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ABSTRACT

Tomographic full waveform inversion (TFWI) provides a framework for inverting
seismic data which is immune to cycle-skipping problems. This is achieved by
extending the wave equation and adding a spatial or temporal axis to the velocity
model. For computational efficiency, the inversion is performed using a nested
scheme. However, TFWI requires a large number of iterations because of its slow
convergence rate. We analyze the Born and tomographic operators and find two
major sources of this slow convergence. The first source is kinematic artifacts in
the extended model due to a biased AVA behavior in the acoustic two-way wave-
equation. The second source is early imposition of short wavelength updates in
the velocity model that are difficult to move. We provide two modifications of the
nested inversion scheme of TFWI that mitigate these sources of slow convergence.
The first modification is preconditioning of the extended model to balance the
AVA behavior of the acoustic wave-equation. The second modification is imposing
wavelength continuation by filtering the gradient in the outer loop. We test the
new algorithm on synthetic examples. The results of the modified algorithm on
the BP model show a great improvement in convergence rate while maintaining
the high accuracy of TFWI.

INTRODUCTION

Tomographic Full Waveform Inversion (TFWI) (Symes, 2008; Sun and Symes, 2012;
Biondi and Almomin, 2012) provides a way to overcome cycle-skipping problems by
combining both FWI and wave-equation migration velocity analysis (WEMVA) tech-
niques in a generalized framework. This generalized approach utilizes all components
of the seismic data to invert for the medium parameters. This is achieved in two
steps: first, extending the wave equation and adding an additional axis to the veloc-
ity model, and second, adding a regularization term that drives the solution towards
a non-extended model. The velocity model was first extended with subsurface offsets
but later Biondi and Almomin (2013) presented an alternative extension using time
lags that can handle both reflection and transmission effects. In either setting, this
velocity model extension makes the propagation considerably more expensive because
each multiplication by velocity becomes a convolution over the extended axis.
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In a previous abstract (Almomin and Biondi, 2013), we presented an approxi-
mation that significantly reduced the computational cost of TFWI by breaking the
extended velocity model into a background component and a perturbation component
without sacrificing the accuracy of the method. We achieved this in two steps. First,
we set up a nested inversion scheme that utilizes the nonlinear modeling operator to
update the residuals. Second, the two components of the gradient were first mixed
and then separated based on a Fourier domain scale separation.

One of the disadvantages of TFWI in our previous implementation is the large
number of iterations required. By examining the Born and tomographic operators,
we find two main sources of this slow convergence. The first source are the kine-
matic artifacts in the extended model. These artifacts are due to a strongly biased
AVA behavior in the acoustic two-way wave-equation. To eliminate these artifacts,
we examine the Shuey equations for reflection coefficients and find a preconditioner
for the acoustic wave-equation. The second source of slow convergence is the early
imposition of short wavelengths in the velocity model. By testing the Born operator,
we find that short wavelength components require many iteration to be repositioned.
Therefore, we redesign the nested inversion scheme to allow wavelength continuation
of the model updates by restricting the total gradient in the outer loop. Finally, we
test the new algorithm on the synthetic BP model. The convergence rate is greatly
improved, without sacrificing any of the high accuracy level of TFWI.

KINEMATICS ARTIFACTS

We start by testing the Born modeling operator on a constant velocity model that
has a single, flat reflector at 900m depth. We start with two background models, the
first is slower and the second is faster than the correct model. Figure 1(a) and Figure
1(b) show the extended RTM images as a function of subsurface offset for the slow
and fast background models. Although the events have the correct curvature, their
energy at larger dips is significantly more dominant than the smaller dips. Next we
use the DSO and tomographic operators to estimate the tomographic updates needed
for the background velocity as shown in Figures 2(a) and 2(b). Both updates are
overwhelmed by artifacts and are largely positive where we expected them to point
in the opposite directions. Moreover the updates seem to be dominated by a single
dip.

These artifacts can be explained by the Shuey equations (Shuey, 1985) for reflec-
tion coefficients of the elastic wave-equation:

R(θ) = R(0) + Gsin2(θ) + F
(
tan2(θ)− sin2(θ)

)
, (1)

where R(θ) is the reflection coefficient and θ is the reflection angle. R(0) is the normal
reflection coefficient which can be written as:

R(0) =
1

2

(
∆Vp

Vp

+
∆ρ

ρ

)
, (2)
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(a) (b)

Figure 1: Extended RTM image with (a) a slow background model, (b) a fast back-
ground model. [CR]

(a) (b)

Figure 2: Tomographic gradient using DSO operator with (a) a slow background
model and (b) a fast background model. [CR]
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where Vp is the P-wave velocity, Vs is the S-wave velocity and ρ is the density. The
coefficient G is:

G =
1

2

∆Vp

Vp

− 2
V 2

s

V 2
p

(
∆ρ

ρ
+ 2

∆Vs

Vs

)
, (3)

and the coefficient F is:

F =
1

2

∆Vp

Vp

. (4)

Notice that for the acoustic case we set Vs = 0, reducing the reflection coefficient
equation to:

R(θ) = R(0) + F tan2(θ). (5)

The previous equation shows that the reflection coefficients always increases in mag-
nitude by a tangent square as a function of angle. This explains the increase in
amplitude with larger angles that causes and artifacts in the extended RTM images
and the tomographic updates.

In order to reduce the AVA behavior that we observed, we propose preconditioning
the image (or gradient of perturbation gp2) by a stable inverse of the tangent square
function such that:

qp2(θ) =
gp2(θ)

tan2(θ) + α
, (6)

where qp2(θ) is the preconditioned gradient in angle domain and α is a stabilizing
term. Figures 3(a) and 3(b) show the extended RTM images for the slow and fast
background models after preconditioning. The artifacts are vastly reduced and the
image dips are more balanced. The tomographic updates using the preconditioned
images are shown in Figures 4(a) and 4(b). The updates are now pointing in the
directions we expect them to, and are more balanced compared to the results shown
in Figures 2(a) and 2(b).

(a) (b)

Figure 3: Preconditioned extended RTM image with (a) a slow background model,
(b) a fast background model. [CR]
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(a) (b)

Figure 4: Preconditioned tomographic gradient using DSO operator with (a) a slow
background model and (b) a fast background model. [CR]

WAVELENGTH CONTINUATION

The direct approach in TFWI is to allow both the Born and tomographic operators
to update the velocity model. The short wavelengths start by being positioned at the
wrong depth but then get moved to the correct depth. I now examine the rate which
Born operator can remove these short wavelength updates by running a least-squares
RTM inversion in reverse, i.e., we use the first gradient of a conventional least-squares
RTM as the initial model and try to fit data that is all zeros. In other words, the
inversion will try to erase the initial model. We run this “reversed” LSRTM for 20
iterations. Figure 5 shows the residual norm as a function of iterations. Although the
initial model was created by one iteration, the reverse process required more than 20
iterations to remove it using the same operator. Since this process happen repeatedly
in TFWI, it explains the slow convergence rate, since every time the background
model changes the perturbation has to be repositioned.

Conventional FWI algorithms avoid this problem by using a frequency contin-
uation approach where the low frequencies are used first. The same approach is
not possible in the previous TFWI algorithm because it requires adding the short
wavelength updates in two parts. First, as a component of a tomographic operator.
Second, it is required to properly minimize the nonlinear objective function in the
outer loop.

To overcome these limitations, we propose two modifications to the algorithm.
First, we removed the nonlinear line search and simply added the total update di-
rectly to the velocity model. The justification is that the updates coming out of the
inner iteration are already scaled to fit the data so, further scaling is not necessary.
Second, we add a low-pass filter to the total update that follows the inner loop. These
modifications allow the tomographic operator to have the short wavelength updates
required to build the tomographic gradient, while delaying them from being added to
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the velocity model. The modified algorithm can be written as follows:

iterate {
∆d←− dobs − L(s)
b2 ←− s2

p2 ←− 0
iterate {

rd ←− L(b)p2 −∆d
rm ←− Ap2

rnorm ←− 0.5‖rd‖+ 0.5ε‖rm‖
gp2 ←− L′(b)rd + εA′rm

qp2 ←− precondition(gp2 , α)
gb2 ←− T′(b,p)rd

(∆p2, ∆b2)←− mix(qp2 ,gb2)
(p2,b2)←− stepper(p2,b2, ∆p2, ∆b2)
}

∆s2 ←− low − pass(p2 + b2 − s2)
s2 ←− s2 + ∆s2

}

where L is the wave-equation modeling operator, s is the slowness model, b and p are
the background and perturbation components, r is the residual, A is the regularization
operator and ε is a regularization weight term.

This new algorithm performs a wavelength continuation by relaxing the low-pass
filter as the number of iteration increase. Hence, the long wavelength updates will be
added in early iterations to the velocity model, whereas the short wavelength updates
will be added in later iteration. It is important to distinguish between this algorithm
and the conventional FWI frequency continuation algorithms. In FWI, there is a di-
rect relationship between the frequency of reflected data and the resulting wavelength
of the model update. Therefore, using low frequencies results in smooth updates.
However, the relationship between the reflected data frequency and wavelength of the
updates is more complicated in TFWI because the tomographic operator can produce
long wavelength updates from high frequency data. This property allows wavelength
continuation to always start from smooth updates, even when the low frequencies are
not present in the data.

SYNTHETIC EXAMPLES

To test the new algorithm, we run a synthetic TFWI example on the BP model. We
use a bandpassed wavelet with a frequency range between 5 Hz to 25 Hz and a small
taper on both ends. The purpose of using this wavelet is to completely eliminate
unrealistically low frequencies in the data. Figure 6(a) shows the correct velocity
model. There are 1484 fixed receivers with a spacing of 20 m and 297 sources with a
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Figure 5: Residual norm of reversed LSRTM as a function of iterations. [CR]

spacing of 100 m. The initial 1D model is shown in Figure 6(b) which is obtained by
taking the horizontal average of the correct model after removing the high velocity
and low velocity anomalies.

The inversion results after 38 outer loop iterations are shown in Figure 7(a). Each
outer loop consists of 10 inner loop iterations. The inversion shows a remarkable
reconstruction of most features of the velocity model. Moreover, the number of iter-
ations is reduced by more than an order of magnitude, compared to 500 outer loop
iterations in the previous implementation in Almomin and Biondi (2013). Figure
7(b) shows the data-fitting residual norm as a function of total iterations. The new
algorithm achieved convergence at a much faster rate than the previous algorithm.
The jumps in the objective function correspond to the iterations where the cutoff of
the low-pass filter was increased, which slightly increased the data-fitting term of the
objective function. In a companion abstract, Biondi and Almomin (2014) show more
synthetic examples and present an efficient workflow that combines TFWI and FWI
to further reduce the cost of inversion.

CONCLUSIONS

We introduced a modified inversion algorithm that significantly improved the con-
vergence rate of TFWI. This was achieved by preconditioning the extended model to
reduce the kinematic artifacts of the acoustic wave-equation and by implementing a
low-pass filter that allows for an efficient wavelength continuation without compro-
mising the tomographic operator. The synthetic tests show the fast convergence of
the new algorithm even when starting from a far initial model. Currently, the low-
pass filter is heuristically relaxed as a function of iterations. More sophisticated and
deterministic methods need to be further investigated.
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(a) (b)

Figure 6: (a) The correct velocity of BP model and (b) the initial velocity. [CR]

(a) (b)

Figure 7: (a) the TFWI results of BP model and (b) residual norm as a function of
iterations. [CR]
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