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ABSTRACT

We present a regularization scheme utilizing available rock physics data to better
constrain the anisotropic wave-equation migration velocity analysis (WEMVA)
and to better resolve the ambiguity among the anisotropic parameters. In ad-
dition to the spatial covariance to constrain the spatial correlation of each VTI
parameter individually, we propose a cross-parameter covariance at each subsur-
face location to link the VTI parameters. There are two significant effects that
this regularization scheme brings to the updates for the VTI parameters. First,
instead of spreading the updates evenly along the wavepath, the regularization
term allows more updates in the regions where the models are highly uncertain.
Second, the regularization term brings extra information for parameter updates
from the correlation with the other parameters. These improvements help the
inversion converge faster and yield VTI models that are more consistent with
the underlying geological and lithological assumptions. We demonstrate these
improvements on a synthetic dataset.

INTRODUCTION

Anisotropic model building tries to resolve more than one parameter at each model
location. This number is three for a vertical transverse isotropic (VTI) medium,
and five for a tilted transverse isotropic (TTI) medium. Traditional surface seismic
tomography may be able to produce an accurate isotropic earth model efficiently for
a large area when the acquisition is dense and the earth is well-illuminated by rays at
a wide range of angles. However, surface seismic data inversion becomes ill-posed and
highly underdeterimined due to the rapidly increasing model space with the increasing
complexity of the subsurface.

One important disadvantage of surface seismic tomography is its lack of depth in-
formation. During tomography, neither the low wavenumber velocity nor the high
wavenumber reflectivity are known. This issue is more severe when we consider
anisotropy. Several localized tomography around the wells were studied to add the
depth dimension into the inversion (Bear et al., 2005; Bakulin et al., 2010b,a). Joint
inversion of surface seismic data and borehole data (check-shots and walkaway VSPs)
in these studies helps to yield better defined earth models. Due to the ambigu-
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ity among the parameters, it is difficult to resolve a reliable and unique anisotropic
model in 3D even with the borehole aided localized tomography (Bakulin et al., 2009).

In the anisotropic case, the uncertainties are further increased because the sen-
sitivities of the kinematics of the surface seismic data to the anisotropic parameters
are much lower than to velocity. Large offsets and a wide range of illumination angles
are required to constrain the anisotropic parameters. Consequently, the recoverable
depth range for the anisotropic parameters is much shallower than when a simple
isotropic velocity is estimated. Even in the shallow region, where the seismic waves
travel with wide angles and large offsets, the kinematic effects of the velocity can still
overwhelm the inversion.

To help with the inversion for anisotropy, we can use our prior knowledge of the
subsurface. In addition to the two-point (spatial) covariance describing the smooth-
ness in the subsurface (Clapp, 2000; Woodward et al., 2008; Li and Biondi, 2011),
a single point (local) cross-parameter covariance can be used to better describe the
subsurface. One way to estimate the cross-parameter covariance is from rock physics
studies (Hornby et al., 1995; Sayers, 2004, 2010; Bachrach, 2010b). Many authors
(Dræge et al., 2006; Bandyopadhyay, 2009; Bachrach, 2010a) have built depth trends
for seismic purposes. In particular, Bachrach (2010a) developed both deterministic
and stochastic modeling schemes based on the rock physics effective-media models for
compacting shale and sandy shale. The stochastic modeling enables us to explore the
range of possible anisotropic parameters based on the rock physics modeling parame-
ters. Further corroborated by core measurements, the parameters allowed by the rock
physics model are limited to a certain range, which greatly reduces the possible range
of the VTI parameters. These rock physics modeling results can be used to construct
initial VTI models and the covariance relationships among the VTI parameters. Li
et al. (2011) and Yang et al. (2012) have demonstrated that the rock physics prior
models are helpful in constraining ray-based tomography.

In this paper, we first analyze the sensitivities of the WEMVA objective func-
tion with respect to different VTI parameters in a homogeneous VTI model. Us-
ing an interpolation example, we demonstrate the additional information that the
cross-parameter covariance brings to the inversion. We then test three different reg-
ularization schemes when a synthetic dataset is inverted using anisotropic WEMVA.
The inversion results show that when the accurate full covariance matrix is applied,
the convergence of the WEMVA inversion as well as the lithological definition of the
inverted models are improved.

WEMVA AND ROCK-PHYSICS REGULARIZATION

Anisotropic WEMVA aims at building an anisotropic earth model that minimizes the
residual image from the surface seismic data (Li and Biondi, 2011). This optimization
problem is highly nonlinear and underdetermined. We commonly add a model reg-
ularization term to the anisotropic WEMVA objective function defined in the image
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space to constrain the null space and stabilize the inversion. Our resulting objective
function is:

S(m) =
1
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||DθI(x, θ)||−α
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(m−mprior)

TC−1
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where the first two terms define the “data fitting” objective, and the third defines
the “model regularization” objective. The first term is to minimize the differential
semblance in the data fitting objective, and the second term is to maximize the
stacking power. Model m is the VTI subsurface model, I(x, θ) is the migration image
in the angle domain with θ the aperture angle and Dθ a derivative operator along the
angle axis. In the model regularization objective, mprior and CM define a Gaussian
distribution of a prior model that is ideally independent of the seismic data. This
regularization will bring more information into the optimization. Parameters α and
β balance the relative weights among different objectives.

The data fitting objective relates the incoherence in the angle domain common
image gathers to the inaccuracy in the subsurface models. To test the data objectives,
we model a simple synthetic dataset using a homogeneous VTI model (vv = 2 km/s,
ε = 0.2, and δ = 0.1) with one flat reflector. The maximum offset is 6 km, and
the depth of the reflector is 1.5 km. The data are then migrated using all possible
combinations of vv, ε, and δ when vv varies in [1.5, 2.5] km/s, ε ∈ [0.1, 0.3], and
δ ∈ [0, 0.2]. Based on the migrated images in the angle domain, the data fitting
objective at each model point in this subspace is then computed according to the first
two terms in Equation 1.

Figure 1 shows the data fitting objective function assuming one of the three VTI
parameters is accurate. Panels (a), (b), and (c) are extracted from the vv = 2km/s
plane, δ = 0.1 plane, and ε = 0.2 plane, respectively. When the third parameter
is accurate, the data fitting objective function is convex and comes to a minimum
at the correct solution for the other two parameters. However, the resolution of the
objective function with respect to each parameter is dramatically different. A much
higher resolution for velocity than for ε and δ can be seen from Figures 1(b) and (c).
The resolution of ε and δ is at least an order of magnitude lower than that of velocity
(notice the smaller range of values on the colorbar in Figure 1(a)).

Moreover, severe tradeoffs among the VTI parameters can be observed from Figure
1. A strong tradeoff can be seen in Figure 1(a). The WEMVA objective function
cannot resolve ε or δ independently as long as the summation of the two remains the
same (unless events propagating at more than 60◦ angles are recorded). Tradeoffs
between the anisotropic parameters and the vertical velocity can also be seen from
Figures 1(b) and 1(c), where positive vertical velocity errors are compensated by
negative errors in the anisotropic parameters and vice versa. Nevertheless, these
tradeoff effects are much less obvious, further demonstrating the low sensitivity of
seismic data to the anisotropic parameters.

For pressure waves, velocity has a dominant effect on the kinematics due to its
first-order influence. As a result, the objective function is biased towards the velocity
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Figure 1: The value of data fitting objective function extracted from (a) vv = 2 km/s
plane, (b) δ = 0.1 plane, and (c) ε = 0.2 plane. Notice the different color scale in
panel (a). [CR]

Figure 2: The value of data fitting objective function extracted from (a) vv = 1.9
km/s plane, (b) vv = 2 km/s plane, and (c) vv = 2.1 km/s plane. [CR]
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error despite the error in the other VTI parameters. Figure 2 shows the topography
of the data fitting objective function extracted from the (a) vv = 1.9 km/s plane, (b)
vv = 2 km/s plane, and (c) vv = 2.1 km/s plane, respectively. When the velocity is
inaccurate, the objective function loses its convexity in the ε–δ plane. The objective
function always dips towards higher ε and higher δ when velocity is slower, and
towards lower ε and lower δ when velocity is faster. In these cases, the gradient of the
objective function would not be able to guide the inversion to the correct solution for
the anisotropic parameters if the errors in ε and δ are in the opposite direction than
the velocity error.

For field data, the “data fitting” objective function has worse behavior because the
structure of the earth subsurface is highly complex with heterogeneities at all scales
and densely distributed dipping reflectors. These complexities weaken the convexity
of the objective function and create local minima.

To better constrain the model and to mitigate severe ambiguities among the VTI
parameters, we include additional information in the inversion. We utilize the regu-
larization term in Equation 1 by assuming a multivariate Gaussian distribution for
the VTI model parameters. To speed up the convergence, we use a preconditioning
scheme instead of the original regularization scheme.

WEMVA with the rock physics regularization

Assuming a Gaussian distribution, Tarantola (1984) characterizes the prior informa-
tion using the mean and the covariance of the model and includes it as a regularization
term. We separate the covariance into two parts: a spatial covariance between the
same parameter at different locations, and a cross-parameter covariance between dif-
ferent parameters at the same location.

The spatial covariance is mainly defined by the structure of the area, and it can be
estimated using a set of steering filters (Clapp, 2000). The cross-parameter covariance
can be inferred from the lithological information at the model location. In a previous
work (Li et al., 2013), we introduced the cross-parameter matrix with only diagonal
terms due to the lack of the lithological information. This diagonal preconditioning
balances the relative scales among the VTI parameters, but it ignores the correlation
among them.

When we have a rough estimate of the lithological environment, we can build
a more complete cross-parameter covariance using rock physics modeling. As an
example, the Gulf of Mexico is populated with large shale deposits. Therefore, rock
physics principles can be used to estimate the range of anisotropic parameters consid-
ering a compacting shale model (Bachrach et al., 2011). As demonstrated in (Yunyue
, Elita), the rock physics stochastic modeling for shale anisotropy shows that in the
shallow sediments, a high velocity zone is generally collocated with sand layers where
the anisotropy is low. On the contrary, diagenesis processes in the more compacted
deeper sediments alter the clay mineral from smectite to illite, which increases both
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velocity and anisotropy simultaneously. Valuable prior knowledge about the subsur-
face can be included in the inversion via both the diagonal and the off-diagonal terms
in the cross-parameter covariance matrix.

We assume the spatial covariance and local cross-parameter covariance compo-
nents are independent of each other (Li et al., 2011). To speed up the convergence,
we use a preconditioning scheme where we use steering filters to approximate the
square-root of the spatial covariance, and a standard-deviation matrix to approxi-
mate the square-root of the cross-parameter covariance.

Mathematically, the preconditioning variable n is related to the original model m
as follows:

m = ΣSn. (2)

In Equation 2, the smoothing operator S is a band-limited diagonal matrix:

S =

∣∣∣∣∣∣
Sv 0 0
0 Sε 0
0 0 Sδ

∣∣∣∣∣∣ , (3)

with potentially different smoothing operators for velocity, ε, and δ, according to the
geological information in the study area. The standard deviation matrix Σ is the
square-root of the covariance matrix:

Σ =

∣∣∣∣∣∣
Cvv I Cvε I Cvδ I
Cεv I Cεε I Cεδ I
Cδv I Cδε I Cδδ I

∣∣∣∣∣∣
1/2

. (4)

The diagonal elements Cvv, Cεε, and Cδδ denote the variance of the velocity, ε, and
δ, respectively. The off-diagonal elements Cvε, Cvδ, and Cεδ denote the cross-variance
between the velocity and ε, between velocity and δ, and between ε and δ, respectively.
These elements can be obtained by rock-physics modeling and/or lab measurements
(Bachrach et al., 2011; Li et al., 2011). The covariance matrix Σ is symmetric. As
a result, there are only six independent components in the covariance matrix. In an
ideal case, matrix Σ should be estimated at each subsurface location to reflect the
local lithological information.

Interpolation test with the preconditioning operators

To demonstrate the extra information that the preconditioning operators introduce
to the inversion, we test these preconditioners on a classic missing data problem
(Claerbout, 2009) on the BP2007 model. Consider the synthetic example in Figure 3,
where the left column shows the current best spatial estimation of the VTI parameters
(initial model) and the right column shows the true VTI parameters (true model). To
build the initial velocity model, we assume the water bottom topography is known
and the water velocity is 1.5 km/s. The basement interface is assumed to be flat
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and the velocity of the basement rock is 3.5 km/s. Then, we linearly interpolate the
velocity between the water bottom and the basement interface. We follow a similar
approach to build the initial ε and δ model. The resulting initial VTI model shows
smooth, linearly increasing trends for velocity, ε, and δ.

The true velocity, ε, and δ updates are plotted in Figures 4(a), (b) and (c), re-
spectively. The true velocity updates show two anticline structures up shallow and
a major anticline structure down deep. The updates in the anisotropic parameters
contain more layering information than the velocity update. These are the solutions
to the model building problem.

Suppose that, among the three unknown parameters, only velocity has been mea-
sured at random well locations in this section (Figure 4(d)). The goal of the inversion
is to interpolate the well information onto a regular 2D grid and to provide reasonable
estimates for the unmeasured anisotropic parameters.

The interpolation problem can be formulated as a data fitting objective

WBd ≈ Wm; (5)

to match the interpolated model m with the binned data Bd at the well location
defined by W. Additionally, the distribution of the model must follow a user-defined
prior covariance C:

0 ≈ C−1/2m. (6)

To speed up the inversion, a preconditioning strategy is used by introducing a pre-
conditioning variable

n = C−1/2m. (7)

Now, the system of equations we solve is as follows:

WB d ≈ WC1/2n; (8)

0 ≈ n. (9)

Different choices can be made for the preconditioner C1/2. As discussed in the pre-
vious work (Li et al., 2013), structure dip filters can be good estimates of the spatial
covariance of the velocity and anisotropic model individually. Figure 5 shows a stacked
image of the studied area (panel (a)) and the dip field estimated from it (panel (b)).
Steering filters Sv (Clapp, 2000) are estimated at each point on this section according
to the dip field. We use the same steering filters for ε and δ; that is Sε = Sδ = Sv.

In addition, we observe correlations among the VTI parameters at a single loca-
tion. Point-by-point, we calculate the variance and the cross-variance using the true
updates in Figure 4, and we plot the six independent components of the covariance
matrix in Figure 6 and 7. The diagonal components in Figure 6 describe the spatial
distribution of the variance between the initial and true model for each VTI param-
eter. The off-diagonal components in Figure 7 describe the cross-covariance between
two given VTI parameters.
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Figure 3: Comparison of the initial (left column) and the true (right column) models
for BP2007 synthetic test. Top row: velocity models; middle row: ε models; bottom
row: δ models. [CR]
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Figure 4: True updates in velocity in (a), ε in (b) and δ in (c). Pseudo velocity logs
at random locations are plotted in (d). [CR]
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To demonstrate the value of the cross-parameter covariance, we compare the in-
version results of the following two preconditioners:

C
1/2
1 = S, (10)

and

C
1/2
2 = SΣ. (11)

The interpolation results of both tests after six iterations are plotted in Figure 8.

The interpolation result for velocity using C
1/2
1 is shown in Figure 8(a). We do

not plot the interpolation results for ε and δ because both of them are zero due to the
lack of measurements. The inversion results are better to the right side of the section
where the velocity logs are denser. The shallow sand layer has been almost perfectly
recovered. On the left side, the inversion interpolates between and extrapolates from
the well logs along the structural dip. The result hints at the shallow sand layer and
the deep anticline structure. However, the blank spaces between the logs are too large
to be filled.

The inverted velocity using C
1/2
2 (Figure 8(b)) is very similar to that using C

1/2
1 .

However, extra information added by the off-diagonal terms in the covariance matrix
shows correct updates in the inverted results for ε and δ. On the right side, the
inversion almost perfectly recovers the ε and δ updates along with the proper layering
in both the shallow and the deep sections. The reconstruction of the deep layering
is mostly attributed to the accurate correlation between velocity and the anisotropic
parameters. To the left, the correct ε and δ updates are obtained wherever the velocity
has been correctly resolved. In the regions where velocity is missing, the off-diagonal
terms do not falsely “create” updates for ε and δ.
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Figure 5: A stacked image of the studied area in panel (a), and the corresponding
dip field in panel (b). [CR]
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Figure 6: Diagonal elements of the covariance matrix of the VTI model. (a) Cvv: map
of variance for velocity, (b) Cεε: map of variance for ε, and (c) Cδδ: map of variance
for δ. [ER]
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Figure 7: Off-diagonal elements of the covariance matrix of the VTI model. (a) Cvε:
map of covariance between velocity and ε, (b) Cvδ: map of covariance between velocity
and δ, and (c) Cεδ: map of covariance between ε and δ. [ER]
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Figure 8: Comparison of the interpolation results. (a): Inverted velocity using C
1/2
1 .

(b): Inverted velocity using C
1/2
2 . (c): Inverted ε using C

1/2
2 . (d): Inverted δ using

C
1/2
2 . [CR]
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WEMVA SYNTHETIC EXAMPLE WITH ROCK
PHYSICS CONSTRAINTS

In this section, we will test the preconditioning scheme using different estimations of
the covariance matrix on the modified BP2007 VTI dataset. The synthetic data are
modeled with a streamer geometry where the maximum offset is 6km. Shot spacing
is 100m, and receiver spacing is 12.5m. A total of 100 shots have been modeled.
The synthetic data are then inverted using the preconditioned anisotropic WEMVA
technique.

The initial and the true models are shown in Figure 3. Compared with the true
models, the initial model captures the overall increasing trend of the VTI parameters.
However, the following two important lithological layers in the shallow region (above
4km) are missing from the initial models: the first shale layer with low velocity and
high anisotropy, and the third sand layer with high velocity and low anisotropy. The
sand-shale inter-layering in the deep region (below 4km) is obvious along the anticline
in the true model. In contrast with the shallow region, the high velocity layers in the
deep section correlate with the shale layers and with high anisotropy. Because the
deeper structures below 4km will be difficult to resolve due to the limited acquisition,
we will focus our discussion on the shallow sediments.

The initial migration image is shown in Figure 9. There are large vertical shifts
between the initial image and the true image. The reduced amplitudes in the deeper
region on the initial stacked image indicate a weaker focusing effect compared with
the true stacked image. Figure 10 shows the comparison of the initial ADCIGs in (a)
with the true ADCIGs in (b). The upward moveouts in the initial ADCIGs indicate
that the average migration velocity is lower than the true average velocity along the
wavepaths. Although the true anisotropy updates in the sand layer are negative by
my construction, the overwhelming effects of the slower velocity on the kinematics of
the acoustic waves are predominant. In the iterative WEMVA process, these upward
moveouts in the ADCIGs will translate into positive updates in both velocity and
anisotropic parameters ε and δ.

The six independent components of the covariance matrix at each point are plotted
in Figures 6 and 7. Notice the negative correlation between velocity and anisotropy
in the shallow region, and the positive correlation in the deep region (Figure 7(a) and
7(b)). Figure 7(c) shows that the positive correlation trend between ε and δ is largely
independent of the depth in this section.

To test the effect of different preconditioning schemes, we perform anisotropic
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Figure 9: Comparison of the initial stacked image (a) and the true stacked image (b).
Notice the depth shift between the images and the unfocused reflectors around z = 3
km and x = 4 km. [CR]
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Figure 10: Comparison of the initial ADCIGs (a) and the true ADCIGs (b). Notice
the upward moveout throughout the section in the initial gathers. [CR]
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WEMVA with three different preconditioning matrices:

Σ1 =

∣∣∣∣∣∣
I 0 0
0 I 0
0 0 I

∣∣∣∣∣∣
1/2

, (12)

Σ2 =

∣∣∣∣∣∣
Cvv I 0 0

0 Cεε I 0
0 0 Cδδ I

∣∣∣∣∣∣
1/2

, (13)

Σ3 =

∣∣∣∣∣∣
Cvv I Cvε I Cvδ I
Cεv I Cεε I Cεδ I
Cδv I Cδε I Cδδ I

∣∣∣∣∣∣
1/2

. (14)

The preconditioning matrix Σ1 indicates that no preconditioning is applied; Σ2 in-
dicates that a diagonal preconditioning is applied; and Σ3 indicates that the full
preconditioning approach is applied. The spatial covariance matrix for the three
tests are the same.

The initial preconditioning model n0 is obtained by minimizing the following ob-
jective function:

Jinit =
1

2
〈m0 −ΣBn0,m0 −ΣBn0〉 . (15)

The gradient of the WEMVA objective function (1) with respect to this precondi-
tioning variable n is

∇nJ = (
∂m

∂n
)∗∇mJ

= B∗Σ∗∇mJ, (16)

where ∇mJ = [∇vJ ∇εJ ∇δJ ]T .

To understand the preconditioning scheme, we analyze the preconditioning effect
assuming a nonlinear steepest decent inversion framework. The initial preconditioned
model n0 is obtained by minimizing the following objective function:

Jinit =
1

2
〈m0 −ΣSn0,m0 −ΣSn0〉 . (17)

For the ith iteration, the preconditioned variable is obtained by

ni+1 = ni + λi∇nJ, (18)

with λi the step length in the ith iteration. Hence the original model variable is

mi+1 = SΣni+1

= SΣni + λiSΣ∇nJ

= mi + λiSΣΣ∗S∗∇mJ. (19)
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Equation 19 suggests that preconditioning a non-linear inversion is equivalent to filter-
ing the gradients so that the resulting updates have the desired spectrum. Therefore,
instead of explicitly reformulating the preconditioned inversion, we can make use of
the original non-linear conjugate gradient algorithm implementation with minimal
changes. The preconditioning step is highlighted in red in Algorithm 1.

Algorithm 1 Optimization algorithm

initialize the model: m0

compute the migrated image: I0

compute the gradient: g0

precondition the gradient: g0
s = SΣΣ∗S∗g0

initialize the search direction: p0 = −g0
s

for k = 1 · · ·Nk do
perform a line search: optimize λ, argmin

λ
J(mk−1 + λpk−1)

update the velocity model: mk = mk−1 + λpk−1

compute the migrated image: Ik

compute the gradient: gk

precondition the gradient: gk
s = SΣΣ∗S∗gk

find the search direction: pk = −gk + (gk
s )T (gk

s−gk−1
s )

(gk−1
s )T gk−1

s

end for

Inversion results

Figure 11 shows the velocity updates after the first iteration. In panel (a), we display
the raw update from the moveouts on the ADCIGs. The overall update direction for
velocity is positive. The vertical resolution of the updates is very low after the first
iteration: a bulk positive velocity shift is indicated by the raw gradient. In panel
(b), the spatial distribution of the velocity update has been modified by the diagonal
elements of the covariance matrix. Because of the prior knowledge of a sand layer
with high velocity perturbation, the preconditioning concentrates the strong velocity
update within that layer. Compared with the true velocity update in panel (d),
the velocity update with the diagonal preconditioning already achieves high vertical
resolution from the first iteration. In panel (c), we utilize all the elements of the
covariance matrix to precondition the gradient. The resulting update is very similar
to the update with diagonal preconditioning. This similarity suggests that the off-
diagonal elements of the covariance matrix have limited influence on velocity.

Figure 12 shows the updates in ε after the first iteration. In panel (a), the raw
update in ε appears lower resolution than the raw updates for velocity. All the
updates are in the positive direction, thus compensating for the upward moveouts
in the initial ADCIGs. However, the updates in ε are very small due to its low
influence to the kinematics of the waves. Although the diagonal preconditioning has
changed the spatial distribution of the update with better definition of the layers,
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the positive values in the ε update in the sand layer is still in the opposite direction
of the true update (Figure 12b). In panel (c), when the off-diagonal elements of
the covariance matrix are included to account for the cross-variance between velocity
and ε, the preconditioning provides ε updates in accordance with the lithology as
follows: positive ε updates in the shale layer and negative ε updates in the sand layer.
Considering the significant difference between panel (b) and panel (c), we conclude
that the lithological information mainly comes from the off-diagonal elements of the
covariance matrix. Similar analysis and conclusions can also be made for anisotropic
parameter δ (Figure 13).

Figure 14 shows the updates in velocity after 20 iterations. Panel (a) shows the
velocity update when no preconditioning is applied. The spatial resolution for velocity
gradually improves with iterations. However, the resolution remains significantly
lower than the true update at iteration 20. More iterations could further improve the
resolution, with a higher weighting on the stacking power term. However, to make a
fair comparison, we stop all the tests at 20 iterations. When implementing diagonal
preconditioning (panel (b)) and full preconditioning (panel (c)), the overall structure
and resolution of the velocity updates remain stable with increasing iterations. This
shows an early convergence. Nevertheless, the later iterations improve the definition
of the thin sand layer with high velocity at z = 1.5km and x = 10km, and the
anticline structure with low velocity around z = 4km and x = 11.5km. The final
inversion results for velocity are nearly identical between the diagonal and the full
preconditioning schemes. As will be shown by the final stacked image, the effective
imaging velocity from the three different preconditioning schemes are very similar.

Figure 15 shows the updates in ε after 20 iterations. When no preconditioning
is applied (panel (a)), the resolution of the ε is lower than the resolution of veloc-
ity as predicted by the topography of the objective function in the previous section.
Compared with Figure 14(a), although the updates in ε in Figure 15(a) are mostly
in phase with the updates in velocity, the positive updates on the flanks and the top
of the anticline are in the correct direction despite the negative velocity updates at
the same locations. When preconditioned with diagonal covariance (panel (b)), the
inversion has a better resolution for the shale layer near the water bottom. However,
the updates in the sand layer are in the opposite direction of the true ε updates.
The inverted updates for ε are very close to the true updates when the off-diagonal
components of the covariance matrix are also included in the preconditioning (panel
(c)). The inversion almost perfectly recovers both the shale and the sand layer due to
the prior knowledge of the cross-correlation between the velocity and ε perturbation
within each layer. Similar analysis and conclusions can also be made for the inverted
updates in δ (Figure 16). Notice that on the flanks and the top of the anticline, the
inversion successfully resolves the ε perturbation no matter which preconditioning
scheme is applied. This success is due to the rich angular coverage in these regions,
especially wide angle imaging rays with higher sensitivity to the anisotropic parame-
ters.

Figure 17 shows the inverted vertical velocity models after twenty iterations.

SEP–152



Li et al. 21 Rock physics constrained WEMVA

v
v
 (
m

/s
)

v
v
 (
m

/s
)

Figure 11: Velocity updates after the first iteration with (a) no preconditioning,
(b) diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true
velocity updates for comparison. [CR]
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ε
ε

ε
εε

Figure 12: Updates in ε after the first iteration with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true ε
updates for comparison. Notice the enhanced amplitude by the full preconditioning
in (c). [CR]
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δ
δ δ

δ

Figure 13: Updates in δ after the first iteration with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true δ
updates for comparison. Notice the enhanced amplitude by the full preconditioning
in (c). [CR]
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Figure 14: Velocity updates after twenty iterations with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true ve-
locity updates for comparison. [CR]
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Figure 15: Updates in ε after twenty iterations with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true ε
updates for comparison. [CR]
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Figure 16: Updates in δ after twenty iterations with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true δ
updates for comparison. [CR]
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When no preconditioning is applied (panel (a)), the inversion only recovers low
wavenumber components of the velocity model. When diagonal or full precondi-
tioning is applied (panels (b) and (c), respectively), the layering with variable depths
in the shallow region is very well recovered. In the deeper section, only the strong
low velocity anomaly at the top of the anticline has been retrieved due to the limited
angle illumination. The lack of inversion success in the deeper region suggests that
powerful as our preconditioning scheme is, it cannot “create” information where the
seismic data has little information.

Figure 18 shows the inverted ε models after twenty iterations. Inversions without
the cross-parameter correlation (panel (a) and (b)) have barely moved the solution
from the initial models. The inversion can resolve a high resolution and rock physics
plausible ε model only when the full preconditioning scheme is applied.

Figure 19 shows the inverted δ models after twenty iterations. Similar to the
inversion results for ε, the information contributed by the off-diagonal terms in the
full covariance matrix provides much better spatial and rock physics constraints.
Notice that in the shallow shale layers, the stronger anisotropic thin shale layers are
very well resolved on panel (c). This high resolution result is attributed to both
the high resolution preconditioning and the high resolution stacking power objective
function.

It is important to note that some ambiguities remain in the VTI parameters even
when the full preconditioning scheme is used. One example is highlighted by the el-
lipses in the figures. In Figure 17(c), a low velocity wedge can be seen when compared
with the true velocity model in Figure 17(d). In the corresponding region, a thin-
ner isotropic sand layer has been observed from the inverted anisotropic parameters
(Figures 18(c) and 19(c)) when compared with the true models (Figures 18(d) and
19(d)). The low velocity anomaly and the high anisotropic anomalies, although of
different shapes, compensate each other and focus the seismic data associated with
this area.

Figure 20 shows the comparison between the final stacked images produced by
different preconditioning schemes with the true stacked image. All three inverted
images are greatly improved from the initial stacked image in Figure 9(a) with better
focusing and better defined depths of the reflectors. Despite the significant differences
in the inverted velocity and anisotropic models from three preconditioning schemes,
the effective imaging velocities along the wavepaths are very similar.

Figure 21 shows the comparison of the final ADCIGs with different preconditioning
schemes. Compared with the initial ADCIGs in Figure 10(a), the inversion flattens
the angle domain events no matter which preconditioning scheme is applied. The
three inversion tests give very similar results in the center of the section between
x = 7.5 km and x = 10.5 km where the reflectors are illuminated by the data with
rich angles. When the subsurface is less well illuminated by the data, for example in
the regions highlighted by the circles, the full preconditioning scheme produces flatter
events, stronger amplitudes, and higher angle coverage.
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Figure 17: Inverted vertical velocity model after twenty iterations with (a) no precon-
ditioning, (b) diagonal preconditioning and (c) full preconditioning. Panel (d) shows
the true vertical velocity model for comparison. [CR]
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Figure 18: Inverted ε model after twenty iterations with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true ε
model for comparison. [CR]
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Figure 19: Inverted δ model after twenty iterations with (a) no preconditioning, (b)
diagonal preconditioning and (c) full preconditioning. Panel (d) shows the true δ
model for comparison. [CR]
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The WEMVA data fitting objective function can be evaluated at each imaging
point. We compare the initial objective function map with the inverted objective
function map with different preconditioning schemes in Figure 22. The warmer color
indicates higher data fitting error, whereas the cooler color indicates lower data fitting
error. In the initial objective function map, the error is small in the shallow region
(above 2.5 km) but it gets stronger with depth. As shown by the inverted objective
function map, the data fitting error has been significantly reduced in all three cases,
especially in the regions between x = 1.5 km and x = 4 km and between x = 10 km
and x = 12 km.

To compare the objective function maps quantitatively (the visual comparison is
difficult due to their similarity), we subtract the objective function map in Figure
22(d) from Figure 22(b) and plot the difference in Figure 23(a). Similarly, the dif-
ference between Figures 22(d) and 22(c) is plotted in Figure 23(b). The region in
red denotes the area where the inversion with full preconditioning fits the data better
than the other two tests, and the region in blue denotes the opposite. The inversion
with full preconditioning does not guarantee a better fit for the data globally, but it
does show better fits locally (Figure 22). Furthermore, the differences among different
preconditioning schemes increase with depth as the data constraint becomes weaker
with depth.

Figure 24(a) plots the value of the data fitting objective function (sum of the
objective function map in Figure 22) as a function of iteration for three different
preconditioning tests. The objective function value is normalized with respect to
the objective function value of the image migrated with the true models. All three
inversion tests reduce the objective function value to about 30% of the initial value.
During the 20 iterations, the objective function values with the full covariance matrix
are almost always the lowest among three tests; however, the differences among the
three objective values at each iteration are small. The curvature of the objective
function curves suggests that the inversion tests with diagonal or full preconditioning
have converged at iteration 20, whereas the inversion test without any preconditioning
may need more iterations to fully converge.

Figure 24(b) plots the normalized length of the gradient as a function of iteration
for three inversion tests. Although not guaranteed to be monotonically decreasing, the
length of the gradient should have a decreasing trend and should approach zero as the
inversion converges, as shown by the curves with diagonal or full preconditioning. On
the other hand, the gradient when no preconditioning is applied still has significant
magnitudes at the last few iterations. This is consistent with the objective function
curve (magenta line in Figure 24(a)) that more iterations may be needed to improve
the convergence.
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Figure 20: Final stacked images with (a) no preconditioning, (b) diagonal preconditioning, and (c) full preconditioning. Panel
(d) shows the true stacked image. [CR]
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DISCUSSION

The nonlinear and underdetermined nature of the anisotropic model building problem
leads to multiple VTI models that fit the same surface seismic data equally well. These
models are referred to as equiprobable models (Yang et al., 2012; Osypov et al., 2008).
The key element in this paper is the inclusion of the covariance matrix among the
VTI parameters so that these equiprobable models can be differentiated from the
prospective of the geological and lithological environment.

At first glance, one may have concerns about the reliability of the “extra” infor-
mation from the preconditioning. However, our tests using different preconditioning
on the synthetic example show that if the VTI parameters are well constrained by
the data in a certain region, different preconditioning schemes will not change the
solutions to those parameters when the convergence has been achieved in all the
inversion tests. For those strongly constrained parameters, proper preconditioning
simply accelerates the convergence and enhances the resolution. The “extra” in-
formation mostly affects the weakly constrained parameters, especially in the poorly
illuminated region. In these cases, the solutions to the model building problem can be
dramatically different. It is possible that the rock physics model is inaccurate, which
eventually leads to erroneous VTI models in the less constrained region. However, the
inverted VTI models are always consistent with the input rock physics information.
Therefore, quick evaluation and modification of the models are possible when more
accurate rock physics information is available.

As shown by the inversion results, even when the exact full preconditioning was
applied in the tests, ambiguities among the VTI parameters cannot be completely
resolved. Two potential reasons may explain the residual ambiguity. First, the pre-
conditioning scheme proposed in this paper utilizes the multivariate Gaussian distri-
bution assumption among the VTI parameters. When the VTI parameters do not
follow the Gaussian distribution, the proposed formulation may not provide a suf-
ficient description of the correlation among them. Moreover, the covariance matrix
among the VTI parameters is estimated based on the current VTI model and/or a
previous lithological interpretation. The conditional probability distribution might
have been changed as the inversion updates the VTI parameters. Therefore, reevalu-
ation of the covariance matrix might be necessary after a few nonlinear iterations to
better mitigate the ambiguities.

CONCLUSION

This paper presents a preconditioned anisotropic WEMVA scheme to better con-
strain the anisotropic model building process. The proposed preconditioning method
includes lithological information in order to guide the inversion towards a plausible
geological and rock physics solution. Numerical examples on a 2-D synthetic dataset
show that when proper preconditioning is applied during inversion, the inversion
achieves the best resolution from the first iteration. By utilizing the cross-variance
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Figure 21: Final ADCIGs with (a) no preconditioning, (b) diagonal preconditioning,
and (c) full preconditioning. Notice the improved angle coverage in the ellipse on the
left and the improved flatness on the right. [CR]

SEP–152



Li et al. 35 Rock physics constrained WEMVA

Figure 22: Comparison of the initial objective function map (a), with the final objec-
tive function map with (b) no preconditioning, (c) diagonal preconditioning, and (d)
full preconditioning. [CR]

Figure 23: Differences between the objective function maps. (a) Difference between
Figure 22(d) and 22(b). (b) Difference between Figure 22(d) and 22(c). [CR]
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Figure 24: Objective function value of the data fitting goal in (a) and the size of the
gradient in (b) as a function of the iteration. Blue line: no preconditioning; red line:
diagonal preconditioning; magenta line: full preconditioning. [CR]

among the VTI parameters, the inversion also correctly resolves the less constrained
anisotropic parameter. Therefore, a properly preconditioned WEMVA inversion pro-
vides a reliable tool for anisotropic model building.
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