CESLib: An object library for building scalable
inversion applications

Musa Maharramov

ABSTRACT

Application of various inversion techniques to practical problems depends on
our ability to quickly adapt existing algorithms to different optimization meth-
ods, model and data spaces, operators and discretization schemes. This pa-
per discusses a new object-oriented Fortran library for computational earth sci-
ences (CESLib). I outline scalable model-space and operator hierarchies and an
optimization abstraction mechanism that are implemented in the library, and
demonstrate a specific application to joint time-lapse inversion. In particular, I
demonstrate how using the implemented object framework reduced the amount
of time and effort in converting a single-model full-waveform inversion applica-
tion into a simultaneous inversion package without affecting low-level code for
computationally-intensive processing.

INTRODUCTION

While often the least visible part of a research, development of scalable and efficient
software is key to success in testing and applying new methods of computational geo-
physics. Techniques such as full-waveform inversion (Fichtner, 2010) that integrate
multiple methods and tools benefit from software modularity, encapsulation and ex-
tensibility (Rouson, 2014). Object orientation obviates duplication of low-level codes,
and provides for easy integration of new functionality that conforms to common in-
terface conventions. However, although many benefits of object-oriented design are
undisputed, selection of a suitable type hierarchy and interface paradigms, and the
underlying programming language and library dependencies poses a significant chal-
lenge at an early stage of any object-oriented scientific library development. More
specifically, typical questions arising at early stages of development are:

1. Can we avoid developing a new library from scratch but simply extend an
existing library, such as TriLinos (The Trilinos Project, 2014)7

2. What are the advantages and disadvantages of an object-oriented design? Can
we achieve our objectives by using modularization facilities of non-object-oriented
languages such as Fortran 95 (Metcalf, 2011)?

3. Which programming language(s) to use—e.g., C++ (Stroustrup, 2013) or For-
tran 2008 (Metcalf, 2011)7

SEP-152

Maharramov 2 CESLib

4. What is the right balance between abstraction and implementation? More
specifically, should we adopt the approach that requires every base class to
be purely abstract with no significant type-bound members of known shape
and no implemented type-bound procedures? Should we employ a compromise
based on endowing even the base classes with key features of a specific but fairly
general implementation?

As is amply demonstrated by a great variety of programming paradigms deployed
by successful scientific software projects, there are no universal answers to these
questions.

The object of this document is to describe my new library CESLib (Computational
Earth Sciences Library) that I used for time-lapse full waveform inversion problems of
(Maharramov, 2014b). I provide a rationale for my answers to each of the above key
questions, backing them with demonstrations of specific features of the new library.

CESLIB

The library was conceived as an extension of my earlier general-purpose object-
oriented library exp_tk (Maharramov, 2012), intended specifically for seismic model-
ing and inversion applications. CESLib is implemented in Fortran 2008 as a dynam-
ically or statically linked library with Fortran modules on 64-bit Intel architectures.
Compilation of the latest source code requires version 14.0.2 or later of the Intel Stu-
dio Suite (Blair-Chappel and Stokes, 2012), however, a version of the library that can
be built with version 13 of the compiler is maintained as well.

One of the compelling reasons for choosing Fortran 2008 was the desire to reuse
older Fortran code that can be easily encapsulated in new modules and types (Rou-
son, 2014). Another reason was the continued performance edge enjoyed by mod-
ern Fortran compilers over C++ compilers, even when no obvious language-specific
constraints exist to justify the edge (Markus, 2012). The third important reason
for choosing Fortran 2003/2008 was the availability of powerful array features such
as pointers to array slices. While some of these features have an equivalent C++
workaround, continuous enhancements to the Fortran standard (Metcalf, 2011) pro-
vide sufficient reason for staying with the language.

A functional waveform inversion framework should include at least two key com-
ponents: a wave propagation modeling library and an optimization library. While
the latter can be considered an “atomic” sub-library that may not have many de-
pendencies, the former depends on a multitude of data structures and algorithms
for discretization and solution of wave propagation equations on various computa-
tional domains (Fichtner, 2010). Very large optimization problems (to the order of
10%) solved in full-waveform inversion make it impractical to use most of the ex-
isting optimization libraries such as LAPACK95 (Barker et al., 2001) as back-end
solvers. Third-party iterative solvers may be used; however, certain specifics of the

SEP-152

Maharramov 3 CESLib

full-waveform optimization, such as use of a custom line search algorithm (Sirgue,
2003), mean it is easier to implement a small dedicated optimization library rather
than adapt a portion of some existing library.

Rather than providing detailed descriptions of all library features, in the following
sections I focus on key aspects of the library that rationalize my answers to the
questions listed in the Introduction.

CLASS HIERARCHY

The library provides the following base classes:

1. Dataset is the base class for any data structures containing contiguous arrays
of single-precision real numbers of arbitrary dimension, supporting parallel file
input/output.

2. Medium, an extension of Dataset, is the base class for any (subsurface) models,
such as acoustic slowness, elastic moduli, and various anisotropic models.

3. Field is the base class of any single and multi-component wave fields.
4. Lattice is the base class for extrapolation grids.

5. Functional is the base class for any objective function used in non-linear opti-
mization.

6. Optimizer is the base class for gradient-based optimization, such as non-linear
conjugate gradients (Nocedal and Wright, 2006).

There are a number of auxiliary objects that I do not list here as those are not impor-
tant for the discussion. Note the absence of an abstract “vector” class. An abstract
vector class that could be anything! that supports basic linear operations was part
of the epx_tk framework (Maharramov, 2012). However, none of the applications of
epx_tk or CESLib require vectors that cannot be represented as contiguous arrays of
real numbers that could fit in random access memory. Based on previous experience
with exp_tk and discussions with industry representatives (Vu, 2013), the abstract
vector was dropped from CESLib. Note this decision should by no means be considered
as a recommendation for avoiding purely abstract vector classes. Certain application,
such as processing of seismic gathers, may require manipulation of data vectors that
cannot fit in memory, or use heterogeneous or non-contiguous storage (e.g., residing
in both CPU and GPU memory). The fact that any vector is a one-dimensional
array does not constrain the dimensionality of application vectors. Fortran pointers
to array slices (Metcalf, 2011) provide an easy array reshaping functionality without

Inot just an array of numbers

SEP-152

Maharramov 4 CESLib

memory reallocation. Note, however, that this feature is not unique to Fortran and
can be achieved in C++ as well using static type recasting.

In the following sections I describe a few of the key library features that demon-
strate some of the mentioned technologies, and discuss their effect on productivity.

ARRAY SLICES

Pointing to array slices is a key feature that is used throughout the optimization
framework. For example, a Medium object has a type member p (property):

real, dimension(:), pointer, public :: p

This member is inherited by the AcMedium (acoustic medium) type. The dimension-
ality of the actual data array p is dynamically changed by declaring, e.g., a three-
dimensional “slowness” pointer slow and pointing it to p:

real, dimension(:,:,:), pointer :: slow
slow(l:nz,1:nx,1:ny) => m)p(l:nxyz)

Note this allows referencing both p and slow in any code that uses the AcMedium type
(run-time class). Array slices allow a straightforward implementation of anisotropic
elastic models, as different property arrays can point to different slices of the Medium
member p. However, elastic and anisotropic models are not currently implemented
in CESLib.

I minimize the use of pointers to array slices within the loops of wave extrapolation
codes as a repetitive use of dynamic array offsets may slightly degrade the performance

OPTIMIZATION

The key optimization type is Functional that represents a nonlinear minimization
functional. Since the library specializes in derivative-based methods, the type has
three deferred type-bound members eval, evalG, evalH that compute the value of
the functional for a specified argument (that is a one-dimensional array!), both value
and the gradient of the functional, and the dot product of the Hessian with a spec-
ified vector. The latter is computed in high-order adjoint state methods (Plessix,
2006). The user is expected to provide this functionality by extending the abstract
Functional class and defining their own evaluation methods. My implementation of
the full-waveform inversion (Maharramov, 2014b) defines eval and evalG and pro-
vides a dummy evalH as only the first-order adjoint-state method is used.

SEP-152

Maharramov 5 CESLib

One important auxiliary object type used by Functional is the LineSearch type.
By default, one extension of the LineSearch type is provided (MoreThuente) that
implements the More-Thuente line search algorithm (Nocedal and Wright, 2006).

AGGREGATION

The joint time-lapse full-waveform inversion method of (Maharramov, 2014b) requires
simultaneous minimization of the joint objective function

o[Mpuy — dy* + BIIMpuy, — din|* + (1)
§|IWR(m,, — m, — Am"™OR) |2 — min. (2)

The object-oriented technique of aggregation (Rouson, 2014) allows for a straight-
forward extension of a single-model full-waveform inversion code to solve the opti-
mization problem (1,2). In my implementation, type Funcl extends Functional and
is used for minimizing one of the terms in (1). T implement a joint functional using
an extension of Functional that contains two independent instances of Func1 for the
baseline and monitor inversion:

type, extends(Functional) :: Func2
private

! baseline and monitor functionals
class(Funcl), pointer :: pmon, pbase

! type members required for difference regulariation
real :: regalpha = 0 ! regularization parameter

integer :: regop = 2 ! regularization operator

' regularization (weighting) matrix
real, dimension(:), pointer :: regmask

! these are required for difference regularization

real, dimension(:),pointer :: diffil, diff2
NERRREEERRRRR R RN RN RN R RN R RN R RN RN RRRREE

contains
procedure :: eval => evalFunc2 ! value only
procedure :: evalG => evalFunc2G ! value and gradient
procedure :: evalH => evalFunc2H ! dummy

end type Func2

SEP-152

Maharramov 6 CESLib

Two instances of the Funcl class are allocated independently prior to the initial-
ization of a joint functional instance, and assigned to the member pointers pmon
and pbase during the initialization of the joint functional. Note that implementing
evalFunc?2 only requires two separate invocations of pbase’,eval () and pmonjeval (),
and summing the results. Implementing evalFunc2G requires separate invocations of
pbaselevalG() and pmonievalG() as well as the trivial evaluation of the difference
regularization term (2). Note that the model vectors of pmon and pbase need to point
to two contiguous slices of a single array in order for the joint model to be used in
the optimization framework.

CONCLUSIONS AND PERSPECTIVES

CESLib is a scalable computational framework for solving forward and inverse prob-
lems of wave-propagation modeling. One of the deciding factors in implementing the
new object library was extensibility for solving a hierarchy of optimization problems
similar to (1,2) via aggregation. Conversion of a single-model full-waveform inversion
into a joint inversion code required only the implementation of difference regulariza-
tion in addition to the modest overhead of extending the base functional type to a
joint type.

The upcoming release of CESLib will include the pseudo-acoustic modeling method
of (Maharramov, 2014a).

ACKNOWLEDGEMENTS

The author thanks David Nichols, Phuong Vu and Stewart Levin for a number of
useful discussions.

REFERENCES

Barker, V. A., L. S. Blackford, J. Dongarra, J. D. Croz, S. Hammarling, M. Marinova,
J. Wasniewski, and P. Yalamov, 2001, LAPACK95 User’s Guide: STAM.

Blair-Chappel, S. and A. Stokes, 2012, Parallel programming with Intel Parallel Stu-
dio XE: Wrox.

Fichtner, A., 2010, Full seismic waveform modelling and inversion: Springer.

Maharramov, M., 2012, Identifying reservoir depletion patterns with applications to
seismic imaging: SEP Report, 147, 193-218.

———, 2014a, Artifact reduction in pseudo-acoustic modeling by pseudo-source injec-
tion: SEP Report, 152, 97-108.

——, 2014b, Joint full-waveform inversion of time-lapse seismic data sets: SEP
Report, 152, 19-28.

Markus, A., 2012, Modern Fortran in practice: Cambridge University Press.

Metcalf, M., 2011, Modern Fortran explained: Oxford University Press.

SEP-152

Maharramov 7 CESLib

Nocedal, J. and S. J. Wright, 2006, Numerical optimization: Springer.

Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications: Geophys. J. Internat., 495-503.

Rouson, D., 2014, Scientific software design: The object-oriented way: Cambridge
University Press.

Sirgue, L., 2003, Inversion de la forme donde dans le domaine fréquentiel de données
sismiques grands offsets: PhD thesis, Queens University, Canada.

Stroustrup, B., 2013, The C++ programming language: Addison-Wesley.

The Trilinos Project, 2014, Trilinos release 11.8. ([Online; accessed May-15-2014]).

Vu, P., 2013, Personal communication.

SEP-152

