seismic data in the time domain. Equivalently, in the frequency
domain,

F : RM 7→ CNd (23)

m 7→ F(m),
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where D = F(m) is the seismic data in the frequency domain. Clearly, f and F
(to be distinguished from the source signatures mentioned previously) are not linear
functions with respect to m. However, they are both linear operators with respect
to the source function, keeping the velocity model and all other variables unchanged.
Let us represent the wave equation operator by L such that

L : F(Ω, R) 7→ F(Ω, R) (24)

s 7→ L(s).

Here, s ∈ F(Ω, R) is a source function. One can easily verify from equation 5 that,
∀α ∈ R,∀ (si, sj) ∈ (F(Ω, R))2

L(si + sj) = L(si) + L(sj) (25)

L(α si) = αL(si).

The next step is to linearize F with respect to m. In the following, we present our
derivation in the frequency domain. First, we assume that we can decompose the
model vector m ∈ RM as the sum of two vectors

m = b + r, (26)

where

b =

 b(x1)
...

b(xM)

 =

 b1
...

bM

 , (27)

and

r =

 r(x1)
...

r(xM)

 =

 r1
...

rM

 . (28)

b ∈ RM is referred to as the background model, and contains the low wavenumber
content of the velocity model. r ∈ RM is referred to as the reflectivity model, and
contains the high wavenumber content of the velocity model. We also assume that
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the magnitude of the reflectivity is much smaller than the one of the background,
‖r‖ � ‖b‖, where ‖.‖ denotes any norm on RM . In the following, we will treat those
parameters as two separate variables with same units (m s−1).

Let us consider the function

F̃ : RM 7→ CNd (29)

r 7→ F̃(r),

which is the restriction of F to the high wavenumber part of the velocity model,
while keeping the background velocity model unchanged. We perform a multivariate
Taylor expansion of F̃ around a reflectivity model r0 (referred to as the background
reflectivity) while keeping the background model b unchanged

F̃(r) = F̃(r0) +
∂F̃(r)

∂r

∣∣∣∣
r=r0

∆r +O(‖∆r‖2). (30)

The second term of the right side of equation 30 is the Jacobian matrix B of F̃
evaluated at r = r0, applied to the reflectivity perturbation vector ∆r. It can be
expressed by

B(r0) =
∂F̃(r)

∂r

∣∣∣∣
r=r0

=


∂F̃1

∂r1

∣∣
r0

· · · ∂F̃1

∂rM

∣∣
r0

...
. . .

...

∂F̃Nd

∂r1

∣∣
r0

· · · ∂F̃Nd

∂rM

∣∣
r0

 , (31)

where B(r0) ∈ MNd,M(C) (Mp,q(C) refers to the set of matrices with p rows, q columns,
and complex coefficients).

Born operator

The Born operator is a linear operator that relates a perturbation in the model reflec-
tivity to a perturbation in the data (Almomin, 2013), while keeping the background
unchanged.

Expressing the entries of the Jacobian

We consider a reflectivity perturbation ∆r vector such that
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• r = r0 + ∆r, and

• ‖∆r‖ � ‖r0‖.

Thus,

∆D = D(r)−D(r0) (32)

≈ B(r0) ∆r.

The Born operator is a linear application B(r0) : CM 7→ CNd , which can be represented
in a matrix form by B(r0). It is the Jacobian of F̃ taken at r0, whose entries are all
independent of the perturbation ∆r.

Let us define, ∀i ∈ {1; Nd},∀k ∈ {1; N},

Dik(b, r) = P(xi,xs, ωk;b, r) = F(ωk)G(xi, ωk,xs;b, r), (33)

where Dik(b, r) ∈ C. Therefore, we can rewrite equation 32 with the following form:

∆D(xi,xs, ωk, ;b, r) = P(xi,xs, ωk;b, r)− P(xi,xs, ωk;b, r0) (34)

≈
M∑

j=1

∂P

∂rj

(xi,xs, ωk;b, r)

∣∣∣∣
r=r0

∆r(xj)

≈ F(ωk)
M∑

j=1

∂G

∂rj

(xi, ωk,xs;b, r)

∣∣∣∣
r=r0

∆r(xj).

The left side of equation 34 is the data perturbation caused by the perturbation of
the reflectivity model, for one fixed frequency, one fixed receiver location, one fixed
source, and a fixed background velocity model.

To find an expression of
∂G

∂rj

, we write two versions of equation 21: one with the

unperturbed velocity model m0 = b + r0, satisfied by G(xi, ωk,xs;b, r0) (equa-
tion 35), and the other with the perturbed velocity model m = m0 +∆r, satisfied by
G(xi, ωk,xs;b, r). That gives us, ∀i ∈ {1; M},∀k ∈ {1; N},

[
ω2

k(
m0(xi) + ∆r(xi)

)2 +∇2

]
G(xi, ωk,xs;b, r) = −δ(xi − xs), (35)
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and [
ω2

k

m0(xi)2
+∇2

]
G(xi, ωk,xs;b, r0) = −δ(xi − xs). (36)

Since ∀i ∈ {1; M}, |∆r(xi)| � |m0(xi)|, we can make the following approximation:

1(
m0(xi) + ∆r(xi)

)2 ≈
1

m0(xi)2

(
1− 2∆r(xi)

m0(xi)

)
. (37)

By expanding equations 35, 36, and 37, we can show that the difference ∆G(xi, ωk,xs;b, r) =
G(xi, ωk,xs;b, r) − G(xi, ωk,xs;b, r0) satisfies a similar equation as in equation 21,
but for a different source function. ∀i ∈ {1; M},∀k ∈ {1; N},

[
ω2

k

m0(xi)2
+∇2

]
∆G(xi, ωk,xs;b, r) = (38)

2 ω2
k

∆r(xi)

m0(xi)
3

(
G(xi, ωk,xs;b, r0) + ∆G(xi, ωk,xs;b, r)

)
.

Under that form, this wave equation is not linear with respect to the source (map-
ping 24). However, we can further simplify it by noticing in equation 38 that the
term proportional to ∆r(xi)∆G is a second order differential element, and can thus
be neglected with respect to the remaining terms (Born approximation). Hence,

|∆r(xi)∆G| � |∆r(xi)G0|, (39)

and

∣∣∣∣ 2 ω2
k

m0(xi)
3 ∆r(xi)∆G

∣∣∣∣ � ∣∣∣∣[ ω2
k

m0(xi)2
+∇2

]
∆G

∣∣∣∣. (40)

Therefore, equation 38 simplifies to

[
ω2

k

m0(xi)2
+∇2

]
∆G ≈ Ssec(xi, ωk), (41)

with
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Ssec(xi, ωk) = 2 ω2
k

∆r(xi)

m0(xi)3
G(xi, ωk,xs;b, r0). (42)

∆G satisfies the wave equation with a secondary source function Ssec, independent of
∆G, and proportional to the reflectivity perturbation at a given point in the subsur-
face. Using equation 17, we can solve for ∆G. ∀i ∈ {1; M},∀k ∈ {1; N},

∆G(xi, ωk;b, r) =
M∑

j=1

G(xi, ωk,xj;b, r0) Ssec(xj, ωk) (43)

=
M∑

j=1

2 ω2
k

m0(xj)3
G(xi, ωk,xj;b, r0)G(xj, ωk,xs;b, r0) ∆r(xj).

We check for the consistency of the units in equation 43, keeping in mind that we did
not explicitly write the grid cell volume term (expressed in m3) on the right side,

• ∆G(xi, ωk;b, r) is expressed in m−1,

• G(xi, ωk,xj;b, r0) is in m−1, and

• Ssec(xi, ωk) is in m−3.

The Taylor expansion of ∆G, expressed by

∆G(xi, ωk,xs;b, r) = G(xi, ωk,xs;b, r)−G(xi, ωk,xs;b, r0) (44)

≈
M∑

j=1

∂G

∂rj

(xi, ωk;xs;b, r)

∣∣∣∣
r=r0

∆r(xj),

enables us to identify
∂G

∂rj

, where

∂G

∂rj

(xi, ωk;xs;b, r)

∣∣∣∣
r=r0

=
2 ω2

k

m0(xj)3
G(xi, ωk,xj;b, r0)G(xj, ωk,xs;b, r0). (45)

Finally, we can express the perturbation of the data with respect to the perturbation
of the reflectivity. ∀i ∈ {1; Nd},∀k ∈ {1; N},
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∆Dik = ∆D(xi,xs, ωk;b, r) (46)

=
M∑

j=1

F(ωk)
2 ω2

k

m0(xj)3
G(xi, ωk,xj;b, r0)∆r(xj)G(xj, ωk,xs;b, r0).

Equation 46 can be written in a matrix form

∆D = B(r0)∆r, (47)

and

∆D =



∆D(x1,xs, ω1;b, r)
∆D(x2,xs, ω1;b, r)

...
∆D(xNd

,xs, ω1;b, r)
...

∆D(x1,xs, ωN ;b, r)
...

∆D(xNd
,xs, ωN ;b, r)


=



b1
11 · · · bM

11

b1
21 · · · bM

21
...

...
...

b1
Nd1 · · · bM

Nd1
...

...
...

b1
1N · · · bM

1N
...

...
...

b1
NdN · · · bM

NdN




∆r(x1)
∆r(x2)

...
∆r(xM)

 , (48)

where B(r0) is the Born modeling operator, linearized around m0 = b+r0. Moreover,

• ∆D ∈ CNd×N ,

• B(r0) ∈ MNd,M(C),

• b j
ik ∈ C, and

• ∆r ∈ RM .

Each entry b j
ik of B(r0) is independent of the reflectivity perturbation ∆r, and can

be expressed ∀i ∈ {1; Nd},∀k ∈ {1; N},∀j ∈ {1; M} by

b j
ik = F(ωk)

2 ω2
k

m0(xj)3
G(xi, ωk,xj;b, r0)G(xj, ωk,xs;b, r0). (49)
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Extension to subsurface offset domain

We extend the reflectivity part of the model to the subsurface offset domain (Al-
momin, 2013), and define an extended reflectivity function r̃ by

r̃ : Ω×H 7→ R (50)

x× h 7→ r̃(x,h),

where both Ω and H are subsets of R3. We discretize the domain on which r̃ is defined
as in equation 28, and we obtain the reflectivity vector r̃ ∈ RM×Nh extended to the
subsurface offset domain, where Nh = 2 h + 1. Moreover, ∀p ∈ {−h; h}, h-p = −hp,
and

r̃ =



r̃(x1,h-h)
...

r̃(xM,h-h)
r̃(x1,h-h+1)

...
r̃(xM,hh)


=



r̃(x1,−hh)
...

r̃(xM,−hh)
r̃(x1,−hh-1)

...
r̃(xM,hh)


(51)

Equation 46 can then be modified to take into account the subsurface offset dimension
(Almomin, 2013). ∀i ∈ {1; Nd},∀k ∈ {1; N}, we have

∆Dik = ∆D(xi,xs, ωk;b, r̃) (52)

=
M∑

j=1

h∑
p=-h

F(ωk)
2 ω2

k

m0(xj)3
G(xi, ωk,xj + hp;b, r̃0)∆r̃(xj,hp)G(xj − hp, ωk,xs;b, r̃0).

We can display equation 52 in the matrix form

∆D = B̃(r̃0) ∆r̃, (53)

and
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∆D =



∆D(x1,xs, ω1;b, r̃)
∆D(x2,xs, ω1;b, r̃)

...
∆D(xNd

,xs, ω1;b, r̃)

∆D(x1,xs, ω2;b, r̃)
...

∆D(x1,xs, ωN;b, r̃)
...

∆D(xNd
,xs, ωN;b, r̃)


=



b̃
1(-h)
11 · · · b̃

M(-h)
11 b̃

1(-h+1)
11 · · · b̃Mh

11

b̃
1(-h)
21 · · · b̃

M(-h)
21 b̃

1(-h+1)
21 · · · b̃Mh

21
...

...
...

...
...

b̃
1(-h)
Nd1 · · · b̃

M(-h)
Nd1 b̃

1(-h+1)
Nd1 · · · b̃Mh

Nd1

b̃
1(-h)
12 · · · b̃

M(-h)
12 b̃

1(-h+1)
12 · · · b̃Mh

12
...

...
...

...
...

b̃
1(-h)
1N · · · b̃

M(-h)
1N b̃

1(-h+1)
1N · · · b̃Mh

1N
...

...
...

...
...

b̃
1(-h)
NdN · · · b̃

M(-h)
NdN b̃

1(-h+1)
NdN · · · b̃Mh

NdN





∆r̃(x1,h-h)
...

∆r̃(xM ,h-h)
∆r̃(x1,h-h+1)

...
∆r̃(xM ,hh)


,(54)

where B̃(r̃0) is the Born operator in the extended domain. Moreover,

• ∆D ∈ CNd×N ,

• B̃(r̃0) ∈ MNd×N,M×Nh
(C),

• b̃ jp
ik ∈ C, and

• ∆r̃ ∈ RM×Nh .

We can explicitly write the expressions for the entries of B̃(r̃0). ∀i ∈ {1; Nd},∀k ∈
{1; N},∀j ∈ {1; M},∀p ∈ {−h; h}, each entry b̃ jp

ik is given by

b̃ jp
ik = F(ωk)

2 ω2
k

m0(xj) 3
G(xi, ωk,xj + hp;b, r̃0)G(xj − hp, ωk,xs;b, r̃0). (55)

We have obtained the expression for the Born modeling operator in the extended
subsurface offset domain (equations 53, 54, and 55), which relates a perturbation in
the reflectivity model to a perturbation in the data, keeping all other parameters
unchanged, and assuming a known m0.

Time domain expression of the Born operator

To get a better physical understanding of the Born operator, it is convenient to
express our previous results in the time domain. By taking the inverse DFT of
equation 43, we can express the data perturbation as the convolution in time between
the Green’s function and a secondary source (caused by the reflectivity perturbation).
∀i ∈ {1; Nd},∀n ∈ {1; N},∀j ∈ {1; M},∀p ∈ {−h; h}, we have
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∆d(xi, n;b, r) =
h∑

p=-h

M∑
j=1

g(xi, n,xj + hp, 0;b, r0) ∗ ssec(xj,hp, n). (56)

The secondary source can be further expressed by

ssec(xj,hp, n) = DFT−1
[
Ssec(xj,hp, ωk)

]
(57)

= DFT−1

[
2F(ωk) ω2

k

m0(xj)3
∆r̃(xj,hp) G(xj − hp, ωk,xs;b, r0)

]
= psrc(xj,hp,xs, n;b, r0) ∆r̃(xj,hp),

where,

psrc(xj,hp,xs, n;b, r0) =
−2

m0(xj)3
f̈(n) ∗ g(xj − hp, n,xs, 0;b, r0). (58)

Function f̈ is the discrete second order time derivative of the original source time
signature. Function psrc, referred to as source wavefield, is a scaled version of the
time convolution between the second time derivative of the source signature and
the Green’s function computed with the known velocity model m0 = b + r0. ∀i ∈
{1; Nd},∀n ∈ {1; N}, the data perturbation can therefore be expressed by

∆d(xi, n;b, r) = (59)
h∑

p=-h

M∑
j=1

g(xi, n,xj + hp, 0;b, r0) ∗
[
psrc(xj,hp,xs, n;b, r0) ∆r̃(xj,hp)

]
.

Physical interpretation of Born modeling operator

For simplicity, we focus our interpretation on the specific case of zero-subsurface
offset. Let us consider the scenario where we have

• a single seismic source located at a point xs at the surface,

• a subsurface location xj such that ∆r(xj) 6= 0, and

• a single recording location xi at the surface, where we would like to compute
the data perturbation ∆d(xi, n;b, r).
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The source wavefield psrc generated at location xs is propagated into the subsurface
with a known velocity model m0. The secondary source ssec generated at xj, is the
product of the source wavefield psrc with the reflectivity perturbation ∆r(xj) (equa-
tion 57). ssec is nonzero if and only if the reflectivity perturbation is nonzero. In
equation 59, the convolution between the secondary source and the Green’s function
indicates that a secondary wavefield (referred to as the scattered wavefield pscat) is
generated from the secondary source. Therefore, the contribution of the reflectivity
perturbation ∆r(xj) to the data perturbation ∆d(xi, n;b, r) is obtained by extracting
the values of pscat at location xi. This process is illustrated in Figure 1. Finally, in
order to capture the contributions from all the reflectivity perturbations in the sub-
surface to an observation point xi, we sum over all subsurface points xj (equation 59).

Δr(xj) 

xs xi 

psrc pscat 

Z 

X 

t1 

t2 

t3 

t4 

t5 
t6 

t7 
t8 t8 

t9 
t10 

m0 = b + r0 

Figure 1: Schematic diagram of the Born modeling operator for one scattering point,
and a known background velocity model m0. The source wavefield psrc (red) interacts
with the reflectivity perturbation ∆r(xj) (pink), and creates a scattered wavefield pscat

(green). [NR]

RTM

The RTM operator is defined as the adjoint of the Born modeling operator. From
equation 54, we can obtain the adjoint R̃(r̃0) of operator B̃(r̃0) by taking its conjugate
transpose matrix, R̃(r̃0) = B̃(r̃0)

∗, which satisfies

∆r̃ = R̃(r̃0) ∆D, (60)

and
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

∆r̃(x1,h -h)
...

∆r̃(xM ,h -h)

∆r̃(x1,h-h+1)
...

∆r̃(xM ,hh)


=



r̃
1(-h)
11 · · · r̃

1(-h)
Nd1 · · · r̃

1(-h)
1N · · · r̃

1(-h)
NdN

...
...

...
...

...
...

...

r̃
M(-h)
11 · · · r̃

M(-h)
Nd1 · · · r̃

M(-h)
1N · · · r̃

M(-h)
NdN

r̃
1(-h+1)
11 · · · r̃

1(-h+1)
Nd1 · · · r̃

1(-h+1)
1N · · · r̃

1(-h+1)
NdN

...
...

...
...

...
...

...
r̃Mh
11 · · · r̃Mh

Nd1 · · · r̃Mh
1N · · · r̃Mh

NdN





∆D(x1, ω1)
...

∆D(xNd
, ω1)

...
∆D(x1, ωN)

...
∆D(xNd

, ωN)


,(61)

where

• ∆r̃ ∈ CM×Nh ,

• R̃(r̃0) ∈ MM×Nh,Nd×N(C),

• r̃ jp
ik = (b̃ jp

ik)∗ ∈ C, and

• ∆D ∈ RM×Nh .

Moreover, each entry r̃ jp
ik of R̃(r̃0) is given by

r̃ jp
ik = (b̃ jp

ik) ∗ (62)

= F ∗(ωk)
2 ω2

k

m0(xj) 3
G ∗(xi, ωk,xj + hp;b, r̃0)G

∗(xj − hp, ωk,xs;b, r̃0).

Therefore, one row of equation 54 is given by

∆r̃(xj,hp) = (63)
Nd∑
i=1

N∑
k=1

2F ∗(ωk) ω2
k

m0(xj)3
G ∗(xi, ωk,xj + hp;b, r̃0)∆D(xi, ωk)G

∗(xj − hp, ωk,xs;b, r̃0).

We have obtained the expression for the RTM operator in the extended subsurface
offset domain (equations 61, 62, and 63). It is the adjoint of the Born modeling
operator, and it relates a perturbation in the data to a perturbation in the reflectivity
model, while keeping other parameters unchanged.
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Time domain expression of RTM operator

In a similar fashion as for the Born operator, we express the results obtained for
the RTM operator in the time domain in order to get a better understanding of its
physical meaning. ∀j ∈ {1; M},∀p ∈ {−h; h}, equation 63 can be rewritten as

∆r̃(xj,hp) =
N∑

k=1

P ∗
src(xj,hp,xs, ωk;b, r̃0) Prec(xj,hp, ωk;b, r̃0), (64)

where:

• Psrc(xj,hp,xs, ωk;b, r̃0) = DFT
[
psrc(xj,hp,xs, n;b, r̃0)

]
, and

• Prec(xj,hp, ωk;b, r̃0) =
Nd∑
i=1

G ∗(xi, ωk,xj + hp;b, r̃0)∆D(xi, ωk).

Psrc is the DFT of the source wavefield psrc previously defined. Prec is the DFT of
the receiver wavefield, defined as the time convolution between the data perturbation
and the anti-causal Green’s function g−:

prec(xj,hp, n;b, r̃0) =

Nd∑
i=1

g−(xj + hp, n,xi, 0;b, r̃0) ∗∆d(xi, n;b, r). (65)

Therefore the receiver wavefield is the progagation backward in time of the data
perturbation. Using equation 121 (appendix), we can show that

[
psrc ⊗ prec

]
(xj,hp,xs, 0;b, r̃0) (66)

=
N∑

k=1

P ∗
src(xj,hp,xs, ωk;b, r̃0) Prec(xj,hp, ωk;b, r̃0)

=
N∑

n=1

psrc(xj,hp,xs, n;b, r̃0) prec(xj,hp, n;b, r̃0),

where the left side of equation 66 is the zero-lag time cross-correlation of the source
wavefield psrc with the receiver wavefield prec at various subsurface locations. For
any subsurface point xj and for any subsurface offset hp, we can now express the
reflectivity perturbation by

∆r̃(xj,hp) =
[
psrc ⊗ prec

]
(xj,hp,xs, 0;b, r̃0), (67)

where ∆r̃(xj,hp) ∈ R.
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Physical interpretation of RTM operator

For simplicity, let us physically interpret the specific case of zero-subsurface offset,
and let us consider

• a single source located at a point xs at the surface, and

• a single recording location xi at the surface where we have a data perturbation
∆D(xi,xs, ωk;b, r).

We apply the RTM operator in order to recover the location(s) of the reflectivity per-
turbation(s) that caused the data perturbation observed at the surface. The source
wavefield psrc generated at location xs is propagated forward in time with the known
velocity model m0. The receiver wavefield prec generated by the data perturbation
∆D(xi,xs, ωk;b, r) at xi is propagated backward in time with the known velocity
m0. For each point in the subsurface, the reflectivity perturbation value is equal to
the output of the cross-correlation of the two wavefields at zero-time lag. If there are
locations such that both wavefields coincide at the same time, the cross-correlation
output will be non-zero (assuming there is not only destructive interferences), and a
reflectivity perturbation will be generated at these locations. This process is illus-
trated in Figure 2. Finally, to account for all the contributions coming from other
potential observation and source locations, the reflectivity perturbations computed
for each source/observation pair are summed, and a reflectivity perturbation map is
generated. It is referred to as an image.

It is common in RTM to linearize the wave equation around a background reflectivity
r0 = 0, which means that the model m0 used to compute the source wavefield,
scattered wavefield, and receiver wavefield contains only low wavenumber components.
In other words, a smooth velocity model is used to obtain the RTM image. If that is
the case,

∆D(xi,xs, ωk;b, r) = D(xi,xs, ωk;b, ∆r)− D(xi,xs, ωk;b,0), (68)

where D(xi,xs, ωk;b,0) is the modeled data using a smooth background velocity
model, which contains only direct arrivals and diving waves (no reflections). Hence,
the data perturbation ∆D(xi,xs, ωk;b, r) used to compute the receiver wavefield will
consist of the recorded data D(xi,xs, ωk;b, ∆r) from which we have removed the direct
arrivals and diving waves. Though confusing, it is common to call ∆D(xi,xs, ωk;b, r)
the “data.”
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xs xi 

psrc 

prec 

Z 

X 

t1 

t2 

t3 

t4 

t5 

t1 

t2 

t3 

t4 

t5 
Δr(xj) 

m0 = b + r0 

Figure 2: Schematic diagram of the RTM operator for one source located at xs, and
one receiver located at xi. For all points in the subsurface, the source wavefield psrc

(red) is cross-correlated at zero-time lag with the receiver wavefield prec (green). The
receiver wavefield is propagated backward in time from the receiver location xi. A
nonzero reflectivity perturbation will be generated at the subsurface points where the
two wavefields coincide in time and space. [NR]
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LINEARIZATION WITH RESPECT TO THE
BACKGROUND

In previous sections, we linearized the two-way wave equation with respect to the
high wavenumber part of the velocity model (reflectivity), while keeping the lower
wavenumber part (background) unchanged. In this section, we show how the to-
mographic and WEMVA operators are obtained by linearizing the Born and RTM
operators with respect to the background velocity model.

Tomographic operator

The forward tomographic operator, as defined in Almomin (2013), is a linear op-
erator that relates a perturbation in the background velocity model ∆b (such that
b = b0 + ∆b) to a perturbation in the perturbation of the data ∆(∆D), while
keeping the other parameters unchanged. We can symbolically write it as

∆(∆D) = T(b0, r̃)∆b. (69)

During this linearization process, we will assume that the reflectivity model r̃ = r̃0 + ∆r̃
(i.e., the image) is unchanged, and part of the operator.

Linearization of the Born operator

In order to obtain the expression for the tomographic operator, we perturb the back-
ground velocity model b, and we express the perturbation in the perturbation of the
data. We first define D̃(xi, ωk,xs;b, r̃) by

D̃(xi,xs, ωk;b, r̃) = ∆D(xi,xs, ωk;b, r̃) (70)

= D(xi,xs, ωk;b, r̃)− D(xi,xs, ωk;b, r̃0).

We perform a multivariate first-order Taylor expansion of the data perturbation
D̃(xi,xs, ωk;b, r̃) around a known model b0, such that b = b0 +∆b. b0 is referred to
as the background background model, and ∆b is the background perturbation. More-
over, throughout this process, r̃ = r̃0 + ∆r̃ is assumed to be known and is kept
unchanged. Assuming a small background perturbation ∆b, we can write

∆D̃ik = ∆D̃(xi,xsωk,b, r̃) = D̃(xi,xs, ωk, ;b, r̃)− D̃(xi,xs, ωk;b0, r̃) (71)

≈
M∑

q=1

∂D̃

∂bq

(xi,xs, ωk;b, r̃)

∣∣∣∣
b=b0

∆b(xq).
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Using equation 52, we have

∂D̃

∂bq

(xi,xs, ωk;b, r̃)

∣∣∣∣
b=b0

=
∂∆D

∂bq

(xi,xs, ωk;b, r)

∣∣∣∣
b=b0

(72)

=
M∑

j=1

h∑
p=-h

∂βT

∂bq

(xi,xj,hp, ωk;b, r̃0)

∣∣∣∣
b=b0

αT (xj,hp, ωk),

where

• αT (xj,hp, ωk) = F(ωk)
2 ω2

k

m0(xj)3
∆r̃(xj,hp), and

• βT (xi,xj,hp, ωk;b, r̃0) = G(xi, ωk,xj + hp;b, r̃0)G(xj − hp, ωk,xs;b, r̃0).

Therefore

∂βT

∂bq

(xi,xj,hp, ωk;b, r̃0)

∣∣∣∣
b0

=
∂G

∂bq

(xi, ωk,xj + hp;b, r̃0)

∣∣∣∣
b0

G(xj − hp, ωk,xs;b0, r̃0)

+ G(xi, ωk,xj + hp;b0, r̃0)
∂G

∂bq

(xj − hp, ωk,xs;b, r̃0)

∣∣∣∣
b0

.

We can obtain
∂G

∂bq

(xi, ωk,xj +hp;b, r̃0)

∣∣∣∣
b0

and
∂G

∂bq

(xj−hp, ωk,xs;b, r̃0)

∣∣∣∣
b0

the same

way as in previous section (equation 45) by setting m0 = b0 + r0. Hence, ∀i ∈
{1; M},∀k ∈ {1; N},∀j ∈ {1; M},∀q ∈ {1; M},∀p ∈ {−h; h},

∂G

∂bq

(xi, ωk,xj + hp;b, r̃0)

∣∣∣∣
b0

= (73)

2 ω2
k

m0(xq)3
G(xi, ωk,xq;b0, r̃0)G(xq, ωk,xj + hp;b0, r̃0),

and

∂G

∂bq

(xj − hp, ωk,xs;b, r̃0)

∣∣∣∣
b0

= (74)

2 ω2
k

m0(xq)3
G(xj − hp, ωk,xq;b0, r̃0)G(xq, ωk,xs;b0, r̃0).
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∀i ∈ {1; Nd},∀k ∈ {1; N}, equation 71 now becomes

∆D̃ik = ∆D̃(xi,xs, ωk;b, r̃) =
M∑

q=1

T q
ik ∆b(xq), (75)

with T q
ik ∈ C, and

T q
ik = L1(xi,xq, ωk) + L2(xi,xq, ωk), (76)

where

L1(xi,xq, ωk) = (77)
M∑

j=1

h∑
p=-h

γ k
jqG0(xi, ωk,xq)G0(xq, ωk,xj + hp)∆r̃(xj,hp)G0(xj − hp, ωk,xs),

and

L2(xi,xq, ωk) = (78)
M∑

j=1

h∑
p=-h

γ k
jqG0(xi, ωk,xj + hp)∆r̃(xj,hp)G0(xj − hp, ωk,xq)G0(xq, ωk,xs),

with

γ k
jq = F(ωk)

4 ω4
k

m0(xj)3 m0(xq)3
. (79)

In order to simplify notation, we used G0 (and g0) to denote the Green’s function in the
frequency domain (and time domain) computed with a velocity model m0 = b0 + r̃0.
Equation 75 can be rewritten into the matrix form
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∆D̃ =



∆D̃11

∆D̃21
...

∆D̃Nd1
...

∆D̃1N
...

∆D̃NdN


=



T 1
11 · · · T M

11

T 1
21 · · · T M

21
...

...
...

T 1
Nd1 · · · T M

Nd1
...

...
...

T 1
1N · · · T M

1N
...

...
...

T 1
NdN · · · T M

NdN




∆b(x1)
∆b(x2)

...
∆b(xM)

 . (80)

Adjoint of the tomographic operator

The adjoint of the tomographic operator, as defined in Almomin (2013) is a linear
operator that relates a perturbation in the perturbation of the data ∆(∆D) to a
perturbation in the background velocity model ∆b (such that b = b0 + ∆b), while
keeping the other parameters unchanged. It can be represented by

∆b = T∗(b0, r̃) ∆(∆D). (81)

From equation 80, we can easily find the adjoint of the tomographic operator. We
have, ∀q ∈ {1; M},

∆b(xq) =

Nd∑
i=1

N∑
k=1

(T q
ik)∗ ∆D̃ik (82)

=

Nd∑
i=1

N∑
k=1

L ∗
1 (xi,xq, ωk)∆D̃ik + L ∗

2 (xi,xq, ωk)∆D̃ik,

and where ∆b(xq) ∈ R. Moreover,

L ∗
1 (xi,xq, ωk)∆D̃ik = (83)

M∑
j=1

h∑
p=-h

(γ k
jq)

∗G ∗
0 (xj − hp, ωk,xs)∆r̃(xj,hp)G

∗
0 (xq, ωk,xj + hp)G

∗
0 (xq, ωk,xi)∆D̃ik,

and
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L ∗
2 (xi,xq, ωk)∆D̃ik = (84)

M∑
j=1

h∑
p=-h

(γ k
jq)

∗G ∗
0 (xq, ωk,xs)G

∗
0 (xq, ωk,xj − hp)∆r̃(xj,hp)G

∗
0 (xj + hp, ωk,xi)∆D̃ik.

We have obtained an expression for the adjoint of the tomographic operator (equa-
tions 82, 83, and 84), which relates perturbation in the perturbation of the data to
perturbation in the background velocity model, while keeping the reflectivity pertur-
bation unchanged.

Time domain expression of the adjoint of the tomographic operator

To get better insight into the adjoint of the tomographic operator, it is convenient
to express our previous results in the time domain. We start by rearranging the first
term of the right side of equation 82

Nd∑
i=1

N∑
k=1

L ∗
1 (xi,xq, ωk)∆D̃ik =

N∑
k=1

P ∗
scat1

(xq,xs, ωk)Prec1(xq, ωk) (85)

where

• Pscat1(xq,xs, ωk) =
M∑

j=1

h∑
p=-h

Psrc1(xj,hp,xs, ωk)∆r̃(xj,hp)G0(xq, ωk,xj + hp),

• Psrc1(xj,hp,xs, ωk) =
2ω2

k

m0(xj)3
F (ωk)G0(xj − hp, ωk,xs), and

• Prec1(xq, ωk) =
2ω2

k

m0(xq)3

Nd∑
i=1

G ∗
0 (xq, ωk,xi)∆D̃ik.

We can express each wavefield in the time domain by taking the inverse DFT of Pscat1 ,
Psrc1 , and Prec1 . Therefore, we have

pscat1(xq,xs, n) = DFT−1
[
Pscat1(xq,xs, ωk)

]
(86)

=
M∑

j=1

h∑
p=-h

[
psrc1(xj,hp,xs, n)∆r̃(xj,hp)

]
∗ g(xq, n,xj + hp, 0;b0, r̃0),
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psrc1(xj,hp,xs, n) = DFT−1
[
Psrc1(xj,hp,xs, ωk)

]
(87)

= DFT−1
[ 2ω2

k

m0(xj)3
F(ωk)G0(xj − hp, ωk,xs)

]
=

−2

m0(xj)3
f̈(n) ∗ g(xj − hp, n,xs, 0;b0, r̃0),

prec1(xq, n) = DFT−1
[
Prec1(xq, ωk)

]
(88)

= DFT−1
[ Nd∑

i=1

2ω2
k

m0(xq)3
G ∗

0 (xq, ωk,xi)∆D̃ik

]
=

−2

m0(xq)3

Nd∑
i=1

g̈−(xq, n,xi, 0;b0, r̃0) ∗∆d̃(xi, n,xs;b, r̃).

Prec1 is a scaled time convolution between the second time derivative of the anti-
causal Green’s function and the perturbation of the perturbation of the data. It is
the perturbation of the perturbation of the data propagated backward in time.

Finally, using the property derived in equation 121 (appendix), we can show that

Nd∑
i=1

N∑
k=1

L ∗
1 (xi,xq, ωk)∆D̃ik =

[
pscat1 ⊗ prec1

]
(xq,xs, 0;b0, r̃0). (89)

Therefore, the first term of the right side of equation 82 is the zero-lag time cross-
correlation between pscat1 and prec1 . We perform a similar analysis for the second
term of the right side of equation 82

Nd∑
i=1

N∑
k=1

L ∗
2 (xi,xq, ωk)∆D̃ik =

[
psrc2 ⊗ pscat2

]
(xq,xs, 0;b0, r̃0). (90)

Similarly, the second term of equation 82 is the zero-lag time cross-correlation between
psrc2 and pscat2 , which are expressed by

psrc2(xq,xs, n) =
−2

m0(xq)3
f̈(n) ∗ g(xq, n,xs, 0;b0, r̃0), (91)
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pscat2(xq,xs, n) = (92)
M∑

j=1

h∑
p=-h

[
prec2(xj,hp,xi, n)∆r̃(xj,hp)

]
∗ g−(xq, n,xj − hp, 0;b0, r̃0),

and

prec2(xj,hp, n) =
−2

m0(xj)3

Nd∑
i=1

g̈−(xj + hp, n,xi, 0;b0, r̃0) ∗∆d̃(xi, n,xs;b, r̃), (93)

where prec2 corresponds to the perturbation of the perturbation of the data convolved
with a scaled second time derivative of the anti-causal Green’s function. Therefore, we
can now explicitly rewrite equation 82 in the time domain. The background pertur-
bation at any subsurface location xq, generated by a perturbation of the perturbation
in the data is given by

∆b(xq) =
[
pscat1 ⊗ prec1

]
(xq,xs, 0;b0, r̃0) +

[
psrc2 ⊗ pscat2

]
(xq,xs, 0;b0, r̃0). (94)

Physical interpretation of the adjoint of the tomographic operator

In order to get a physical understanding of the adjoint of the tomographic operator,
we limit the study to the zero-subsurface offset case, and we consider the scenario
where we have

• a single source located at a point xs at the surface,

• a single recording point xi (and its recorded data) at the surface,

• a known background background model b0,

• an unknown low wavenumber (i.e., smooth) background velocity anomaly ∆b,
and

• a known reflectivity model r (i.e., an image) obtained by applying (for instance)
the RTM operator using a smooth background model. That is, r = r0 + ∆r,
where r0 = 0.

Throughout this example, we assume that the reflectivity model is given and is con-
sidered a fixed part of the operator. We also assume that the background velocity
anomaly is small (in magnitude) relative to the background background. We wish
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to find the anomaly ∆b that needs to be added to the background background b0

to obtain the correct background model b = b0 + ∆b. The setup of our example is
illustrated in Figure 3, where a smooth background anomaly ∆b is embedded into a
known m0 = b0 + r.

Δr(xj) 

xs xi 

Z 

X 

Δb(xq) 

b0 

background anomaly 

Figure 3: Schematic diagram of the true velocity model used for the experiment.
A smooth and relatively small (in magnitude) background anomaly ∆b (orange) is
embedded into a background velocity model m0, such that m0 = b0 + r. The goal
is to recover the unknown anomaly ∆b by applying the adjoint of the tomographic
operator. [NR]

In order to recover the background velocity anomaly, we first need to compute the in-
put of the adjoint of the tomographic operator. The perturbation in the perturbation
of the data ∆D̃(xi,xs, ωk;b, r) recorded at xi, and due to a seismic source located at
xs, is defined in equation 71 by

∆D̃(xi,xs, ωk;b, r) = D̃(xi,xs, ωk;b, r)− D̃(xi,xs, ωk;b0, r) (95)

= D(xi,xs, ωk;b, r)−D(xi,xs, ωk;b,0)−(
D(xi,xs, ωk;b0, r)−D(xi,xs, ωk;b0,0)

)
.

As mentioned earlier, since we have chosen r0 = 0, the difference D(xi,xs, ωk;b, r)−
D(xi,xs, ωk;b,0) corresponds to the field data recorded at the observation point from
which we have removed the direct arrivals and diving waves. Similarly, the difference
D(xi,xs, ωk;b0, r) − D(xi,xs, ωk;b0,0) corresponds to the computed data with the
background b0 (which does not contain the anomaly) extracted at the observation
point xi, from which we have removed the direct arrivals and refracted waves. As-
suming that we have computed ∆D̃(xi,xs, ωk;b, r), we can now interpret the physical
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meaning of equation 94, starting from the first term of the right side of the equation.
The sequence of schematic diagrams in Figure 4 illustrate the following process. The
source wavefield psrc1 is propagated forward in time from location xs into the sub-
surface, with a known velocity model m0 = b0 + r. In a similar fashion as for the
Born modeling operator, a secondary source is created where the source wavefield
interacts with a non zero reflectivity perturbation in the subsurface location xj. This
secondary source generates a scattered wavefield pscat1 (Figure 4(a)). Along with this
process, the receiver wavefield prec1 generated by the perturbation in the perturbation
of the data ∆D̃(xi,xs, ωk;b, r) at location xi, is propagated backward in time with
the known velocity model m0 = b0 + r (Figure 4(b)). Finally, pscat1 and prec1 are
cross-correlated at zero-time lag at every location xq in the subsurface to obtain a
background velocity perturbation value ∆b(xq) (Figure 4(c)). We can clearly see that
the shape of the anomaly coming from the output of the adjoint of the tomographic
operator does not correspond to the one of the true anomaly. It is more elongated
and less compact.
An analogous interpretation can be done for the second term of the right side of
equation 94. The source wavefield psrc2 is propagated forward in time from loca-
tion xs into the subsurface, with a known velocity model m0 = b0 + r. The re-
ceiver wavefield prec2 generated by the perturbation in the perturbation of the data
∆D̃(xi,xs, ωk;b, r) at location xi, is propagated backward in time with the known
velocity model m0 = b0 + r. When prec2 reaches and interacts with a non zero re-
flectivity perturbation in the subsurface location xj, a scattered wavefield pscat2 (also
propagated backward in time with velocity model m0) is generated. Finally, psrc2 and
pscat2 are cross-correlated at zero-time lag at every location xq in the subsurface to
obtain a background velocity perturbation value ∆b(xq). The physical process asso-
ciated with this second term is analogous to the one for the first term. For clarity
purposes, it is not illustrated in Figure 4.

Wave-Equation Migration Velocity Analysis (WEMVA) oper-
ator

As defined in Almomin (2013), the forward WEMVA operator is an operator that
relates a perturbation in the background velocity model ∆b (such that b = b0 +∆b)
to a perturbation in the perturbation of the reflectivity model ∆(∆r̃), while keeping
other parameters unchanged. It is symbolically expressed by

∆(∆r̃) = W(b0, ∆D)∆b. (96)

Throughout this process, the data perturbation ∆D (expressed in equation 70) is
unchanged, and is considered part of the WEMVA operator. It is analogous to the
tomographic operator, but instead of performing the linearization on the Born mod-
eling operator around a background background b0, it is done directly on the RTM
operator itself.
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xs xi 

psrc1 pscat1 

Z 

X 

t1 

t2 

t3 

t4 

t5 
t6 

t7 
t8 t8 

t9 
t10 

Δr(xj) 

b0 

(a)

xs xi 

prec1 

Z 

X 

t7 

t8 

t6 

t9 

t10 

Δr(xj) 

b0 

(b)

xs xi 

Z 

X 

Δb(xq) 

b0 

Δr(xj) 
background anomaly 

update 

(c)

Figure 4: Sequence of schematic diagrams illustrating the adjoint of the tomographic
operator applied to our example (we only show the effect of the first term in equa-
tion 94). (a) The source wavefield interacts with the reflectivity perturbation, acts
as a secondary source, and generates the scattered wavefield pscat1 . (b) The receiver
wavefield prec1 is generated by the propagation backward in time of the perturbation
of the perturbation in the data. (c) The result of the zero-time lag cross-correlation
between pscat1 and prec1 . [NR]
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Linearization of the RTM operator

In order to derive the WEMVA operator, we start with the expression of the re-
flectivity perturbation obtained previously for the RTM operator. The reflectivity
perturbation model ∆r̃ obtained at all points in the subsurface was computed using
a fixed background b. Therefore, the reflectivity perturbation model ∆r̃ can also be
considered as a function of the background. That is, ∀j ∈ {1; M},∀p ∈ {−h; h},

∆r̃(xj,hp) = ∆r̃(xj,hp;b). (97)

We can now perform a first-order Taylor expansion of the multivariate function ∆r̃
around the background background b0, which gives

∆(∆r̃)(xj,hp;b) = ∆r̃(xj,hp;b)−∆r̃(xj,hp;b0) (98)

≈
M∑

q=1

∂∆r̃

∂bq

(xj,hp;b)

∣∣∣∣
b=b0

∆b(xq).

We previously showed (equation 63) that for any given background model b,

∆r̃(xj,hp;b) = (99)
M∑
i=1

N∑
k=1

2F ∗(ωk) ω2
k

m0(xj)3
G ∗(xi, ωk,xj + hp;b, r̃0)∆D(xi, ωk)G

∗(xj − hp, ωk,xs;b, r̃0).

Now, the term ∆D(xi, ωk) is assumed to be known, fixed, and part of the WEMVA
operator. Hence,

∂∆r̃

∂bq

(xj,hp;xs;b, r̃)

∣∣∣∣
b=b0

=
M∑
i=1

N∑
k=1

∂βW

∂bq

(xi,xj,hp, ωk;b, r̃0)

∣∣∣∣
b=b0

αW (xj, ωk), (100)

where

• αW (xj, ωk) = F ∗(ωk)
2 ω2

k

m0(xj)3
∆D(xi, ωk), and

• βW (xi,xj,hp, ωk;b, r̃0) = G ∗(xi, ωk,xj + hp;b, r̃0)G
∗(xj − hp, ωk,xs;b, r̃0).
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The way to evaluate
∂βW

∂bq

(xi,xj,hp, ωk;b, r̃0)

∣∣∣∣
b=b0

is almost identical to the one done

for the tomographic operator, and equation 99 can be rewritten in the more compact
form

∆(∆r̃)(xj,hp;b) =
M∑

q=1

W q
jp ∆b(xq), (101)

∀j ∈ {1; M},∀p ∈ {−h; h}. Moreover, W q
jp ∈ C and

W q
jp = L3(xj,hp,xq) + L4(xj,hp,xq), (102)

where

L3(xj,hp,xq) = (103)
Nd∑
i=1

N∑
k=1

(γ k
jq)

∗ G ∗
0 (xi, ωk,xq)G

∗
0 (xq, ωk,xj + hp)∆D(xi, ωk)G

∗
0 (xj − hp, ωk,xs),

and

L4(xj,hp,xq) = (104)
Nd∑
i=1

N∑
k=1

(γ k
jq)

∗ G ∗
0 (xi, ωk,xj + hp)∆D(xi, ωk)G

∗
0 (xj − hp, ωk,xq)G

∗
0 (xq, ωk,xs),

with

γ k
jq = F(ωk)

4 ω 4
k

m0(xj)3 m0(xq)3
. (105)

In order to simplify notations, we use G0 and g0 to denote the Green’s functions (in
the frequency and in the time domain, respectively), computed using a velocity model
m0 = b0 + r̃0. Equation 96 can be rewritten into the matrix form
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∆(∆r̃) =



∆(∆r̃)(x1,h1;b)
∆(∆r̃)(x1,h2;b)

...
∆(∆r̃)(x1,hNh

;b)
...

∆(∆r̃)(xM ,h1;b)
...

∆(∆r̃)(xM ,hNh
;b)


=



W 1
11 · · · W M

11

W 1
12 · · · W M

12
...

...
...

W 1
1Nh

· · · W M
1Nh

...
...

...
W 1

M1 · · · W M
M1

...
...

...
W 1

MNh
· · · W M

MNh




∆b(x1)
∆b(x2)

...
∆b(xM)

 , (106)

which gives us the expression for the forward WEMVA operator.

Adjoint of the WEMVA operator

The adjoint of the WEMVA operator is a linear operator that relates a perturbation in
the perturbation of the reflectivity model ∆(∆r̃) to a perturbation in the background
velocity model ∆b, while keeping other parameters unchanged (Almomin, 2013).
Symbolically, it is expressed by

∆b = W∗(b0, ∆D) ∆(∆r̃). (107)

Equation 101 is easily adjointable, and we have ∀q ∈ {1; M},

∆b(xq) =
M∑
j=1

h∑
p=-h

(W q
jp)

∗∆(∆r̃)(xj,hp;b) (108)

=
M∑
j=1

h∑
p=-h

(
L ∗

3 (xj,hp,xq) + L ∗
4 (xj,hp,xq)

)
∆(∆r̃)(xj,hp;b),

where ∆b(xq) ∈ R, and

L ∗
3 (xj,hp,xq) = (109)

Nd∑
i=1

N∑
k=1

γ k
jq G0(xj − hp, ωk,xs)G0(xq, ωk,xj + hp)G0(xq, ωk,xi)∆D ∗(xi, ωk),

and
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L ∗
4 (xj,hp,xq) = (110)

Nd∑
i=1

N∑
k=1

γ k
jq G0(xq, ωk,xs)G0(xq, ωk,xj − hp)G0(xj + hp, ωk,xi)∆D ∗(xi, ωk).

We have derived the adjoint of the WEMVA operator (equations 108, 109, and 110),
which relates perturbation in the perturbation of the reflectivity ∆(∆r̃) to perturba-
tion in the background velocity model ∆b, while keeping the data perturbation ∆D
unchanged.

Time domain expression of the adjoint of the WEMVA operator

By following a similar approach as the one done for the adjoint of the tomographic
operator, we obtain the time domain expression for the background model perturba-
tion

∆b(xq) =
[
pscat3 ⊗ prec3

]
(xq,xs, 0;b0, r̃0) +

[
psrc4 ⊗ pscat4

]
(xq,xs, 0;b0, r̃0), (111)

where

pscat3(xq,xs, n) = (112)
M∑

j=1

h∑
p=-h

[
psrc3(xj,hp,xi, n)∆(∆r̃)(xj,hp;b)

]
∗ g(xq, n,xj + hp, 0;b0, r̃0),

psrc3(xj,hp, n) =
−2

m0(xj)3
f̈(n) ∗ g(xj − hp, n,xs, 0;b0, r̃0), (113)

prec3(xq,xs, n) =
−2

m0(xq)3

Nd∑
i=1

g̈−(xq, n,xi, 0;b0, r̃0) ∗∆d(xi,xs, n;b, r̃), (114)

and

psrc4(xq,xs, n) =
−2

m0(xq)3
f̈(n) ∗ g(xq, n,xs, 0;b0, r̃0) (115)
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pscat4(xq,xs, n) = (116)
M∑

j=1

h∑
p=-h

[
prec4(xj,hp,xi, n)∆(∆r̃)(xj,hp;b)

]
∗ g−(xq, n,xj − hp, 0;b0, r̃0),

and

prec4(xj,hp, n) =

−2

m0(xj)3

Nd∑
i=1

g̈−(xj + hp, n,xi, 0;b0, r̃0) ∗∆d(xi,xs, n;b, r̃). (117)

We have derived the time domain expression of the adjoint of the WEMVA opera-
tor (equation 111). It relates a perturbation of the perturbation of the reflectivity
model ∆(∆r) (which can also be interpreted as a perturbation of the image) to a
perturbation of the background velocity model ∆b.

Physical interpretation of the adjoint of the WEMVA operator

In order to get a physical understanding of the mechanism of the adjoint of the
WEMVA operator, we consider a similar scenario as for the tomographic operator
where we have

• a single source located at a point xs at the surface

• a single recording location xi (and its recorded data) at the surface

• a known background background model b0

• an unknown low wavenumber velocity anomaly ∆b that we would like to recover

Throughout this example, we define the data perturbation ∆D(xi,xs, ωk;b, r) as the
field data recorded at observation point xi, from which we have removed the direct
arrivals and diving waves. We will assume ∆D(xi,xs, ωk;b, r) to be known and un-
changed throughout this example. We wish to find the perturbation ∆b that needs to
be added to the background background b0 in order to obtain the correct background
model b = b0 + ∆b. Except for the reflectivity model, the setup of our experiment
is identical to the previous example (Figure 3).
In order to recover the background velocity anomaly, we first need to compute the
input of the adjoint of the WEMVA operator, which is the perturbation in the per-
turbation of the reflectivity, ∆(∆r̃). In this example, we assume that we have already
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computed a reflectivity perturbation model ∆r̃, but using the incorrect background
velocity model b0. Once ∆r̃ has been obtained, there are many options to compute
∆(∆r̃). We will not discuss these methods in this analysis and we assume that we
have already computed ∆(∆r̃). As equations 94 and 111 indicate, the mechanism to
obtain the perturbation of the background model is almost identical to the one for
the adjoint of the tomographic operator. There are, however, a few variations:

• ∆r̃ used to be part of the tomographic operator (and kept unchanged through-
out the process), and is now replaced by ∆(∆r̃),

• ∆(∆r̃) is now the “input” of the adjoint of the WEMVA operator, and

• ∆D̃ is replaced by ∆D, and is now part of the WEMVA operator, and kept
unchanged during the process.

After taking into account those variations, the rest of the process to compute the
update in the background velocity model is identical to the one for the adjoint of the
tomographic operator, and we refer the reader to the previous section (Figure 4).

SUMMARY

We presented a detailed derivation for the Born, RTM, tomographic, and WEMVA
operators by using a Born approximation and multivariate first-order Taylor expan-
sions. We provided an expression of their forward and adjoint (both in the time and
in the frequency domain), as well as a physical interpretation of their mechanism.
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APPENDIX

Cross-correlation at zero time lag

We remind the reader a useful equation that relates the cross-correlation at zero-time
lag of two time signals to their DFT.

• Let f and g be two discrete real time signals. We assume ∃N ∈ N such that
n 6∈ {0; N − 1} ⇒ f(n) = g(n) = 0.
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• Let h be the time cross-correlation function between f and g. That is, h = f⊗g.

• Let F, G, and H be their respective DFT.

Therefore, ∀n ∈ {0; N − 1}, ∀k ∈ {0; N − 1}:

h(n) = [f ⊗ g](n) ⇒ H(ωk) = F (ωk)
∗G(ωk) = F (ωk)G(ωk)

∗. (118)

The definition of the time cross-correlation h between f and g in the time domain is

h(n) =
N−1∑
k=0

f(k + n) g(k) =
N−1∑
k=0

f(k) g(k + n). (119)

It is also the inverse DFT of the cross-correlation H expressed in the frequency domain,

h(n) = DFT−1[H(ωk)](n) =
1√
N

N−1∑
k=0

H(ωk) ei2π k n
N (120)

=
1√
N

N−1∑
k=0

F(ωk)
∗G(ωk)e

i2π k n
N

=
1√
N

N−1∑
k=0

F(ωk)G(ωk)
∗ei2π k n

N .

Therefore, taking the cross-correlation at zero time-lag corresponds to evaluating h
at n = 0, which gives us

[f ⊗ g](0) =
1√
N

N−1∑
k=0

F(ωk)
∗G(ωk) =

1√
N

N−1∑
k=0

F(ωk)G(ωk)
∗ =

N−1∑
k=0

f(k) g(k). (121)
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