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ABSTRACT

For many years, short-offset data have been a cornerstone of reflection seismic
imaging and amplitude estimation methods such as Azimuth versus Offset (AVO).
However, longer offsets have increasingly become more available due to new ac-
quisition geometries and to a greater emphasis in refraction seismic, stimulated
in part by inverse methods like Full Waveform Inversion (FWI). We focus here
on some of the limitations encountered in short offset versus long-offset data,
specifically reflectivity estimations for higher reflection angles. We then turn our
attention to a finite difference implementation of the elastic two-way wave equa-
tion, which is a necessary modeling step for truer amplitude estimation. Finally,
we implement a 10th order in space and 2nd order in time finite-difference scheme
and show a few propagation examples.

INTRODUCTION

Seismic acquisition has constantly pushed to acquire longer and longer offsets. The
need to acquire longer offsets in the crossline direction, for instance, led to the devel-
opment of novel streamer acquisition techniques such as wide azimuth, rich azimuth,
multi-azimuth and, more recently, coil and dual coil methods (Moldoveanu et al.,
2008). In most instances, these innovations were motivated by the need to illuminate
a wider range of azimuths and overcome shadow zones created by complex geology
(Corcoran et al., 2007), but recently, the need for longer offsets both in the inline and
crossline directions has been motivated by deeper imaging targets, and the need for
refraction data for traveltime tomography and FWI.

Brenders et al. (2007) analyze the impact of added offsets in wavefield tomogra-
phy for the a 2D section of the 2004 BP Velocity Benchmark model. They show that
tomographic velocity estimation in streamer data is limited by the maximum acqui-
sition offset and the low frequency content in the data. In their work, a limited offset
dataset (15 km) enables the recovery of the velocity model only for shallower regions.
However, after incorporating offsets longer than 20 km, they show that refraction
data associated to turning waves can sample deeper areas of the model, enabling the
recovery of velocities at those depths.

Hilterman et al. (2000) show that, although AVO has been an important tool
for identifying hydrocarbon reservoirs, some Class 1 anomalies, which are difficult to
spot, could be better classified if they were treated as Class 2 anomalies identifiable
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on Common Depth Point (CDP) stacks. However, the added information to make
this distinction comes from longer offsets. They test the validity of this claim for
offsets that are twice the target’s depth. They conclude that such anomalies could
be better seen in the higher offset angle stacks for a sandstone reservoir at 16,000 ft
depth in the Gulf of Mexico.

Zadeh et al. (2010) show how post-critical reflections can be used to estimate
velocity changes in a production environment. They use 4D data from the Valhall
oilfield in the North Sea. The advantage of their methodology in comparison to
traditional 4D analyses is that it can be applied to stiff rock reservoirs, such as
carbonates, whereas conventional 4D encounters limitations when density varies little
during production.

Skopintseva et al. (2011) focus on obtainning a better AVO result than those usu-
ally got from traditional approaches, by taking advantage of longer offset data. The
group’s approach to the problem involves the minimization of an objective function
that compares the observed data to the reflection coefficients obtained by another
methodology, presented in Aizenberg et al. (2005).

However, in order to evaluate the validity of these and other applications of long-
offset data, an important first step is to be able to model both the kinematics and the
amplitudes of seismic data. With that in mind, our goal is to test a finite-difference
staggered-grid approach, using a high-order spatial approximation for the elastic wave
equation.

In the next and following sections, we describe the limitations of traditional AVO
and the methodology proposed by Skopintseva et al. (2011). Then, we show our
implementation of the numerical modeling, using a finite-difference sttagered-grid
velocity-stress formulation of the wave equation, based on Virieux (1986). Since our
objective is to model longer offsets, which require the errors of the numerical solution
to be very small even after many iterations, we replace the traditional 4th order spatial
approximation by a 10th order spatial operator. Our claim is that this higher order
will allow a more accurate solution to the wave equation and also a lower memory
and computational costs due to the many model properties that need to be evaluated
at each point. Finally, we show some results, obtained for a constant velocity model
and a simple horizontal fluid saturated layer. Finally, we comment on some of the
obstacles encountered in this methodology and the next steps in this ongoing research.

METHOD

Traditional AVO

In order to understand the limitations of current AVO analysis, we start with the phys-
ical problem that is described by the AVO equation and the linearizations involved.
Figure 1 is a schematic representation of an incident plane wave on a horizontal re-
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Figure 1: Schematic drawing of
the incident and reflected rays for
the P and S wave components on
a flat reflector. The subscript 1
refers to model properties and an-
gles in the upper region of the
model, while subscript 2 refers to
the new properties and angles for
the lower half of the model. [NR]

flector and its corresponding reflected and transmited plane waves. The relationship
between the reflection/transmission angles and the medium properties is described by
Snell’s Law. The reflectivity of these plane waves as a function of the incidence angle
is described by Zoeppritz equation. The Aki and Richards (1980) approximation to
Zoeppritz equation is:

R(θ) = A + B sin2 θ + C tan2 θ, (1)

where θ is the reflection angle, VP , VS and ρ are the pressure velocity, shear velocity
and density, respectively, A = 1
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Their approximation became the starting point for modern AVO analysis. Fatti et al.
(1994) further simplified their equation:
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where θ is the reflection angle, VP and VS are the pressure and shear velocities,
respectively, ρ is the density and ∆I

I
= (∆VP

VP
+ ∆ρ

ρ
), which is the zero offset P-wave

reflection coefficient. Equation 2 can be further simplified by ignoring the third term,
which can be proven to be very small for low reflection angles (< 35o) and Poisson’s
ratio between 0.1 and 0.33. This approximation has been widely used in the industry,
but a more generalized study of the problem must seek a different solution if long
offset data is to be introduced in AVO analysis. We propose to study the solution
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presented in the work of Skopintseva et al. (2011). In their work, they recast the
reflectivity problem as an optimization problem, comparing the expected amplitude
obtained from a theoretical solution to the one measured in the data. With that, the
problem becomes a minimization of an objective function based on the L2 norm of
the two data (calculated and observed):

F (v)2 =
N∑

n=1

[AV Oobs(xn)− AV Otheo(xn)]2, (3)

where xn represents the receiver coordinates and n is the receiver number. The
theoretical component AV Otheo is given by:

AV Otheo(xn) =
‖RPP (θ(xn),m)‖

1
N

∑N
n=1 ‖RPP (θ(xn),m)‖

, (4)

where RPP is the plane reflective coefficient, obtained according to Aizenberg et al.
(2005).

To test the validity of this methodology, the first step is to create a synthetic
dataset to represent the observed AVO term. We begin by implementing a numerical
solution of the elastic wave equation.

Finite difference elastic wave equation

The standard solution to elastic modeling uses the velocity-stress formulation in a
staggered-grid approach (Virieux, 1986). The velocities and stresses are the state
variables and are evaluated at alternating points in a regularly-sampled grid repre-
sentation of the property model. The time derivatives of the state variables are also
evaluated at alternating time steps. Figure 2 shows schematically where the different
properties are evaluated for a single time step.

This staggered grid representation gives good results for finite-difference solutions
to the elastic wave equation. Ikelle and Amundsen (2005) show a very comprehen-
sive implementation of a 4th order in time and 2nd order in space staggered-grid
finite-difference modeling. The finite-difference representation for the particle ve-
locity component in the x-direction for a 10th order in space and 2nd order in time
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Figure 2: The staggered grid for 2D elastic finite-difference modeling. Vx and Vz

represent the particle velocities in the x- and z-directions, respectively, while τxx, τzz

and τxz represent the normal and shear stress fields. [NR]
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where Vx is the particle velocity in the x direction; ρ(x, z) is the density at location
(x,z); τxx(x, z, t) is the normal stress component in the x direction; τxz(x, z, t) is
the shear stress at location (x,z) and time t; and c1 to c5 are the finite-difference
coefficients, according to (Liu and Sen, 2009).

The z-component of the particle velocity field and the three stress components
can be obtained in a similar way to equation 5. However, it is important to note that
different properties are evaluated at different grid points according to Figure 2. This
means that care must be taken when defining the derivatives, in order to preserve the
symmetry of the central difference operator.

The reason to apply such a high-order approximation to the numerical modeling
is to minimize dispersion error for large simulation times without the need for very
fine modeling grids. Since we are interested in the amplitudes, it is essential that the
wavelet is not affected by numerical artifacts and behaves accordingly to the physical
equations. As an example of such dispersive effects, we refer to the work of Souza
et al. (2013), who compares the traditional 4th order stencil to a 12th order one and
their respective numerical dispersions.

RESULTS

We show results of applying our modeling algorithm to a constant velocity model, a
constant model with a flat reflector and a model with increasing velocity with depth
and a horizontal reflector. These simple modeling runs are aimed at testing the
stability of the numerical propagation, the mode conversions between P waves and S
waves and finally the presence of turning waves on the last example.

The first example was modeled for a constant property model with an explosive
source at its center. The source is a Ricker wavelet with a peak frequency of 25 Hz.
The resulting elastic wavefront can be seen in Figures 3(a) and 3(b), which show the
particle displacement in the x-direction and z-direction for t = 350 ms, respectively.

For the second example, we added a reflector at a depth of 1500 m below the
source and extended the model laterally to 20 km (see Figure 4). Figure 5(a) shows
a snapshot for the wavefield’s particle velocity in the x direction for a source place
at x = 600 m and z = 500 m. We calculated the divergence and curl of the particle
velocities. For an isotropic wavefield, these operations separate the P and S waves.
Figures 6(a) and 6(b) show the P-wave and S-wave seismograms, respectively.

The final example (see Figure 7) has a background velocity that linearly increases
with depth in addition to the horizontal reflector from the previous example. The
goal here is to show the appearence of turning waves in the modeling, as we can see in
Figures 8(a), 8(b), 9(a) and 9(b). These show snapshots of the particle displacement in
the x-direction, z-direction and the corresponding P and S seismograms, respectively.
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(a) (b)

Figure 3: Snapshot of the particle displacement in (a) the x-direction and (b) the
z-direction for time t = 350 ms. The source is explosive, with a Ricker wavelet of
peak frequency of 25Hz. [ER]

Figure 4: P velocity model for the constant background velocity model with a reflector
at z = 2000 m. The background P velocity is equal to 2700 m/s, with a density of
ρ = 2750 kg/m3. The reflector has a P velocity of 1500 m/s and density of ρ = 1000
kg/m3. S velocities are calculated as half of the P velocities. The boundary conditions
are included in this image, so the source for this model is located at x = 600 m and
z = 500 m. [ER]

SEP–152



Alves and Biondi 8 High-order elastic FD

(a)

(b)

Figure 5: Snapshot for time t = 1.2 s for (a) the x-component and (b) the z-component
of the particle velocity in a constant background model with one horizontal reflector.
[ER]

SEP–152



Alves and Biondi 9 High-order elastic FD

(a)

(b)

Figure 6: (a) P seismogram obtained from the divergent of the particle velocities for
a constant background with a single horizontal reflector; (b) S seismogram obtained
from the curl of the particle velocities for the same model. [ER]
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Figure 7: P velocity model for a depth increasing V(z) with a horizontal reflector at
z = 2000 m. The values for the reflector and background properties are the same as
in Figure 4, but here the background P and S velocities linearly increase to 4200 m/s
and 2100 m/s, respectively. [ER]

DISCUSSION

The literature shows many possible studies related to long-offset data. The estimation
of better velocity models holds great interest for applications in FWI, such as the
aforementioned examples. Also, research related to amplitude analysis appears to be
a promising area of study, with interesting examples that may extend AVO analysis
to longer offset data.

The results shown in this work are a preliminary effort in the direction of amplitude
analysis. Future work will be aimed at applying this modeling methodology to study
long-offset amplitudes and possible ways to efficiently evaluate them in field data.

Finally, this approach is aimed at 2D modeling. A 3D solution to this same
problem will involve complications that have not yet been addressed in this work.
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