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ABSTRACT

We present a technique for reconstructing subsurface model changes from time-
lapse seismic survey data using full-waveform inversion (FWI). The technique is
based on simultaneously inverting multiple survey vintages, with regularization of
the model difference. In addition to the fully simultaneous FWI that requires the
solution of a larger optimization problem, we propose a simplified cross-updating
workflow that can be implemented using the existing FWI tools. The meth-
ods are demonstrated on synthetic examples, and their robustness with regard
to repeatability issues is compared to alternative techniques, such as parallel,
sequential, and double-difference methods.

INTRODUCTION

Effective reservoir monitoring depends on successful tracking of production-induced
fluid movement in the reservoir and overburden, using input from seismic imaging,
geomechanics, geology and reservoir simulation (Biondi et al., 1996). To achieve
this, most traditional methods rely on the conversion of picked time shifts and reflec-
tivity differences between migrated images into reflector movement and impedance
changes. Though effective in practical applications, this approach requires a signifi-
cant amount of expert interpretation and relies on quality control in the conversion
process. Wave-equation image-difference tomography has been proposed as a more
automatic alternative method to recover velocity changes (Albertin et al., 2006); it
allows localized target-oriented inversion of model perturbations (Maharramov and
Albertin, 2007). An alternative approach is based on using the high-resolution power
of the full-waveform inversion (Sirgue et al., 2010) to reconstruct production-induced
changes from wide-offset seismic acquisitions, and is the subject of this paper.

Time-lapse full-waveform inversion (Watanabe et al., 2004; Denli and Huang,
2009; Routh et al., 2012) is a promising technique for time-lapse seismic imaging
where production-induced subsurface model changes are within the resolution of FWI.
However, as with alternative time-lapse techniques, time-lapse FWI is sensitive to re-
peatability issues (Asnaashari et al., 2012). Non-repeatable acquisition geometries
(e.g., slightly shifted source and receiver positions), acquisition gaps (e.g., due to new
obstacles), different source signatures and measurement noise—all contribute to dif-
ferences in the data from different survey vintages. Differences in the input data sets
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due to repeatability issues may easily mask valuable production-induced changes.
However, even with noise-free synthetic data without any acquisition repeatability
issues, numerical artifacts may contaminate the inverted difference of monitor and
baseline when practical limitations are imposed on solver iteration count. Mahar-
ramov and Biondi (2013) devised a time-lapse FWI that minimized model differences
outside of areas affected by production by jointly inverting for multiple models, and
imposing a regularization condition on the model difference. The joint inversion can
be performed simultaneously for multiple model vintages or using an empirical tech-
nique of “cross-updating” (Maharramov and Biondi, 2013). In this work we apply
these methods to noisy synthetic data and compare the results to alternative methods.

THE METHOD

Full-waveform inversion is defined as solving the following optimization problem
(Tarantola, 1984; Virieux and Operto, 2009)

IMu —d|| — min (1)

where M, d are the measurement operator and data, u is the solution of a forward-
modeling problem
D(m)u = ¢, (2)

where D is the forward-modeling operator that depends on a model vector m as a
parameter, and ¢ is a source. The minimization problem (1) is solved with respect
to either both the model m and source ¢ or just the model. In the frequency-domain
formulation of the acoustic waveform inversion, the forward-modeling equation (2)
becomes

—wu— (2t M)A = P(w, 2t 2" (3)

where w is a temporal frequency, n is the problem dimension, and v is the acoustic
wave propagation velocity. Values of the slowness s = 1/v at all the points of the
modeling domain constitute the model parameter vector m. The direct problem (3)
can be solved in the frequency domain, or in the time domain followed by a discrete
Fourier transform in time (Virieux and Operto, 2009). The inverse problem (1) is
typically solved using a multiscale approach, from low to high frequencies, supplying
the output of each frequency inversion to the next step.

FWTI applications in time-lapse problems seek to recover induced changes in the
subsurface model using multiple data sets from different acquisition vintages. For
two surveys sufficiently separated in time, we call such data sets (and the associated
models) baseline and monitor.

Time-lapse FWI can be carried out by separately inverting the baseline and mon-
itor models (parallel difference) or inverting them sequentially with, e.g., the baseline
supplied as a starting model for the monitor inversion (sequential difference). Another
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alternative is to apply the double-difference method, with a baseline model inversion
followed by a monitor inversion that solves the following optimization problem

| (M u,, — Mju,) — (M,,d,,, — Myd,) || — min (4)

by changing the monitor model (Watanabe et al., 2004; Denli and Huang, 2009; Zheng
et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The subscripts in equation
(4) denote the baseline and monitor surveys, d denotes the field data, and the M’s
are measurement operators that project the synthetic and field data onto a common
grid. The superscript s indicates the measurement operators applied to the synthetic
data.

In all of these techniques, optimization is carried out with respect to one model at
a time, albeit of different vintages at different stages of the inversion. In our method
we invert for the baseline and monitor models simultaneously by solving the following
optimization problem:

a[Myu, — dy||? + B[ Mp i, — dia||” + (5)

7 (M5, — Miwg) — (M d,, — Mydy) [|* + (6)
oy [[W, Ry, (my, — my O |2 (7)

B1[[ W R (11, — 1y HOR) |2 4 (8)

J|WR(m,,, — m; — AmPRIOR)H2 — min, (9)

with respect to both the baseline and monitor models m;, and m,,. The terms (5)
correspond to separate baseline and monitor inversions, the term (6) is the optional
double difference term, the terms (7) and (8) are optional separate baseline and
monitor inversion Tikhonov regularization terms (Aster et al., 2012), and the term
(9) represents Tikhonov regularization of the model difference. In (7)-(9), R and
W denote regularization and weighting operators respectively, with the subscript
denoting the survey vintage where applicable.

A joint inversion approach has been applied earlier to the linearized waveform
inversion (Ayeni and Biondi, 2012). In this work, we propose a simultaneous full-
waveform inversion with special emphasis on regularization of the model difference in
equation (9). Constraining the model difference where production effects are expected
to be negligible while simultaneously solving for both baseline and monitor mod-
els can be expected to reduce both spurious numerical artifacts and non-repeatable
acquisition-related artifacts in the model difference.

An implementation of the proposed simultaneous inversion algorithm requires
solving a nonlinear optimization problem with twice the data and model dimensions
of problems (1) and (4). The model difference regularization weights W and, option-
ally, the prior AmPR*OR may be obtained from prior geomechanical information. For
example, a rough estimate of production-induced velocity changes can be obtained
from time shifts (Hatchell and Bourne, 2005; Barkved and Kristiansen, 2005) and
used to map subsurface regions of expected production-induced perturbation, and
optionally provide a difference prior.
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Figure 1: Starting model used in the inversion. [CR]

In addition to the fully simultaneous inversion, we propose a cross-updating tech-
nique that offers a simple but remarkably effective approximation to minimizing the
objective function (5),(9), while obviating the difference regularization and weighting
operators R and W. This technique consists of one standard run of the sequential dif-
ference algorithm, followed by a second run with the inverted monitor model supplied
as the starting model for the second baseline inversion

myNrT —baseline inversion — monitor inversion — 10
baseline inversion — monitor inversion, (10)
and computing the difference of the latest inverted monitor and baseline models.
Process (10) can be considered as an approximation to minimizing (5) and (9) because
non-repeatable footprints of both inversions are propagated to both models, canceling
out in the difference. Both the simultaneous inversion and cross-updating minimize
the model difference by tackling model artifacts that are in the null space of the
Fréchet derivative of the forward modeling operator. The joint inversion minimizes
the effect of such artifacts on the model difference by either minimizing the model
difference term (9) in the simultaneous inversion, or by propagating these artifacts
to both models in cross-updating (10). Note that this process is not guaranteed to
improve the results of the baseline and monitor model inversions but is only proposed
for improving the model difference.

NUMERICAL EXAMPLES

The Marmousi velocity model is used as a baseline, over a 384x122 grid with a
24 m grid spacing. Production-induced velocity changes are modeled as a negative
—200 m/s perturbation at about 4.5 km inline 800 m depth, and a positive 300
m/s perturbation at 6.5 km inline, 1 km depth shown in Figure 4(a). The whole
Marmousi model is inverted, however, only model differences for the section between
the approximate inline coordinates 3.6 km and 7.2 km to the depth of approximately
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Figure 2: Baseline model inverted from noise-free synthetic data. [CR]

1.6 km are shown here. The inversion is carried out in the frequency domain for 3.0,
3.6, 4.3, 5.1, 6.2, 7.5, 9.0, 10.8, 12.8, and 15.5 Hz, where the frequencies are chosen
based on the estimated offset to depth range of the data (Sirgue and Pratt, 2004).
The baseline acquisition has 192 shots at a depth of 16 m with a 48 m spacing, and
381 receivers at a depth of 15 m with a 24 m spacing. The minimum offset is 48 m.
The source function is a Ricker wavelet centered at 10.1 Hz. Absorbing boundary
conditions are applied along the entire model boundary, including the surface (thus
suppressing multiples). A smoothed true model (Figure 1) is used as a starting model
for the initial baseline inversion (and for the initial monitor inversion in the parallel
difference). The smoothing is performed using a triangular filter with a 20-sample
half-window in both vertical and horizontal directions. The result of inverting the
baseline model from the clean synthetic data is shown in Figure 2. Random Gaussian
noise is added to the noise-free synthetic data to produce noisy data sets with 14 dB
and 7 dB signal-to-noise ratios. Noisy monitor data sets are generated for the model
perturbation of Figure 4(a), using the same acquisition geometry and source wavelet.
The results of baseline model inversion from the 14 dB and 7 dB SNR synthetic data
are shown in Figure 3(a) and Figure 3(b), respectively. Results of model difference
inversion from the 14 dB and 7 dB SNR synthetic data sets using various methods are
shown in Figures 5 and 6, respectively. The simultaneous inversion objective function
contains only terms (5) and (9) with no difference prior, i.e., AmPROR = (. The
model-difference regularization weights W in (9) are set to 1 outside approximately
.5 km from the centers of the velocity anomalies (Figure 4(a)), tapering to zero
within a smaller radius of the anomalies. The two terms in (5) are of the same
magnitude and therefore o and 3 are set to 1. Parameter § is set to 107 but can
be varied for different acquisition source and geometry parameters. The result of
the initial baseline inversion is supplied as a starting model for both m, and m,, in
the simultaneous inversion. In all the inversions, up to 10 iterations of the nonlinear
conjugate gradients algorithm (Nocedal and Wright, 2006) are performed for each
frequency. Neither regularization nor model priors are used in single-model inversions
(i.e., in the cross-updating, parallel, sequential, and double difference methods).
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Figure 3: (a) Target area of the baseline model inverted from a 14 dB SNR synthetic.
(b) Target area of the baseline model inverted from a 7 dB SNR synthetic. In both
cases the baseline model is reconstructed reasonably well, however, errors due to noise
are comparable in magnitude to production-induced effects. [CR|]

The results of applying cross-updating to the two noisy data sets are shown in
Figures 5c and 6¢, respectively. The corresponding simultaneous inversion results
are shown in Figures 5d and 6d. Since the problem (1) is nonlinear, supplying the
result of the highest frequency inversion back to the lowest frequency and repeating
the whole inversion cycle for all frequencies may result in achieving a better data
misfit. In repeated cycles, lower-frequency inversions usually terminate earlier but
higher frequencies still deliver model updates. For an objective comparison of the
joint inversion with the parallel, sequential and double-difference methods, the effects
of insufficient iteration count are reduced by performing an extra cycle of baseline
and monitor inversion in each of the latter methods (we call this approach “iterated”
parallel, sequential and double difference). The results of applying the iterated par-
allel difference to the two noisy data sets are shown in Figures 5a and 6a. The results
for the iterated sequential difference are shown in Figures 5b and 6b. The double-
difference inversions are shown in Figures 5e and 6e. The double difference method
yields the worst results for noisy data, and this is consistent with earlier tests of the
method on noisy data (Asnaashari et al., 2012). The sequential difference delivers
consistent improvement over the parallel difference, while the cross-updating delivers
a significant improvement over the sequential method. The simultaneous inversion
and cross-updating appear to yield similar results where W & 0. The results of in-
verting the model difference from the noise-free synthetic and matching acquisition
parameters are not shown as all the methods perform well in this case. Joint in-
version, either by cross-updating or simultaneous inversion, demonstrates robustness
with regard to uncorrelated noise in the data.

Cross-updating keeps the baseline and monitor data spaces separate, and the
method is robust with respect to changes in acquisition geometry and source parame-
ters between surveys. Figure 4(b) demonstrates cross-updating with different surveys.
The monitor survey in this case has shot positions shifted by 24 m to the right, with
shot and receiver depths now changed to 12 and 20 m, respectively. The new mon-
itor Ricker source peak frequency is changed to 12.1 Hz. To isolate the effects of
survey acquisition changes from the effects of random noise, our model difference is
inverted from a clean synthetic. The result of Figure 4(b), in good agreement with
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Figure 4: (a) True velocity difference consists of a negative (—200 m/s) perturbation
at about 4.5 km inline 800 m depth, and a positive (300 m/s) perturbation at 6.5 km
inline, 1 km depth. (b) Model difference inverted from a clean synthetic for different
baseline and monitor acquisition geometries and sources. [CR]

the true perturbation of Figure 4(a), demonstrates the robustness of cross-updating
with respect to non-random survey repeatability issues.

CONCLUSIONS

Our new simultaneous inversion and cross-updating techniques provide robust alter-
natives to existing time-lapse FWI methods. Applying the cross-updating method to
synthetic data sets with variable amounts of noise achieved a significant reduction of
artifacts in the model difference compared to the parallel, sequential, and double dif-
ference methods. However, the weighting operator W in the simultaneous inversion
should be chosen using prior knowledge of where production-induced velocity changes
are likely to occur. The cross-updating method offers an attractive alternative to the
regularized simultaneous inversion as it does not require additional regularization
parameters.

In addition to achieving better results than the double difference method for noisy
synthetics, cross-updating is less sensitive to repeatability issues that are due to differ-
ences in acquisition geometry and sources. The latter may require a cross-equalization
of different data vintages (Ayeni and Biondi, 2012) prior to double differencing while
the simultaneous inversion and cross-updating do not require data cross-equalization
as these methods operate in the model space. However, the simultaneous inversion al-
lows a hybrid approach with a non-zero double-difference term (6) but the practicality
of such a combined approach requires further study.

ACKNOWLEDGMENTS

The authors would like to thank Stewart Levin for a number of useful discussions,
and the Stanford Center for Computational Earth and Environmental Science for
providing computing resources.

SEP-152



Maharramov and Biondi 8 Joint 4DFWI

480
960 |

1440

480
960 |

1440

480
960

1440

480
960

1440

480
960

1440

3576 inline (m) 5976

-250 -100 0 100 250350

Figure 5: Model difference inverted from a 14 dB SNR synthetic with matching
baseline and monitor acquisition geometries using (a) iterated parallel difference;
(b) iterated sequential difference; (c¢) cross-updating; (d) regularized simultaneous
inversion; (e) iterated double difference. [CR]
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Figure 6: Model difference inverted from a 7 dB SNR synthetic with matching baseline
and monitor acquisition geometries using (a) iterated parallel difference; (b) iterated
sequential difference; (c¢) cross-updating; (d) regularized simultaneous inversion; (e)
iterated double difference. [CR]
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