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ABSTRACT

In many important practical cases when FWI convergence is uncertain because
of the lack of low-frequency data and/or long offsets, we would like to employ
waveform-inversion methods, such as tomographic FWI (TFWI), that offer more
robust convergence. However, the additional computational cost can be a serious
deterrent form applying TFWI to the full bandwidth of the data. As an alter-
native, we propose the following cost-effective TFWI+FWI workflow: 1) TFWI
applied to the low frequencies in the data, 2) FWI applied to the high frequen-
cies starting from the model estimated by TFWI. We tested TFWI+FWI on two
synthetic datasets computed from the Marmousi 2 model by comparing the re-
sults obtained by full-bandwidth TFWI with models obtained by the proposed
workflow when TFWI was applied to data low-passed to a maximum of 10 Hz.
The new workflow converged to very accurate models even when conventional
FWI with frequency continuation failed. Further cost-saving can be achieved by
switching from TFWI to FWI before TFWI reaches full convergence. Depending
on the number of TFWI iterations, the quality of the final model is negatively
affected but it can be still satisfactory.

INTRODUCTION

Full waveform inversion (FWI) (Bamberger et al., 1982; Tarantola, 1984) has the po-
tential of overcoming the limitations imposed by the conventional sequential seismic-
imaging workflow of velocity analysis followed by migration. However, FWI conver-
gence is notoriously dependent on the accuracy of the starting velocity model and/or
the availability of low-frequency data. In many cases, when these conditions are not
fulfilled, the tomographic component of the inversion is subject to cycle-skipping and
convergence is uncertain.

To overcome FWI convergence problems, FWI and wave-equation migration veloc-
ity analysis (WEMVA) can be successfully integrated and simultaneously performed.
Tomographic FWI (TFWI) is a robust and self-consistent approach to integrate the
two phases by extending the velocity model along either the subsurface-offset or the
time-lag axes and adding a term to the FWI objective function that rewards image
focusing (Symes, 2008; Sun and Symes, 2012; Biondi and Almomin, 2012, 2013, 2014).
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However, TFWI adds computational cost to the already computational-intensive FWI
process.

The computational cost added by time-lags TFWI (Biondi and Almomin, 2014)
grows linearly with the frequency in the data. This frequency dependency com-
pounded with FWI exponential growth with frequencies, may prevent TFWI large-
scale applications to the whole data bandwidth until further improvements in com-
putational systems become available. This observation suggests the development and
the testing of a practical waveform-inversion workflow that employs TFWI only on
the lower frequency in the data, and then switches to conventional FWI for the higher
frequencies. By applying TFWI instead of FWI to the lower frequency we are more
likely avoid falling in local minima related to the long wavelengths of the velocity
model. After the model long-wavelength components are estimated by TFWI with
sufficient accuracy to explain the kinematics in the low-frequency data, the use of
FWI with frequency continuation (i.e. by slowly increasing the bandwidth of the
data starting from the low end of the range) for the higher frequencies should be safe
and improve the resolution of the final model.

The main theoretical limitation of the proposed solution is that the resolution
of the tomographic component of TFWI is directly proportional the data frequency,
and thus it is suboptimal when only the low frequencies are used. By limiting the
application of TFWI to the low frequencies we leave the inversion of the tomographic
component present in the data high frequencies to the less robust FWI. We implicitly
assume that at the moment of the switch from TFWI to FWI the long-wavelength in
the model are not only sufficiently accurate to explain the kinematics at low frequen-
cies, but also sufficiently accurate to prevent FWI to fall in a local minimum. The
results of the synthetic-data tests shown in this abstract confirm the validity of the
suggested workflow, and warrant further testing with field data.

TFWI+FWI WORKFLOW

Biondi and Almomin (2014) introduce TFWI by extending the velocity model along
the time-lag axis τ . To reduce the additional computational burden, the time-lag
extension is introduced only in the evaluation of the discretized linearized operator
L̃ as follows: [

S̃2
o (τ = 0)D2 −∇2

]
δw = δS̃2 (τ)

τ∗ D2wo, (1)

where wo and δw are the background and perturbed wavefields, respectively; S̃o and
δS̃ are diagonal matrices that are formed from the corresponding elements of the
discretized background and perturbed extended-slowness models, respectively; D2 is
a discretized second-derivative operator, ∇2 is a finite-difference approximation of

the Laplacian operator, and
τ∗ denotes convolution in τ . The full non linear extended

modeling operator L̃ is then defined as follows

L̃ (̃s) = L (̃so (τ = 0)) + L̃ (̃so (τ = 0)) δs̃2, (2)
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where L is the conventional wave-equation operator function only of the non-extended
slowness (i.e. s̃o (τ = 0), and δs̃ is a vector formed from the elements of the discretized
perturbed extended-slowness models. The TFWI objective function is defined as
follows:

JTFWI (̃s) =
1

2

∥∥∥L̃ (̃s)− d
∥∥∥2

2
+ ε

∥∥|τ | s̃2
∥∥2

2
. (3)

The first term in this objective function is a FWI-like data-fitting term, with the
important difference that because of the slowness-model extension, this term is not
sufficient to constraint the solution. The second term in the equation 3 rewards focus-
ing of the model around zero time lag. It introduces a tomographic component that
constraints the optimization problem and forces the convergence towards solutions
that fit the data and corresponds to well-focused models.

The objective function in equation 3 is minimized using a nested optimization
algorithm (Almomin and Biondi, 2014). In the outer iterations the nonlinear model-
ing operator (equation 2) is evaluated to update the data residuals, whereas in the
inner iterations only the linearized operators are evaluated. The computational cost
of these iterations is dominated by wave propagation and thus grows with the 4th
power of the temporal frequencies. TFWI introduces an additional cost related to the
performance of the convolutions along the time-lag axis in equation 1 (or correlations
when evaluating the adjoint operator). The computational cost of these convolutions
(correlations) is directly proportional to the number of samples used to represented
the discretized time-lags axis. The time duration of the time-lag axis necessary to
ensure convergence depends on the errors in the initial slowness model and is thus
independent from the data frequencies. In contrast, the sampling rate is inversely de-
pendent on the data frequencies, and thus the cost of the convolutions (correlations)
grows linearly with the data frequencies.

To reduce the computational cost of a waveform inversion, and still benefiting
from the convergence properties of TFWI, we propose a workflow that starts with
TFWI applied only to the low frequencies in the data. Once we are confident that
the estimated long-wavelength components of the model are sufficiently accurate, we
switch to a conventional FWI algorithm to invert the higher frequencies. To minimize
the chances of FWI falling into a local minimum when inverting the higher frequencies,
we employ the the well-established frequency-continuation approach (Bunks et al.,
1995); that is, we slowly increase the bandwidth of the data starting from the low
end of the frequency range.

MARMOUSI RESULTS

We tested the accuracy and efficiency of the workflow described in the previous section
using two synthetic datasets, both modeled using the Marmousi 2 velocity model
(Martin et al., 2002). Figure 1 shows the velocity model used for modeling. The
water layer is thicker than in the original Marmousi; this thicker layer reduces the
amount of refracted energy being recorded in the data. Therefore, these datasets tests
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Figure 1: The velocity of the Marmousi 2 model. [ER]

the capabilities of the proposed workflow to converge in presence of almost exclusively
reflected events.

The two datasets are only different with respect to their low-end frequency limit.
The first one was modeled using a bandpassed wavelet with a frequency range between
5 Hz to 25 Hz, whereas the frequency range of the second dataset was between 3 Hz
to 25 Hz. The acquisition geometry comprises 851 fixed receivers with a spacing of
20 m and 171 sources with a spacing of 100 m. The data were modeled using a
constant-density finite-differences solution of the acoustic wave equation. For all our
inversion results, the initial model was a 1D function that started with the water
layer and linearly increases with a gradient of .83333 1/s below the water bottom. To
demonstrate the convergence improvements achieved by the proposed TFWI+FWI
workflow with respect to conventional FWI, we compare the result obtained by three
workflows: 1) TFWI for all the frequencies present in the data, 2) FWI with frequency
continuation starting from the lowest frequencies present in the data (3 or 5 Hz) and
ending at 25 Hz, and 3) TFWI for the lowest frequencies up to 10 Hz, followed by
FWI with frequency continuation from 10 Hz to 25 Hz. For workflow 1) we run TFWI
for 35 outer iterations, as outlined above and described in more details by Almomin
and Biondi (2014). For workflow 3) we run TFWI for 20 outer iterations with the
5-25 Hz data and for 30 iterations with the 3-25 Hz data. As expected, the TFWI
results are the best, but also the most expensive. They represent the benchmark with
respect to which we measure the results achieved by the two other approaches.

Figure 2 shows the results obtained from the application of the three work-
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flows described above to the 5-25 Hz dataset: TFWI (panel a), FWI (panel b),
and TFWI+FWI (panel d). It also shows the intermediate model produced by the
application of TFWI (panel c) in the TFWI+FWI workflow and used as starting
model for the FWI step. Because of the lack of low frequencies in the data, the FWI
results show poor focusing and gross mispositioning of most of the subsurface fea-
tures. They clearly demonstrate the failure of the conventional workflow employing
FWI with frequency continuation to estimate the long-wavelength components of the
velocity model, and consequently to focus the reflections from the velocity disconti-
nuities. In contrast, the proposed TFWI+FWI workflow (panel d) achieves almost
as an accurate result as the more expensive TFWI workflow (panel a). Most of the
differences between these two results are located at the edges, where even TFWI fails
to recover the model because of lack of “illumination” by the data geometry. These
high-quality results are achieved because the long-wavelengths in the model produced
by TFWI applied to the data low frequencies (≤10 Hz) (panel c) explains accurately
the reflections kinematics and enable the ensuing FWI to converge.

Figure 3 shows the results obtained from the three workflows described above
applied to the 3-25 Hz dataset: TFWI (panel a), FWI (panel b), and TFWI+FWI
(panel d). Because of the additional low frequencies present in the data, the FWI
results show improvements with respect to the previous case (Figure 2b), mostly in
the shallow part of the model. However, in the deeper part of the section, in particular
in the reservoir area, the reflections are still poorly focused and mispositioned. As
for the example above, the proposed TFWI+FWI workflow (panel d) achieves almost
as an accurate result as the more expensive TFWI workflow (panel a). In contrast
with the previous example, the differences at the edges of the model are minimal,
with both methods succeeding to well recover the original model. The improvements
in the final results (panel d) are easily understood when comparing the intermediate
models produced by the application of TFWI in the TFWI+FWI workflow; that is,
when comparing Figure 2c with Figure 3c.

The results shown in the previous figures demonstrate the efficacy of the proposed
TFWI+FWI workflow. We reckon that the number of TFWI iterations used for the
previous examples (20 outer iterations for the 5-25 Hz dataset and 30 for the 3-25 Hz
dataset) extracted from the data the most of the long-wavelength information present
up to 10Hz, and enabled FWI to converge when inverting the higher frequencies data.
In practice, to further reduce the computational cost, we would like to use even less
TFWI iterations. The results shown in Figure 4 illustrates, for the 5-25 Hz dataset,
the consequences of stopping TFWI before it converged. Figure 4a shows the model
produced by TFWI after 5 outer iterations and Figure 4c shows the model produced
by TFWI after 10 outer iterations. Figure 4b shows the results of FWI with frequency
continuation when starting from the model shown in Figure 4a. This model is clearly
unsatisfactory, in particular on the left side of the section. Figure 4d shows the results
of FWI with frequency continuation when starting from the model shown in Figure 4c.
This model is much improved with respect to the previous one, although is noticeable
worse than the one obtained after running TFWI to full convergence before switching
to FWI (Figure 2d). As expected, the quality of the final FWI results are strongly
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dependent on the accuracy of the long-wavelength estimates obtained by applying
TFWI on the lower-frequencies data.

CONCLUSIONS

We introduced a new waveform-inversion workflow that takes advantage of the strong
convergence properties of TFWI but reduces the computational cost by applying the
expensive TFWI process only to the low frequencies in the data. A conventional
FWI with frequency continuation can then be applied to the higher frequencies start-
ing from the velocity model estimated by the low-frequency TFWI. By performing
extensive testing on two synthetic datasets modeled from the Marmousi 2 model,
we demonstrate that the new TFWI+FWI workflow is capable of reconstructing the
Marmousi 2 model in the absence of the low frequencies necessary for FWI to con-
verge. We also show how the final results degrade as the number of TFWI iterations
are reduced; that is, as computational cost decreases. The results of the synthetic-
data tests shown in this abstract confirm the validity of the suggested workflow, and
warrant further testing with field data.
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Figure 2: Velocity models esti-
mated from the 5-25 Hz dataset by
applying: a) TFWI for the whole
bandwidth, b) FWI with fre-
quency continuation starting from
5 Hz data, c) TFWI up to 10 Hz,
and d) FWI with frequency con-
tinuation starting from 10 Hz data
and the model shown in c). [CR]
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Figure 3: Velocity models esti-
mated from the 3-25 Hz dataset by
applying: a) TFWI for the whole
bandwidth, b) FWI with fre-
quency continuation starting from
3 Hz data, c) TFWI up to 10 Hz,
and d) FWI with frequency con-
tinuation starting from 10 Hz data
and the model shown in c). [CR]
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Figure 4: Velocity models esti-
mated from the 5-25 Hz dataset
by applying: a) 5 outer iterations
of TFWI up to 10 Hz, b) FWI
with frequency continuation start-
ing from 10 Hz data and the model
shown in a), c) 10 outer iterations
of TFWI up to 10 Hz, d) FWI
with frequency continuation start-
ing from 10 Hz data and the model
shown in c). [CR]
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