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ABSTRACT

Level set methods can provide a sharp interpretation of the salt body by defining
the boundary as an isocontour of a higher dimensional implicit representation,
and then evolving that surface to minimize the Full Waveform Inversion (FWI)
objective function. We can take advantage of the fact that the implicit surface
update gradient is based on the tomographic update gradient, and utilize it to
update the background velocity concurrently with the salt boundary. Using this
approach on synthetic examples, we can achieve reasonable convergence both in
terms of the residual L2 norm, as well as the evolution of the salt boundary and
background velocity towards the true model.

INTRODUCTION

Oil producing regions like the Gulf of Mexico and offshore western Africa are known
to have geologically complex salt body formations which can cause difficulties in
producing seismic imagery. The velocity of these salt bodies contrasts sharply with
that of the background sediment layers. An inaccurate interpretation of the salt
boundaries can cause significant errors in the velocity estimation process, because
the formations themselves can act as lenses which focus or disperse seismic energy,
influencing tomography. This can subsequently impact the imaging results that rely
on accurate velocity models. Salt bodies can act as seals trapping hydrocarbons
underneath, which are often the targets of such imaging projects. For this reason
the interpretation of salt body boundaries can also impact drilling and production
activities.

Review

Tomographic approaches to interpreting salt bodies can be less than effective, be-
cause the results tend to be too smooth to provide significantly accurate placement
of the salt boundaries. Manual and semi-automatic picking of salt boundaries is a
common approach to interpreting the desired sharp delineations, but these methods
can be time-consuming and tedious since expert input is necessary for either the ac-
tual picking, or the oversight and correction. Furthermore, once a model has been
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produced, it must be used to generate an image, and then be refined as necessary. A
robust method for further automating the salt interpretation procedure would greatly
alleviate this bottleneck.

Some previous approaches to performing salt body segmentation use a shape op-
timization approach for identifying salt body boundaries (Guo and de Hoop (2013),
Lewis et al. (2012)). The boundaries of a salt body can be represented as the zero-
isocontour of a higher dimensional surface (for example, a 2D boundary as a contour of
a 3D surface). A gradient can be derived to evolve this shape / isosurface according to
the FWI objective function. Unlike the smooth boundaries produced by tomographic
approaches, the isocontour resulting from the shape optimization provides a sharp
boundary, which is a more appropriate way to classify most salt-sediment interfaces.
Guo and de Hoop (2013) utilize this approach using a frequency domain forward wave
operator to evolve a salt boundary and velocity model. However, their approach al-
ternates between updating the background velocity and salt body boundary, which
effectively requires twice as many iterations as performing both updates concurrently.

Proposed solution

We propose using a shape optimization approach, with the use of time domain for-
ward wave-propagation. By using time domain forward wave-propagation, we take
advantage of using a continuous range of frequencies (rather than discrete frequen-
cies) in each iteration, which allows for sharper delineation of the boundary. Further,
we take advantage of the fact that our boundary update gradient is based on the
tomographic update gradient, and make updates to both concurrently with the use
of scaling parameters. In theory, this approach has the potential to be more efficient
than an alternating update approach.

Agenda

In this paper we will begin by discussing the fundamentals of the level set method
and its key properties, followed by the derivation of the boundary update gradient.
Afterwards, we will demonstrate the application of the boundary-tomography update
method on a simple test model. Last, we will discuss the assumptions, limitations,
and advantages of the method, as well as future directions for this research.

MATHEMATICAL CONCEPTS

We begin with a brief overview of the level set method and how we apply the evolution
scheme it utilizes. The derivation for the shape optimization implementation follows.
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Level set fundamentals

In our problem, we are trying to determine the boundary of a two dimensional body.
Instead of using an algorithm that operates in this 2D plane directly, we use the level
set algorithm which evolves a 3D implicit surface, φ. While our algorithm acts directly
on this surface instead of the boundary, our solution for the 2D boundary is simply
represented by a contour “slice” of this implicit surface where φ = 0, as described in
Osher and Sethian (1988) and Burger (2003). While it may seem counterintuitive to
add extra dimensionality to our problem, by doing so we gain some advantages. These
include the ability to merge and separate bodies as the level set evolution proceeds,
as well as the ability to handle sharp corners and cusps in the lower-dimensional (2D)
plane that the boundary exists on.

mext =Vbackground

Ω

δΩ

δΩ

mint =Vsalt Γτ

Γτ+1

SALT	
  

BACKGROUND	
  
MEDIUM	
  

Figure 1: Diagram of domain partitioning. The full inclusive domain is Θ. [NR]

Based on this concept, we define a spatial domain Θ ⊂ R2, a (salt) body Ω ⊂ Θ,
and the salt body boundary Γ such that:

Ω = {x | φ(x, τ) > 0}, Γ = {x | φ(x, τ) = 0}

where τ indicates the axis along which the evolution steps progress (τ = 0 is the
initial iteration). As such, for a single step along τ , our salt body Ω evolves to Ω

′
.

We define a point along the boundary curve to be:
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xΓ = {x ∈ Γ}.

With this definition of the boundary points, the level set of φ that represents the salt
body boundary can be described as:

φ(xΓ, τ) = 0.

By taking the derivative of this equation, the chain rule gives us

∂φ

∂τ
+

∂φ

∂xΓ

∂xΓ

∂τ
= 0. (1)

This equation can be readily rewritten as:

∂φ

∂τ
+ ~∇φ · ~v(xΓ, τ) = 0. (2)

We can use ~∇φ defined over all the full domain of x (rather than just xΓ) since
~∇φ · ~v(xΓ, τ) is a dot product, and only the terms where x ∈ Γ will contribute to
the overall dot product result. This “velocity” term in equation 2 can be defined as
having both a “speed” and a normal vector component, ~v(xΓ, τ) = V (xΓ, τ)~n(xΓ, τ).
In complete form there is also a tangential component, but we ignore this part since
it doesn’t contribute to a change in the surface φ.

We know the normal vector is defined as

~n(xΓ, τ) =
~∇φ(xΓ,τ)

|~∇φ(xΓ,τ)|
,

which allows us to restate equation 2 in a more familiar representation:

∂φ

∂τ
= −V (xΓ, τ) |∇φ| . (3)

The scalar speed term V (xΓ, τ) describes the magnitude of the variation of φ that
is normal to the boundary Γ. It determines the evolution of the implicit surface, and
ultimately the boundary implied by it. The following section describes the derivation
of this normal velocity such that the FWI objective function is minimized.
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Derivation of the evolution equation

Calculus of variations

To begin, we derive the shape derivative using a formal calculus of variations ap-
proach, following the derivation structure outlined in Santosa (1996). The objective
is to define the variation of the model m with respect to the variation in the implicit
surface, φ. The variation in m will only occur between the boundaries of Ωτ and
Ωτ+1. We define this region Ωτ ∩ Ωτ+1 as ∂Ω.

Let us consider the model parameter variation m+ δm, where the model is binary
(m = mint = Vsalt or m = mext = Vback). In the case where the normal vector points
outwards from the salt body at a point xΓ, then an advance of δxΓ will change the
value of m(xΓ + δxΓ) from mext to mint (see figure 2). Therefore, δm at these points
can be shown as δm(xΓ + δxΓ) = mint −mext.

mext

Ф(x,τ) = 0; Гτ

mint

XГ

δxГ

Ф(x,τ) > 0; Ωτ

δs(x)

Ф(x,τ+1) = 0; Гτ+1Ф(x,τ+1) > 0; Ωτ+1

Figure 2: The geometry of the curve {xΓ : φ = 0} for a variation δφ(x) along the
evolution axis τ . [NR]

Consider an inner product of δm with a test function f(x). Formally, this can be
written as,

〈δm, f(x)〉 =

∫
R2

δm(x)f(x)dx =

∫
∂Ω

δm(x)f(x)dx. (4)

Since the δm(x) term equals zero in R2 \∂Ω, it doesn’t contribute to the overall inner
product when integrating over that domain. For this reason we can justify ignoring
this domain region, and only integrate over ∂Ω where δm(x) is non-zero. We know
that δm(x) will be ±(mint −mext), depending on the relative values of mint and mext

or the direction of the normal vector ~n. We only care about the component of δxΓ

that occurs in the normal direction, since a tangential variation of xΓ doesn’t affect
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m or φ. Furthermore, since δxΓ is infinitesimal, we can replace dx with ~δxΓ · ~n and
simplify equation 4 into

〈δm, f(x)〉 =

∫
∂Ω

(mint −mext) ~δxΓ · ~nf(x)ds(x), (5)

where ds(x) is the incremental arc length along the boundary Γ. We can think of
~δxΓ · ~nds(x) as roughly the incremental area over which m varies at x.

We can identify δm from this equation 5. It can be considered a measure over ∂Ω:

δm = (mint −mext) ~δxΓ · ~n |x∈∂Ω . (6)

We will use δm in the shape derivative formulation that we derive next.

Shape derivative formulation

The objective function that we wish to minimize is the full-waveform inversion least-
squares objective function:

F (m)
.
=

1

2
‖A(m)− d‖2

2. (7)

In order to minimize this function with each step along τ , we need to derive a solution
such that ∂F

∂τ
< 0. ∂F

∂τ
can be naturally decomposed using derivatives:

∂F

∂τ
=

∂F

∂m

∂m

∂τ
(8)

∂F

∂τ
4 τ =

∂F

∂m

∂m

∂τ
4 τ (9)

δF (m) =
∂F

∂m
δm. (10)

We can make use of the inner-product operator to re-write equation 10 and determine
the objective function derivative (δF (m)) in the direction of δm:

δF (m) =

〈
∂F

∂m
, δm

〉
. (11)

In the following section we will show how the solution to ∂F
∂m

is derived using the
adjoint state method.
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We remember that in the previous section we stated the goal of this derivation
as being a solution of the scalar velocity function V (xΓ, τ), such that the objective
function is minimized. We recognize that the normal component of the variation δxΓ

satisfies:

~δxΓ · ~n = V (xΓ, τ). (12)

As a result, we can substitute equation 12 into equation 6 from earlier and get

δm = (mint −mext)V (x, τ) |x∈∂Ω . (13)

Further, we can use the result in equation 13 and apply it to the integral form of the
inner product described in equation 11:

δF (m) =

∫
∂Ω

∂F

∂m
(mint −mext)V (x, τ)ds(x). (14)

In the previous section, f(x) was used as a test function in the inner product
example. In this instance, V (xΓ, τ) can be considered the test function that we are
trying to solve for, such that equation 14 is true. Since δF (m) must be negative in
order to minimize the objective function described in equation 7, we choose V (xΓ, τ)
such that it is:

V (x, τ) |x∈∂Ω = −(mint −mext)
∂F

∂m
|x∈∂Ω . (15)

We keep in mind that any V (x, τ) that satisfies equation 15 will produce a δφ that
reduces F (m), and as a result we choose the same equation defined over a larger
space,

V (x, τ) |x∈Θ = −(mint −mext)
∂F

∂m
|x∈Θ . (16)

where Θ is the entire domain of x. This can be justified since ∂Ω is a subset of Θ,
so the inner product result will not change. We can combine this result into our
formulation of the level set update equation from earlier (equation 3) to get a final
derivation of the levelset evolution equation:

∂φ

∂τ
= (mint −mext)

∂F

∂m

∣∣∣~∇φ
∣∣∣ . (17)

In the following section we describe how the adjoint state method is used to derive
∂F
∂m

, which can be shown to be equivalent to J(m)T (A(m) − d). Since our case uses
the FWI objective function (equation 7), this term can be interpreted as least squares
migration, more specifically as reverse time migration.
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Least squares migration term from adjoint state method

The adjoint state method is an approach that allows us to find the derivative of a
functional that is subject to constraining equations without having to compute the
(computationally expensive) Fréchet derivative term. In our case, the functional is
the FWI objective function (based on data space misfit):

J(m) = 1
2
‖P (S(m))f − df‖2

L2(Σ) .

Here, T is the recording time, Ss,r is the restriction operator onto the receiver posi-
tions (which depends on spatial coordinates). The model parameter is the squared
slowness, m = σ2. Our constraining equations are the forward time-domain wave
propagation boundary condition equations,



(
m(x)

∂2

∂t2
−∆

)
as = fs if x = Θ \ Ω̄(

m(x)
∂2

∂t2
−∆

)
as = 0 if x = Ω

∂as

∂x
= 0 if t = 0

as = 0 if t = 0

The solution to this set of equations is the forward propagated wavefield, a. The
solution of a also solves the following variational equation, which we use as our con-
straining equation, substituting for the set of equations above:

b(Ω; a, w)− s(w) = 0

where

b(Ω; a, w) =

∫
Θ\Ω̄

∫ T

0

(∇a ·∇w−m(x)
∂2a

∂2t
w̄)dtdx+

∫
Ω

∫ T

0

(∇a ·∇w−m(x)
∂2a

∂2t
w̄)dtdx

(18)

and

s(w) =

∫
Θ\D̄

∫ T

0

fw̄dtdx. (19)

The first step in the adjoint state method is to create an augmented Lagrangian
functional that combines both the objective and constraining functions. We build
this functional using the Lagrange multiplier w:

L(Ωτ ; a, w) = 1
2
‖P (a− df )‖2

L2(Σ) + b(Ωτ ; a, w)− s(w) .
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If a = uτ is the solution to variational (constraining) equation 18, then:

L(Ωτ ; uτ , w) = 1
2
‖P (uτ − df )‖2

L2(Σ) .

Taking the derivative of this augmented Lagrangian functional gives us:

∂

∂τ
L(Ωτ ; uτ , w)

∣∣∣∣
τ=0

=

∫
Σ

(P ∗P (S(Ωτ )f − df )
∂

∂τ
S(Ωτ )f

∣∣∣∣
τ=0

dσ

+ b(Ω;
∂

∂τ
S(Ωτ )f

∣∣∣∣
τ=0

, w)

+
∂

∂τ
b(Ωτ ; uτ , w)

∣∣∣∣
τ=0

.

(20)

If w solves:

b(Ωτ ; a, w) = −
∫

Σ

(P ∗P (S(Ωτ )f − df )adσ (21)

then equation 20 simplifies to:

∂

∂τ
L(Ωτ ; uτ , w)

∣∣∣∣
τ=0

=
∂

∂τ
b(Ωτ ; uτ , w)

∣∣∣∣
τ=0

. (22)

We can write equation 21 in the form of a direct problem, where w̄ is the adjoint state,

b(Ωτ ; w̄, uτ ) =
∫

Σ
(P ∗P (S(Ωτ )f − df )ūτdσ

and w̄ is subsequently the solution to:


(m(x) ∂2

∂t2
−∆)ws = (P ∗P (S(Ωτ )f − df )δΣ if x = Θ \ Ω̄

(m(x) ∂2

∂t2
−∆)ws = 0 if x = Ω

∂ws

∂x
= 0 if t = T

ws = 0 if t = T

(23)

We can perform a change of variables such that h(t) = w(T − t). This transformation
changes our adjoint state system of equations to read:
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
(m(x) ∂2

∂t2
−∆)hs = (P ∗P (S(Ωτ )f − df )δΣ if x = Θ \ Ω̄

(m(x) ∂2

∂t2
−∆)hs = 0 if x = Ω

∂hs

∂x
= 0 if t = 0

hs = 0 if t = 0

(24)

This makes hs the reverse time propagation of the residual wavefield at shot s. We
complete the derivative described in equation 22, which simplifies to the following:

∂J(m) = −
∑

s

∫ T

0

∫
x∈Γ

hs(x, t)
∂2us(x, t)

∂t2
dσdt. (25)

RESULTS

My demonstration of the shape optimization algorithm was performed on a 2D model,
with the implicit surface evolved being a 3D surface. For the forward wave propaga-
tion, a wavelet with a 15.0 Hz central frequency was propagated using a time domain
forward operator, so that continuous frequency information would be forward modeled
in a single iteration.

Shape optimization evolution

We begin with an initial background velocity, and a signed distance function as the
initial implicit surface φ. Since we assume a constant salt velocity, we use both of
these inputs to create a full initial-guess velocity model (mo). Using this mo, we
forward model to get our dsyn which we use to get a residual. The residual is used to
calculate both a tomographic and a boundary update gradient, as described in the
derivation section previously. We then perform adjoint operations on these gradients
so that we can do a linear plane search (in residual space) for the scaling parameters,
that we then rescale for use in the forward Euler scheme that updates the implicit
surface (φ) and the background velocity Vback:

φj+1 = φj + β
∂φ

∂j
(26)

V j+1
back = V j

back + α
∂Vback

∂j
. (27)

where β and α are the step sizes and j is the current iteration point. As the implicit
surface is evolved, it is important to maintain stability of the evolution. One relevant
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aspect of maintaining stability is keeping the implicit surface update step size (β)
small enough to satisfy the Courant-Friedrich’s-Levy (CFL) condition, which is stated
by Chaudhury and Ramakrishnan (2007) (when applied to level set evolution) as
being:

Gmax · β ≤ min(hx, hy) (28)

where hx and hy are the grid spacing in the x and y directions, and Gmax is the
maximum value of the update gradient. While later we describe how a plane search
is used to determine the scaling parameters α and β, my program adjusts these scaling
parameters (while maintaining their ratio) when necessary to satisfy the constraint
in equation 28 when β is higher than the limit.

Implicit 
surface PHI

Background 
velocity

Full velocity 
model

Tomography gradient

PHI gradient

Wavefield 
modeling

Gradient 
Imaging

Data space 
residual

Salt masking 
& smoothing

Scaling 
parameters 
(ALPHA and 

BETA

Update PHI 
& 

background 
velocity

Figure 3: The work flow used for shape optimization. [NR]

One additional measure taken to ensure that the evolution is stable is the use
of a regularization term that is scaled and added to the boundary gradient before
each update is applied. In this case, a distance regularization term was used which
drives the shape of the implicit surface towards that of a signed-distance function.
When irregularities begin to occur in the implicit surface during level set evolution,
numerical errors start to occur which can lead to instability. By driving the gradient
of the implicit surface to equal one, we minimize irregularities and are able to continue
evolution without having to reinitialize a signed-distance function to the salt boundary
contour. An excellent reference on this type of regularization is the paper by Li et al.
(2010) regarding the implementation of distance regularized level set evolution.

We apply our algorithm on a simple velocity model, using an acquisition geometry
of 17 shots spaced 80 [m] apart, and 65 receivers spaced 20 [m] apart. In the example
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shown in Fig. 4, the initial and true background velocity models matched. A bottom
reflector and positive velocity gradient was used to help provide better illumination
along the bottom and flanks of the circular salt body, which had a velocity of 4500
[m/s]. As hoped for, even while background velocity updates were applied each itera-
tion as described, the final model resulted in virtually zero change to the background
model. This is due to the scaling parameter search correctly weighting the α parame-
ter such that successive updates would cancel each other out. More importantly, the
boundary of the salt body expanded during evolution to very closely match the true
salt body boundary.

Figure 4: Initial velocity model (left) and final velocity model after 50 iterations
(right). True model boundary indicated (solid line); Initial boundary guess (dashed
line). [CR]

DISCUSSION

No realistic scenario uses a binary velocity model, and any salt interpretation also
relies on an accurate determination of the background velocity. Guo and de Hoop
(2013) describe an approach to performing general tomographic updates by using an
alternating method of updating the background velocity and the salt body boundary.
These steps alternate between freezing the background velocity and making a salt
boundary update, and then freezing the salt body boundary, smoothing the entire
velocity model, and then calculating an update gradient based on this. The smoothing
mitigates any reflectivity caused by sharp velocity transitions. While this approach
can be effective, it is also slow.
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Figure 5: Objective function for evolution shown in Fig. 4 [CR]

Scaling parameter optimization

As shown previously, the salt boundary gradient is based on the adjoint of the
linearized-Born operator, which is the tomographic update gradient. Since the gradi-
ent for both a tomographic and boundary update are calculated in each step regard-
less, we attempt to take advantage of this by finding scaling parameters to apply to
these gradient updates such that we minimize the residual space objective function:

∥∥GT
tomoα + GT

φβ − (dcalc − dobs)
∥∥ . (29)

where GT
tomo and GT

φ are the update gradients for the background velocity and implicit
surface φ respectively.

Minimizing this objective function gives us parameters that are scaled to the
residual space, not the gradient space where they are actually applied. Since the
adjoint operator that we use creates a scaling difference between the residual and
gradient (data and model) spaces, we must rescale α and β once they are found so
that they can be effectively applied to the gradients.

Two approaches can be used for this. The first is to fix the β parameter such
that it is set to the maximum step size allowed by the stability conditions, and then
rescale α while maintaining the ratio between them. This can be effective, but the
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(general) decrease in the objective function is not very smooth, since the assumption
of the maximum stable step size as being the most optimal choice for β is not always
true. The second approach is to rescale α and β according to a γ parameter which is
found using a non-linear line search. This technique is much cheaper than performing
a full non-linear search for α and β, but allows for β to be variable (unlike the first
approach).

One thing to note when observing the trend in Fig. 5 is that the objective func-
tion does not decrease monotonically. This may be due to the applied gradient not
being positive-definite, which is possible considering the summation of the bound-
ary gradient with a regularization term before application. We expect the objective
function to not monotonically decrease as long as a tomographic update and a bound-
ary update are applied together. This is because both gradients intrinsically contain
unseparated tomographic and boundary information. When they are applied in the
non-linear scheme that we use, this unseparated information can effectively be ap-
plied redundantly, causing an update that is not guaranteed to have a lower residual.
For example, the tomographic gradient is applied incompletely, since any inter-salt
velocity update is ignored (because we assume a constant salt velocity in this work
flow). In this case, the tomographic gradient update and the actual final update may
conflict in areas within the salt boundary. For this reason, we are not surprised by
the non-monotonic decrease that we observe.

Tomographic gradient masking

In this work we assume a constant velocity throughout the salt bodies we model.
Because of this, there is no application of the tomographic gradient update in the
regions where salt exists. If we calculate GT

tomo without first masking out Gtomo in
areas overlapped by salt regions, then we introduce bias into the objective function
(equation 29), since it will optimize for an update that will not be entirely applied.

We further assume that the salt boundary change will not undergo significant
shifts. With this in mind, we apply the masking based on the salt body delineation
that was created from the last iteration. Another approach would be to dynamically
update the salt boundary based on the scaling parameter β, as β is being solved
for. While theoretically producing a more accurate update, this method is also far
more expensive, since numerous applications of the forward linearized-Born operator
are necessary. For this reason we make the approximation of masking based on the
previous iteration of the salt boundary.

Tomographic gradient smoothing

When the masking is performed and the salt boundary shrinks, then an area of the
background velocity is exposed which contains a sharp boundary between the newly
“exposed” region and the region that was previously exposed and updated. This can
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create false (albeit weak) reflectors around the edge of the salt, causing errors as the
evolution of the salt boundary continues. For this reason, immediately after masking
is performed on the tomographic gradient, it passes through a smoothing operator
which removes these sharp discontinuities in the velocity update.

FUTURE WORK

One aspect that is currently in development is a demonstration of the tomographic
update being applied to a case where there is a velocity discrepancy between the initial
guess and the true background model. In this work, we successfully demonstrate the
tomographic update on the null-case (where the true model and initial background
velocity models match), but this example is not realistic. Additionally, there are a
few areas where the method described can be improved including:

• Extending the algorithm to perform evolutions on 4D surfaces in order to achieve
segmentation on 3D isocontours

• Integrating stopping / freezing criteria into the algorithm structure such that
convergence can occur

• Integrating expert knowledge into the initialization and evolution of the implicit
surface.

3D model extension

The shape optimization algorithm that I use is based on level set theory that is
easily extended to application on 3D models. The theoretical difference is simply an
evolution of a 4D implicit isosurface, with the zero-level isocontour being the (3D
surface) boundary of interest. This task requires a reorganization of the code base
more than a rethinking of the theory that the algorithm is based on.

Convergence criteria

As it stands, no implementation of a stopping criteria is used in the algorithm de-
scribed. In theory, when the residual is equal to zero, there should be no update
expressed in the gradients that are calculated. On this basis, the algorithm should
eventually reach convergence, assuming that the objective function decreases mono-
tonically. In reality, the objective function is very non-linear, and the linear approx-
imations used to evolve the model play a role in causing the objective function to
vacillate. A decrease in the value of the objective function may indicate an update to
a more accurate model overall, but is not useful for determining local accuracy; some
regions may locally converge, but will continue to be updated since the gradient is
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applied in equal weight (spatially) across the model space. A method to address this
issue is based on freezing the model locally when it has met a convergence criteria.
One approach is a “cooling” method, where the spatial weighting of points on the
implicit surface is reduced as points remain defined as inside / outside the salt body
for an increasing number of iterations. Eventually, all the weights are equal to zero,
halting the updates. Another similar approach is based on measuring the length of
the zero-contour boundary and stopping the iterations when its variability decreases
below a threshold (Chaudhury and Ramakrishnan (2007)). Incorporating a method
like one of these into the algorithm may result in more robust convergence.

Expert knowledge integration

While the semi-automated aspects of shape optimization can be very useful in gen-
erating models that fit our recorded data, there can be significant advantages to
incorporating expert knowledge into the work flow such that the space of solutions
is further constrained, allowing convergence to be reached more quickly. The shape
optimization work flow described takes advantage of this at the initialization stage,
where a salt boundary must be chosen. One possible way to extend the inclusion of
expert input into the work flow is by allowing the user to not only set an initial guess,
but also supply a confidence map of the boundary that is chosen. The sensitivity
of the boundary to modification by the evolution update can be theoretically set by
correlating the initial gradient of the implicit surface to the confidence of the initial
boundary that was supplied. In areas where the gradient of the implicit surface is
steep, the zero-level set crossing is less sensitive to updates as evolution progresses.
One difficulty towards implementing this will be maintaining a regular implicit surface
(such that numerical stability can be achieved) while still allowing for the gradient
to vary based on confidence of the boundary.

CONCLUSION

In this work we described the derivation of the level set method as applied to the
minimization of the FWI objective function. We demonstrated the application of this
evolution algorithm and its incorporation with a background velocity tomographic
update on a simple model. We consider the limitations of this approach in regards
to numerical stability, as well as the assumptions of linearity that we use to find our
scaling parameters. Last, we consider the possible pathways of future development of
this approach, including the extension to three dimensions, convergence criteria, and
especially the inclusion of expert input into the work flow.

SEP–152



Dahlke et al. 17 Shape optimization for segmentation

ACKNOWLEDGEMENTS

I would like to thank Adam Halpert, Ali Almomin, Musa Maharramov, Sjoerd de Rid-
der, and Stew Levin for their insight into this work. Further, I thank the SEP sponsors
for their generous financial support of this research work.

REFERENCES

Burger, M., 2003, A framework for the construction of level set methods for shape
optimization and reconstruction: Interfaces and Free boundaries, 5, 301–330.

Chaudhury, K. N. and K. R. Ramakrishnan, 2007, Stability and convergence of the
level set method in computer vision: Pattern Recogn. Lett., 28, 884–893.

Guo, Z. and M. de Hoop, 2013, Shape optimization and level set method in full wave-
form inversion with 3d body reconstruction: SEG Technical Program Expanded
Abstracts, 1079–1083.

Lewis, W., B. Starr, D. Vigh, et al., 2012, A level set approach to salt geometry
inversion in full-waveform inversion: Presented at the 2012 SEG Annual Meeting.

Li, C., C. Xu, C. Gui, and M. Fox, 2010, Distance regularized level set evolution and
its application to image segmentation: Image Processing, IEEE Transactions on,
19, 3243–3254.

Osher, S. and J. A. Sethian, 1988, Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations: Journal of computational
physics, 79, 12–49.

Santosa, F., 1996, A level-set approach for inverse problems involving obstacles:
ESAIM Controle Optim. Calc. Var, 1, 17–33.

SEP–152


